1
|
Qashqoosh MTA, Alahdal FAM, Manea YK, Zubair S, Khan RH, Khan AM, Naqvi S. Binding ability of roxatidine acetate and roxatidine acetate supported chitosan nanoparticles towards bovine serum albumin: characterization, spectroscopic and molecular docking studies. J Biomol Struct Dyn 2023; 41:106-124. [PMID: 34821213 DOI: 10.1080/07391102.2021.2004234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The RxAc drug loaded on Tween80-chitosan-TPP nanoparticles (NRxAc) has been characterized and probed by UV-Vis, PXRD, FTIR, DLS and SEM technique. The physicochemical characteristics of NRxAc have been employed and evaluated for formulation of drug, particle size, external morphology, drug content and in vitro drug release. Multi-spectroscopic (i.e. fluorescence, UV-Vis, CD spectroscopy) and molecular docking techniques were also used to study the interaction of BSA with RxAc and NRxAc. RxAc and NRxAc quenched the fluorescence emission of BSA via a static quenching mechanism. The experimental data of Fluorescence demonstrated that the binding constant of RxAc and NRxAc were found around 104 L.mol-1, which suggests moderate binding affinity with BSA via hydrophobic forces. Through the site marker displacement experiments and molecular docking, the probable binding location of RxAc and NRxAc has been suggested in subdomain IB (site III) of BSA. Altogether, the results of present study can provide an important insight and a great deal of helpful information for future design of antiulcer drugs. Hence, The RxAc-loaded chitosan nanoparticles produced might be utilized as a successful tool for developing and using antiulcer drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohsen T A Qashqoosh
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.,Department of Chemistry, University of Aden, Aden, Yemen
| | - Faiza A M Alahdal
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.,Department of Chemistry, Hodeidah University, Al Hudaydah, Yemen
| | - Yahiya Kadaf Manea
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.,Department of Chemistry, University of Aden, Aden, Yemen
| | - Swaleha Zubair
- Department of Computer science, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Amjad Mumtaz Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Saeeda Naqvi
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
2
|
A novel oral medicated jelly for enhancement of etilefrine hydrochloride bioavailability: In vitro characterization and pharmacokinetic evaluation in healthy human volunteers. Saudi Pharm J 2022; 30:1435-1447. [DOI: 10.1016/j.jsps.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
|
3
|
Elshafeey AH, El-Dahmy RM. Formulation and Development of Oral Fast-Dissolving Films Loaded with Nanosuspension to Augment Paroxetine Bioavailability: In Vitro Characterization, Ex Vivo Permeation, and Pharmacokinetic Evaluation in Healthy Human Volunteers. Pharmaceutics 2021; 13:pharmaceutics13111869. [PMID: 34834284 PMCID: PMC8620498 DOI: 10.3390/pharmaceutics13111869] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 01/10/2023] Open
Abstract
Paroxetine (PX) is the most potent serotonin reuptake inhibitor utilized in depression and anxiety treatment. It has drawbacks, such as having a very bitter taste, low water solubility, and undergoing extensive first pass metabolism, leading to poor oral bioavailability (<50%). This work aimed to develop and optimize palatable oral fast-dissolving films (OFDFs) loaded with a paroxetine nanosuspension. A PX nanosuspension was prepared to increase the PX solubility and permeability via the buccal mucosa. The OFDFs could increase PX bioavailability due to their rapid dissolution in saliva, without needing water, and the rapid absorption of the loaded drug through the buccal mucosa, thus decreasing the PX metabolism in the liver. OFDFs also offer better convenience to patients with mental illness, as well as pediatric, elderly, and developmentally disabled patients. The PX nanosuspension was characterized by particle size, poly dispersity index, and zeta potential. Twelve OFDFs were formulated using a solvent casting technique. A 22 × 31 full factorial design was applied to choose the optimized OFDF, utilizing Design-Expert® software (Stat-Ease Inc., Minneapolis, MN, USA). The optimized OFDF (F1) had a 3.89 ± 0.19 Mpa tensile strength, 53.08 ± 1.28% elongation%, 8.12 ± 0.13 MPa Young's modulus, 17.09 ± 1.30 s disintegration time, and 96.02 ± 3.46% PX dissolved after 10 min. This optimized OFDF was subjected to in vitro dissolution, ex vivo permeation, stability, and palatability studies. The permeation study, using chicken buccal pouch, revealed increased drug permeation from the optimized OFDF; with a more than three-fold increase in permeation over the pure drug. The relative bioavailability of the optimized OFDF in comparison with the market tablet was estimated clinically in healthy human volunteers and was found to be 178.43%. These findings confirmed the success of the OFDFs loaded with PX nanosuspension for increasing PX bioavailability.
Collapse
Affiliation(s)
- Ahmed Hassen Elshafeey
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Correspondence: ; Tel.: +20-100-584-0261
| | - Rania Moataz El-Dahmy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Central Axis, Cairo 12585, Egypt;
| |
Collapse
|
4
|
Hasija R, Chaurasia S, Gupta S. Formulation design, optimization and in vivo evaluation of oral co-encapsulated resveratrol-humic acid colloidal polymeric nanocarriers. Pharm Dev Technol 2021; 26:953-966. [PMID: 34374616 DOI: 10.1080/10837450.2021.1966442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The study aims at formulation and optimization of resveratrol and humic acid co-encapsulated colloidal polymeric nanocarriers to improve stability, oral bioavailability, and antiradical activity of water-insoluble, resveratrol. The eudragit E100 polymeric material was used to fabricate resveratrol and humic acid co-encapsulated oral colloidal polymeric nanocarriers (Res-HA-co-CPNs) using emulsification-diffusion-evaporation method. Taguchi orthogonal array design was employed to check the effect of formulation factors on in vitro physicochemical characteristics. The optimized formulation was further evaluated for oral bioavailability as well as for antiradical potential. Optimized Res-HA-co-CPNs demonstrated spherical and smooth surface including mean particle size, 120.56 ± 18.8 nm; polydispersity index, 0.122; zeta potential, +38.25 mV; and entrapment efficiency, 82.37 ± 1.49%. Solid-state characterization confirmed the amorphous characteristic of optimized Res-HA-co-CPNs. In vitro release profile of Res-HA-co-CPNs showed sustained release behavior up to 48 h and CPNs were found to remain stable at the refrigerated condition for 6 months. In vivo pharmacokinetic studies revealed significant (p < 0.05) improvement of ∼62.76-fold in oral bioavailability. The radical-scavenging activity was found to be increased with time and after 72 h, it was analogous to pure Res. IC50 values were reported to be decreased with time. Henceforth, developed Res-HA-co-CPNs was proven to be a proficient dosage form to increase stability, oral bioavailability, and antiradical activity of resveratrol.HighlightsResveratrol-humic acid co-encapsulated colloidal polymeric nanocarriers (Res-HA-co-CPNs) were fabricated by emulsification-diffusion-evaporation method and optimized by Taguchi orthogonal array design.The Res-HA-co-CPNs revealed favorable mean particle size and percent encapsulation efficiency with a spherical and smooth surface.The Res-HA-co-CPNs showed diffusion-controlled release of Res and were found to be stable at the refrigerated condition for 6 months.The optimized Res-HA-co-CPNs demonstrated significantly (p < 0.05) higher oral bioavailability with respect to pure Res and PM.The optimized Res-HA-co-CPNs demonstrated higher radical-scavenging activity with respect to time.
Collapse
Affiliation(s)
- Rahul Hasija
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India.,Formulation Research and Development, Mankind Research Centre, Gurgaon, India
| | - Sundeep Chaurasia
- Formulation Research and Development, Mankind Research Centre, Gurgaon, India.,Innovation and Pharma R&D, Ashland Specialty Ingredients, Shamirpet, India
| | - Swati Gupta
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
5
|
Gurgel Assis MS, Fernandes Pedrosa TC, de Moraes FS, Caldeira TG, Pereira GR, de Souza J, Ruela ALM. Novel Insights to Enhance Therapeutics With Acyclovir in the Management of Herpes Simplex Encephalitis. J Pharm Sci 2021; 110:1557-1571. [PMID: 33450220 DOI: 10.1016/j.xphs.2021.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 11/17/2022]
Abstract
Acyclovir is an antiviral drug poorly absorbed in the gastrointestinal tract due to its hydrophilicity, with low oral bioavailability (~20%). Although acyclovir is prescribed in the management of herpes simplex encephalitis (HSE), the disease has a poor prognosis, particularly if the treatment is delayed, reaching mortality rates of 70% if left untreated. Thus, high acyclovir doses are administered by intravenous (IV) infusion, usually at a dosage of 10 mg kg-1 8-hourly in adults with normal renal function. However, the mortality related to HSE treated with acyclovir remains high (~20%) and permanent sequelae are commonly reported after 1 year (~50%). This review analyzed clinical trials following IV acyclovir administration. Novel insights aiming to improve drug bioavailability were reviewed, including acyclovir or its prodrugs, leading to the systemic distribution of the drug or drug targeting. Much research effort has been made to improve antiviral therapy, searching for delivery systems increasing acyclovir bioavailability by non-invasive pathways, such as oral and nasal pathways, or parenterally administered nanotechnology-based systems leading to drug targeting. Nanocarriers administered by non-invasive pathways represent feasible alternatives to treat HSE, even though not be industrially manufactured yet.
Collapse
Affiliation(s)
- Maria Silvia Gurgel Assis
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | | | - Fernanda Segurasse de Moraes
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Tamires Guedes Caldeira
- Graduate Program in Pharmaceutical Sciences-CiPharma, School of Pharmacy, UFOP, Minas Gerais, Brazil
| | - Gislaine Ribeiro Pereira
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Jacqueline de Souza
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - André Luís Morais Ruela
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Rashad AA, Nageeb El-Helaly S, Abd El Rehim RT, El-Gazayerly ON. Chronological Delivery of Antihypertensive Drugs in Bilayered Core-in-Cup Buccoadhesive Tablets: In Vitro and In Vivo Evaluation. AAPS PharmSciTech 2019; 21:21. [PMID: 31823090 DOI: 10.1208/s12249-019-1575-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/18/2019] [Indexed: 11/30/2022] Open
Abstract
Hypertension shows circadian blood pressure rhythms (day-night pattern) that urge the delivery of antihypertensive drugs at the right time in the desired levels. Thus, a bilayered core-in-cup buccoadhesive tablet was formulated that immediately releases olmesartan, to give a burst effect, and controls azelnidipine release, to prolong its therapeutic effect. The main challenge was the poor bioavailability of azelnidipine due to its poor aqueous solubility and first-pass effect. Hence, liquisolid compact buccoadhesive tablets were prepared to enhance solubility, dissolution profiles, and bypass the oral route. Two factorial designs were conducted to study the type and concentration effect of the mucoadhesive polymers on the dissolution and mucoadhesion of olmesartan and azelnidipine. Characterization studies were conducted regarding drug content, surface pH, water uptake, mucoadhesive strength, in vitro release, and ex vivo permeability. The core-in-cup olmesartan/azelnidipine buccoadhesive tablet showed similar release profile to the statistically optimized formulae of each drug. In vitro dissolution study showed enhanced release of azelnidipine than the directly compressed tablets, to comply with the regulatory standards of controlled release systems. In vivo pharmacokinetic study of olmesartan and azelnidipine conducted on human volunteers against Rezaltas® 10/8 mg tablet showed percentage relative bioavailability of 106.12 and 470.82%, respectively. Graphical Abstract.
Collapse
|
7
|
Synthesis, characterization and spectroscopic studies of surfactant loaded antiulcer drug into Chitosan nanoparticles for interaction with bovine serum albumin. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.110462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Jahangir MA, Khan R, Sarim Imam S. Formulation of sitagliptin-loaded oral polymeric nano scaffold: process parameters evaluation and enhanced anti-diabetic performance. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:66-78. [PMID: 29226729 DOI: 10.1080/21691401.2017.1411933] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE The aim of the study to formulate and statistically optimize sitagliptin-loaded eudragit nanoparticles (SIT-NPs) and evaluate the in-vitro pharmaceutical quality and in-vivo anti-diabetic assessment. METHOD SIT-NPs were prepared by using combination method of solvent evaporation and nano-precipitation techniques. The influence of different independent variables as eudragit RL100 concentration (%), tween 80 concentration (%) and sonication time (min) were evaluated on dependent variables like particle size (nm), drug loading (%) and in-vitro drug release (%). Further, the optimized formulation was evaluated for surface morphology, CLSM, ex-vivo permeation study and in-vivo anti-diabetic activity and stability study. RESULTS The developed SIT-NPs formulations showed particle size range (135.86-193.45 nm), drug loading (6.36-8.76%) and prolonged drug release over 24 h. The prepared SIT-NPs were found to be nearly spherical with smooth surface. The comparative in-vitro release study and CLSM study results revealed that SIT-NPopt showed significantly (p < .05) enhanced release and permeation as compared to SIT free solution (SIT-Fs). The in-vivo anti-diabetic assessment revealed that SIT-NPopt able to reduce the blood sugar level (BSL) for a prolonged period of time. Further, the stability study data showed the formulations were found stable at both temperature and having the shelf life of 488 d. CONCLUSIONS This research has shown that SIT-NPs based on experimental design offers a new and better approach to delivering SIT, thus encouraging further development of this formulation.
Collapse
Affiliation(s)
| | - Ruqaiyah Khan
- b Department of Pharmacology , Siddhartha Institute of Pharmacy , Dehradun , India
| | - Syed Sarim Imam
- a Department of Pharmaceutics, School of Pharmacy , Glocal University , Saharanpur , India
| |
Collapse
|
9
|
Kumar N, Chaurasia S, Patel RR, Khan G, Kumar V, Mishra B. Atorvastatin calcium encapsulated eudragit nanoparticles with enhanced oral bioavailability, safety and efficacy profile. Pharm Dev Technol 2015; 22:156-167. [DOI: 10.3109/10837450.2015.1108983] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nagendra Kumar
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Sundeep Chaurasia
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Ravi R. Patel
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Gayasuddin Khan
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Vikas Kumar
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| |
Collapse
|
10
|
Kharia AA, Singhai AK. Development and optimisation of mucoadhesive nanoparticles of acyclovir using design of experiments approach. J Microencapsul 2015; 32:521-32. [PMID: 26333938 DOI: 10.3109/02652048.2015.1010457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of our study was to improve the bioavailability of acyclovir (ACV) by delivery of mucoadhesive nanoparticles (NPs) and controlled delivery of drug at its absorption window. Central composite design was used by which the effects of independent variables (gelatin and Pluronic F-68) on various responses such as particle size, polydispersity index, entrapment efficiency, loading efficiency, drug release and mucoadhesive strength were studied. The optimised formulation was evaluated for morphology, stability, pharmacokinetic and gastrointestinal tracking. The optimised NPs were found to be nearly spherical. Changes in characteristics of NPs were not significant after six months of accelerated stability studies. In vivo mucoadhesion study showed significant retention of mucoadhesive NPs in upper gastro-intestinal tract for more than 12 h. Pharmacokinetic study in rats revealed that mucoadhesive NPs could maintain relatively steady plasma concentration of ACV for more than 10 h. The AUC0-∞ and mean residence time of optimised formulation (7527.9 ng h/mL and 12.09 h) were significantly high than tablet dispersion (3841.13 ng h/mL and 7.97 h).
Collapse
Affiliation(s)
- Ankit Anand Kharia
- a Department of Pharmaceutics , Oriental College of Pharmacy , Bhopal , Madhya Pradesh , India
| | | |
Collapse
|
11
|
Preparation and characterization of nanoparticles of carboxymethyl cellulose acetate butyrate containing acyclovir. APPLIED NANOSCIENCE 2015. [DOI: 10.1007/s13204-015-0421-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Kharia AA, Singhai AK. Effective parameters for formulation of gastro adhesive nanoparticles: screening by design-of-experiments approach. J Microencapsul 2014; 31:399-405. [PMID: 24697180 DOI: 10.3109/02652048.2013.863398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The objective of this study was selection of most influential variable for the preparation of gastro adhesive nanoparticles of acyclovir. Effect of formulation and processing variables on various response variables were studied by a Taguchi standard orthogonal array L8 design. Independent variables studied were the amount of gelatin, amount of glutaraldehyde, amount of Pluronic F-68, acetone addition rate, pH, stirring time and stirring speed. The size of all nanoparticulate formulations prepared as per the experimental design (Taguchi screening design) varied between 165 and 1610 nm, PDI between 0.360 and 1.00, Q6 between 7.31-34.93%, T60% between 19.2-37.6 h, entrapment efficiency between 15.70 and 83.12%, loading efficiency between 39.72 and 80.49% and mucoadhesive strength between 3.959-11.02 g. Pareto ranking analyses showed that the two most important factors affecting the selected responses were amount of gelatin and amount of Pluronic F-68 (p < 0.05).
Collapse
Affiliation(s)
- Ankit Anand Kharia
- Department of Pharmaceutics, Oriental College of Pharmacy , Bhopal, Madhya Pradesh , India
| | | |
Collapse
|
13
|
Screening of Most Effective Variables for Development of Gastroretentive Mucoadhesive Nanoparticles by Taguchi Design. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/348095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The objective of this study was the selection of the most influential variable for the preparation of gastroretentive mucoadhesive nanoparticles of acyclovir. Nanoparticles were prepared by one-step desolvation method; effect of formulation and processing variables on various response variables were studied by a Taguchi standard orthogonal array L8 design. Independent variables studied were the amount of gelatin, amount of glutaraldehyde, amount of Pluronic F-68, acetone addition rate, pH, stirring time, and stirring speed. The dependent variables studied were the particle size, polydispersity index, amount of drug released in 6 h, time required to release 60% of drug, entrapment efficiency, loading efficiency, and mucoadhesiveness. The size of all nanoparticulate formulations prepared as per the experimental design (Taguchi screening design) varied between 165 and 1610 nm, PDI between 0.360 and 1.00, bioadhesiveness between 3.959 and 11.02 g, cumulative percent drug release in 24 h between 40.74 and 72.48, entrapment efficiency between 15.70 and 83.12, and loading efficiency between 39.72 and 80.49. Pareto ranking analyses showed that the two most important factors affecting the selected responses were amount of gelatin and amount of Pluronic F-68 (P<0.05).
Collapse
|
14
|
Lembo D, Swaminathan S, Donalisio M, Civra A, Pastero L, Aquilano D, Vavia P, Trotta F, Cavalli R. Encapsulation of Acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent's antiviral efficacy. Int J Pharm 2012; 443:262-72. [PMID: 23279938 DOI: 10.1016/j.ijpharm.2012.12.031] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/14/2012] [Accepted: 12/20/2012] [Indexed: 12/19/2022]
Abstract
Cyclodextrin-based nanosponges (NS) are solid nanoparticles, obtained from the cross-linking of cyclodextrins that have been proposed as delivery systems for many types of drugs. Various NS derivatives are currently under investigation in order that their properties might be tuned for different applications. In this work, new carboxylated cyclodextrin-based nanosponges (Carb-NS) carrying carboxylic groups within their structure were purposely designed as novel Acyclovir carriers. TEM measurements revealed their spherical shape and size of about 400 nm. The behaviour of Carb-NS, with respect to the incorporation and delivery of Acyclovir, was compared to that of NS, previously investigated as a drug carrier. DSC, XRPD and FTIR analyses were used to investigate the two NS formulations. The results confirm the incorporation of the drug into the NS structure and NS-Acyclovir interactions. The Acyclovir loading into Carb-NS was higher than that obtained using NS, reaching about 70% (w/w). In vitro release studies showed the release kinetics of Acyclovir from Carb-NS to be prolonged in comparison with those observed with NS, with no initial burst effect. The NS uptake into cells was evaluated using fluorescent Carb-NS and revealed the nanoparticle internalisation. Enhanced antiviral activity against a clinical isolate of HSV-1 was obtained using Acyclovir loaded in Carb-NS.
Collapse
Affiliation(s)
- David Lembo
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino Ospedale S. Luigi Gonzaga,10043 Orbassano, Torino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kienberger J, Noormofidi N, Mühlbacher I, Klarholz I, Harms C, Slugovc C. Antimicrobial equipment of poly(isoprene) applying thiol-ene chemistry. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
16
|
Lembo D, Cavalli R. Nanoparticulate Delivery Systems for Antiviral Drugs. ACTA ACUST UNITED AC 2010; 21:53-70. [DOI: 10.3851/imp1684] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nanomedicine opens new therapeutic avenues for attacking viral diseases and for improving treatment success rates. Nanoparticulate-based systems might change the release kinetics of antivirals, increase their bioavailability, improve their efficacy, restrict adverse drug side effects and reduce treatment costs. Moreover, they could permit the delivery of antiviral drugs to specific target sites and viral reservoirs in the body. These features are particularly relevant in viral diseases where high drug doses are needed, drugs are expensive and the success of a therapy is associated with a patient's adherence to the administration protocol. This review presents the current status in the emerging area of nanoparticulate delivery systems in antiviral therapy, providing their definition and description, and highlighting some peculiar features. The paper closes with a discussion on the future challenges that must be addressed before the potential of nanotechnology can be translated into safe and effective antiviral formulations for clinical use.
Collapse
Affiliation(s)
- David Lembo
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Orbassano Torino, Italy
| | - Roberta Cavalli
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Torino, Italy
| |
Collapse
|