1
|
Artico M, Roux C, Peruch F, Mingotaud AF, Montanier CY. Grafting of proteins onto polymeric surfaces: A synthesis and characterization challenge. Biotechnol Adv 2023; 64:108106. [PMID: 36738895 DOI: 10.1016/j.biotechadv.2023.108106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
This review aims at answering the following question: how can a researcher be sure to succeed in grafting a protein onto a polymer surface? Even if protein immobilization on solid supports has been used industrially for a long time, hence enabling natural enzymes to serve as a powerful tool, emergence of new supports such as polymeric surfaces for the development of so-called intelligent materials requires new approaches. In this review, we introduce the challenges in grafting protein on synthetic polymers, mainly because compared to hard surfaces, polymers may be sensitive to various aqueous media, depending on the pH or reductive molecules, or may exhibit state transitions with temperature. Then, the specificity of grafting on synthetic polymers due to difference of chemical functions availability or difference of physical properties are summarized. We present next the various available routes to covalently bond the protein onto the polymeric substrates considering the functional groups coming from the monomers used during polymerization reaction or post-modification of the surfaces. We also focus our review on a major concern of grafting protein, which is avoiding the potential loss of function of the immobilized protein. Meanwhile, this review considers the different methods of characterization used to determine the grafting efficiency but also the behavior of enzymes once grafted. We finally dedicate the last part of this review to industrial application and future prospective, considering the sustainable processes based on green chemistry.
Collapse
Affiliation(s)
- M Artico
- Laboratory IMRCP, CNRS UMR 5623, University Paul Sabatier, Toulouse, France; TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - C Roux
- Laboratory IMRCP, CNRS UMR 5623, University Paul Sabatier, Toulouse, France
| | - F Peruch
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac, France
| | - A-F Mingotaud
- Laboratory IMRCP, CNRS UMR 5623, University Paul Sabatier, Toulouse, France.
| | - C Y Montanier
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| |
Collapse
|
2
|
Amine-Rich Coatings to Potentially Promote Cell Adhesion, Proliferation and Differentiation, and Reduce Microbial Colonization: Strategies for Generation and Characterization. COATINGS 2021. [DOI: 10.3390/coatings11080983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biomaterial surface modification represents an important approach to obtain a better integration of the material in surrounding tissues. Different techniques are focused on improving cell support as well as avoiding efficiently the development of infections, such as by modifying the biomaterial surface with amine groups (–NH2). Previous studies showed that –NH2 groups could promote cell adhesion and proliferation. Moreover, these chemical functionalities may be used to facilitate the attachment of molecules such as proteins or to endow antimicrobial properties. This mini-review gives an overview of different techniques which have been used to obtain amine-rich coatings such as plasma methods and adsorption of biomolecules. In fact, different plasma treatment methods are commonly used with ammonia gas or by polymerization of precursors such as allylamine, as well as coatings of proteins (for example, collagen) or polymers containing –NH2 groups (for example, polyethyleneimine). Moreover, this mini-review will present the methods used to characterize such coatings and, in particular, quantify the –NH2 groups present on the surface by using dyes or chemical derivatization methods.
Collapse
|
3
|
Bösiger P, Tegl G, Richard IM, Le Gat L, Huber L, Stagl V, Mensah A, Guebitz GM, Rossi RM, Fortunato G. Enzyme functionalized electrospun chitosan mats for antimicrobial treatment. Carbohydr Polym 2018; 181:551-559. [DOI: 10.1016/j.carbpol.2017.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/21/2017] [Accepted: 12/03/2017] [Indexed: 02/01/2023]
|
4
|
Mohamed A, Nemeshwaree B, Brigitte M, Anne P, Kalim B, Pascal D, Anne-Sophie M, Rénato F. Activity of enzymes immobilized on plasma treated polyester. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Elagli A, Belhacene K, Vivien C, Dhulster P, Froidevaux R, Supiot P. Facile immobilization of enzyme by entrapment using a plasma-deposited organosilicon thin film. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Tran CT, Kondyurin A, Chrzanowski W, Bilek MM, McKenzie DR. Increasing binding density of yeast cells by control of surface charge with allylamine grafting to ion modified polymer surfaces. Colloids Surf B Biointerfaces 2014; 122:537-544. [DOI: 10.1016/j.colsurfb.2014.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/20/2014] [Accepted: 07/15/2014] [Indexed: 10/25/2022]
|
7
|
|
8
|
Gailite L, Scopelliti PE, Sharma VK, Indrieri M, Podestà A, Tedeschi G, Milani P. Nanoscale roughness affects the activity of enzymes adsorbed on cluster-assembled titania films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:5973-5981. [PMID: 24785262 DOI: 10.1021/la500738u] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this study, we investigated how the adsorption properties governed by the nanometer-scale surface morphology of cluster-assembled titanium oxide films influence the catalytic activity of immobilized serine-protease trypsin. We developed an activity assay for the parallel detection of physisorbed enzyme activity and mass density of the adsorbed proteins in microarray format. The method combines a microarray-based technique and advanced quantitative confocal microscopy approaches based on fluorescent labeling of enzymes and covalent labeling of active sites of surface-bound enzymes. The observed diminishing trypsin binding affinity with increasing roughness, as opposed to the steep rise in its saturation uptake, was interpreted as heterogeneous nucleation-driven adsorption of trypsin at the rough nanoporous titania surface. The increase in relative activity of adsorbed trypsin is proportional to the fractional saturation of titania surfaces, expressed as percentage of saturation uptake. In turn, the specific activity, that is, the ratio of active proteins to the absolute number of adsorbed proteins, drops with growing saturation uptake and surface roughness, witnessing a reduction in the accessibility of enzyme active sites. Both geometrical constraints of titania nanopores and the clusterwise adsorption of trypsin were identified as the key factors underpinning the steric hindrance of the immobilized enzyme. These findings are relevant for the optimization of rough nanoporous surfaces as carriers of immobilized enzymes. The proposed activity assay is particularly advantageous in the screening of candidate materials for enzyme immobilization.
Collapse
Affiliation(s)
- Lasma Gailite
- European School of Molecular Medicine (SEMM), IFOM-IEO, Via Adamello 16, 20139 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
9
|
Çelikbıçak Ö, Atakay M, Güler Ü, Salih B. A Trypsin Immobilized Sol-Gel for Protein Indentification in MALDI-MS Applications. ANAL LETT 2014. [DOI: 10.1080/00032719.2013.831423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Roy S, Das T, Yue CY, Hu X. Improved polymer encapsulation on multiwalled carbon nanotubes by selective plasma induced controlled polymer grafting. ACS APPLIED MATERIALS & INTERFACES 2014; 6:664-670. [PMID: 24191852 DOI: 10.1021/am404768v] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Surface graft polymerization on multiwalled carbon nanotubes (MWCNTs) with several grafting mechanisms is nowadays a demanding field of nanocomposites in order to enhance the load carrying capacity, thus improving the overall performance of the composites. Here, we demonstrate the covalent grafting of a sulfonic acid terminated monomer, 2-acrylamido-2-methylpropane sulfonic acid onto sidewalls of MWCNTs via a comparative study between oxygen plasma induced grafting (OPIG), nitrogen plasma induced grafting (NPIG), and nitrogen + oxygen plasma induced grafting (NOPIG) with the aim to identify the most effective process for the preparation of polymer encapsulated carbon nanotubes. From the detail surface analysis, it has been noticed that NOPIG offered much better surface grafting than that of the OPIG and NPIG. The transmission electron microscopy (TEM) images showed that MWCNTs modified by NOPIG possess much thicker and uniform polymer coatings throughout. From thermogravimetric analysis (TGA), the grafting degree was found to be ~80 wt % for the NOPIG sample.
Collapse
Affiliation(s)
- Sunanda Roy
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798
| | | | | | | |
Collapse
|
11
|
Menfaatli E, Zihnioglu F. Carrier free immobilization and characterization of trypsin. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2013; 43:140-4. [DOI: 10.3109/21691401.2013.853178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Abbas A, Tian L, Morrissey JJ, Kharasch ED, Singamaneni S. Hot Spot-Localized Artificial Antibodies for Label-Free Plasmonic Biosensing. ADVANCED FUNCTIONAL MATERIALS 2013; 23:1789-1797. [PMID: 24013481 PMCID: PMC3765019 DOI: 10.1002/adfm.201202370] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The development of biomolecular imprinting over the last decade has raised promising perspectives in replacing natural antibodies with artificial antibodies. A significant number of reports have been dedicated to imprinting of organic and inorganic nanostructures, but very few were performed on nanomaterials with a transduction function. Herein we describe a relatively fast and efficient plasmonic hot spot-localized surface imprinting of gold nanorods using reversible template immobilization and siloxane co-polymerization. The technique enables a fine control of the imprinting process at the nanometer scale and provides a nanobiosensor with high selectivity and reusability. Proof of concept is established by the detection of neutrophil gelatinase-associated lipocalin (NGAL), a biomarker for acute kidney injury, using localized surface plasmon resonance spectroscopy. The work represents a valuable step towards plasmonic nanobiosensors with synthetic antibodies for label-free and cost-efficient diagnostic assays. We expect that this novel class of surface imprinted plasmonic nanomaterials will open up new possibilities in advancing biomedical applications of plasmonic nanostructures.
Collapse
Affiliation(s)
- Abdennour Abbas
- Department of Mechanical Engineering and Materials Science. Washington University in St. Louis, St Louis, MO, 63130 (USA)
| | - Limei Tian
- Department of Mechanical Engineering and Materials Science. Washington University in St. Louis, St Louis, MO, 63130 (USA)
| | - Jeremiah J. Morrissey
- Department of Anesthesiology, Division of Clinical and Translational Research, Washington University in St. Louis, St Louis, MO, 63110, (USA)
| | - Evan D. Kharasch
- Department of Anesthesiology, Division of Clinical and Translational Research, Washington University in St. Louis, St Louis, MO, 63110, (USA)
| | | |
Collapse
|
13
|
Ardhaoui M, Bhatt S, Zheng M, Dowling D, Jolivalt C, Khonsari FA. Biosensor based on laccase immobilized on plasma polymerized allylamine/carbon electrode. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:3197-205. [PMID: 23706201 DOI: 10.1016/j.msec.2013.03.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/16/2013] [Accepted: 03/29/2013] [Indexed: 10/27/2022]
Abstract
In this work, a simple and rapid method was used to functionalize carbon electrode in order to efficiently immobilize laccase for biosensor application. A stable allylamine coating was deposited using a low pressure inductively excited RF tubular plasma reactor under mild plasma conditions (low plasma power (10 W), few minutes) to generate high density amine groups (N/C ratio up to 0.18) on rough carbon surface electrodes. The longer was the allylamine plasma deposition time; the better was the surface coverage. Laccase from Trametes versicolor was physisorbed and covalently bound to these allylamine modified carbon surfaces. The laccase activities and current outputs measured in the presence of 2,2'-azinobis-(3-ethylbenzothiazole-6-sulfonic acid) (ABTS) showed that the best efficiency was obtained for electrode plasma coated during 30 min. They showed also that for all the tested electrodes, the activities and current outputs of the covalently immobilized laccases were twice higher than the physically adsorbed ones. The sensitivity of these biocompatible bioelectrodes was evaluated by measuring their catalytic efficiency for oxygen reduction in the presence of ABTS as non-phenolic redox substrate and 2,6-dimethoxyphenol (DMP) as phenolic one. Sensitivities of around 4.8 μA mg(-1)L and 2.7 μA mg(-1)L were attained for ABTS and DMP respectively. An excellent stability of this laccase biosensor was observed for over 6 months.
Collapse
Affiliation(s)
- Malika Ardhaoui
- Laboratoire de Génie des Procédés Plasma et Traitements de Surface, Université Pierre et Marie Curie-Chimie ParisTech, Paris, France.
| | | | | | | | | | | |
Collapse
|
14
|
Xu Q, Wei HP, Du S, Li HB, Ji ZP, Hu XY. Detection of subnanomolar melamine based on electrochemical accumulation coupled with enzyme colorimetric assay. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:1810-1817. [PMID: 23373873 DOI: 10.1021/jf304034e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Based on the synergetic effect of the electrochemical accumulation process and the signal amplification of enzymes, a new sensitive method has been developed for the detection of subnanomolar melamine. There are two steps involved in the sensor construction process: (1) accumulation of melamine on an electrode by cyclic voltammetric method and (2) chemical coupling of horseradish peroxidase (HRP) with the accumulated melamine through the linkage of glutaraldehyde. The coupled HRP catalyzes the oxidation of guaiacol to generate an amber-colored product. Quantitative analysis of melamine is performed by measuring the absorption intensities of the colored product. Under the optimal conditions, the method showed a wide linearity in the concentration range from 1.0 × 10(-11) to 1.0 × 10(-8) M for melamine detection. Moreover, it has been successfully applied to detect melamine in different infant formula powders and fish feed samples.
Collapse
Affiliation(s)
- Qin Xu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | | | | | | | | | | |
Collapse
|
15
|
Peng G, Zhao C, Liu B, Sun Z, Luo R. Chitosan Modified PSt-GMA Microspheres With/Without Spacer-Arms as Carriers: Their Influences on Kinetics, Stability, Optimal pH, Adsorption Behavior of Immobilized Trypsin. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2012. [DOI: 10.1080/10601325.2012.714678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Pinto PC, Costa SP, Costa AD, Passos ML, Lima JL, Saraiva MLM. Trypsin activity in imidazolium based ionic liquids: evaluation of free and immobilized enzyme. J Mol Liq 2012. [DOI: 10.1016/j.molliq.2012.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Bucatariu F, Simon F, Bellmann C, Fundueanu G, Dragan ES. Stability under flow conditions of trypsin immobilized onto poly(vinyl amine) functionalized silica microparticles. Colloids Surf A Physicochem Eng Asp 2012. [DOI: 10.1016/j.colsurfa.2012.02.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Ghasemi M, Minier MJG, Tatoulian M, Chehimi MM, Arefi-Khonsari F. Ammonia Plasma Treated Polyethylene Films for Adsorption or Covalent Immobilization of Trypsin: Quantitative Correlation between X-ray Photoelectron Spectroscopy Data and Enzyme Activity. J Phys Chem B 2011; 115:10228-38. [DOI: 10.1021/jp204097a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mahsa Ghasemi
- Chimie ParisTech, Laboratoire de Génie des Procédés Plasma et Traitements de Surface (LGPPTS), EA 3492, 75005 Paris, France
- UPMC Univ Paris 06, 75005 Paris, France
- Chimie ParisTech, Laboratoire Charles Friedel (LCF), 75005 Paris, France
- CNRS, UMR 7223, 75005 Paris, France
| | - Michel J. G. Minier
- Chimie ParisTech, Laboratoire Charles Friedel (LCF), 75005 Paris, France
- CNRS, UMR 7223, 75005 Paris, France
| | - Michaël Tatoulian
- Chimie ParisTech, Laboratoire de Génie des Procédés Plasma et Traitements de Surface (LGPPTS), EA 3492, 75005 Paris, France
- UPMC Univ Paris 06, 75005 Paris, France
| | - Mohamed M. Chehimi
- Interfaces, Traitements, Organisation & Dynamique des Systèmes (ITODYS Lab), University Paris Diderot & CNRS, 15 rue Jean-Antoine de Baïf, 75013 Paris, France
| | - Farzaneh Arefi-Khonsari
- Chimie ParisTech, Laboratoire de Génie des Procédés Plasma et Traitements de Surface (LGPPTS), EA 3492, 75005 Paris, France
- UPMC Univ Paris 06, 75005 Paris, France
| |
Collapse
|
19
|
Reichelt S, Elsner C, Pender A, Buchmeiser MR. Tailoring the surface of magnetic microparticles for protein immobilization. J Appl Polym Sci 2011. [DOI: 10.1002/app.34153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Linman MJ, Abbas A, Cheng Q. Interface design and multiplexed analysis with surface plasmon resonance (SPR) spectroscopy and SPR imaging. Analyst 2010; 135:2759-67. [PMID: 20830330 PMCID: PMC7365140 DOI: 10.1039/c0an00466a] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ever since the advent of surface plasmon resonance (SPR) and SPR imaging (SPRi) in the early 1990s, their use in biomolecular interaction analysis (BIA) has expanded phenomenally. An important research area in SPR sensor development is the design of novel and effective interfaces that allow for the probing of a variety of chemical and biological interactions in a highly selective and sensitive manner. A well-designed and robust interface is a necessity to obtain both accurate and pertinent biological information. This review covers the recent research efforts in this area with a specific focus towards biointerfaces, new materials for SPR biosensing, and novel array designs for SPR imaging. Perspectives on the challenges ahead and next steps for SPR technology are discussed.
Collapse
Affiliation(s)
- Matthew J. Linman
- Department of Chemistry, University of California, Riverside, California 92521
| | - Abdennour Abbas
- Department of Chemistry, University of California, Riverside, California 92521
| | - Quan Cheng
- Department of Chemistry, University of California, Riverside, California 92521
| |
Collapse
|
21
|
Abbas A, Treizebre A, Supiot P, Bourzgui NE, Guillochon D, Vercaigne-Marko D, Bocquet B. Cold plasma functionalized TeraHertz BioMEMS for enzyme reaction analysis. Biosens Bioelectron 2009; 25:154-60. [PMID: 19608402 DOI: 10.1016/j.bios.2009.06.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 06/14/2009] [Accepted: 06/16/2009] [Indexed: 11/30/2022]
Abstract
In this paper, we describe the development, functionalization and functionality testing of a TeraHertz (THz) Bio-MicroElectroMechanical System (BioMEMS) dedicated to enzyme reaction analysis. The microdevice was fabricated by mixing clean room microfabrication with cold plasma deposition. The first is used to build the microfluidic circuits and the THz sensor, while the later serves for the polymerization of allylamine using a homemade glow discharge plasma reactor for a subsequent immobilization of enzymatic biocatalysts. Thermal stability of the deposited plasma polymer has been investigated by infrared spectroscopy. Fluorescent detection confirmed the efficiency of the immobilization and the enzyme hydrolysis into the BioMEMS microchannels. For the first time, the progression of the hydrolysis reaction over time was monitored by the THz sensor connected to a vectorial network analyzer. Preliminary results showed that sub-THz transmission measurements are able to discriminate different solid films, various aqueous media and exhibit specific transmission behavior for the enzyme hydrolysis reaction in the spectral range 0.06-0.11 THz.
Collapse
Affiliation(s)
- Abdennour Abbas
- Institute of Electronics, Microelectronics and Nanotechnology (UMR-CNRS 8520), University of Lille1, F59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | |
Collapse
|