1
|
Ashraf K, Roy K, Higgins DA, Collinson MM. On the Importance of Silane Infusion Order on the Microscopic and Macroscopic Properties of Multifunctional Charge Gradients. ACS OMEGA 2020; 5:21897-21905. [PMID: 32905528 PMCID: PMC7469646 DOI: 10.1021/acsomega.0c03068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Four multicomponent charge gradients containing acidic and basic functionalities were prepared via sol-gel processes and the controlled-rate infusion (CRI) method to more clearly understand how preparation conditions influence macroscopic properties. CRI is used to form gradients by infusing reactive alkoxysilanes into a glass vial housing a vertically oriented modified silicon wafer. The concentration and time of infusion of the silane solutions were kept constant. Only the sequence of infusion of the silane solutions was changed. The first set of samples was prepared by initially infusing a solution containing 3-aminopropyltriethoxysilane (APTES) followed by a mercaptopropyltrimethoxysilane (MPTMS) solution. The individual gradients were formed either in an aligned or opposed fashion with respect to the initial gradient. The second set of samples was prepared by infusing the MPTMS solution first followed by the APTES solution, again in either an aligned or opposed fashion. To create charge gradients (NH3 +, SO3 -), the samples were immersed into H2O2. The extent of modification, the degree of protonation of the amine, and the thicknesses of the individual layers were examined by X-ray photoelectron spectroscopy (XPS) and spectroscopic ellipsometry. The wettability of the individual gradients was assessed via static contact angle measurements. The results demonstrate the importance of infusion order and how it influences the macroscopic and microscopic properties of gradient surfaces including the surface concentration, packing density, degree of protonation, and ultimately wettability. When the gradient materials are prepared via infusion of the APTES sol first, it results in increased deposition of both the amine and thiol groups as evidenced by XPS. Interestingly, the total thickness evaluated from ellipsometry was independent of the infusion order for the aligned gradients, indicative of significant differences in the film density. For the opposed gradients, however, the infusion of APTES first leads to a significantly thicker composite film. Furthermore, it also leads to a more pronounced gradient in the protonation of the amine, which introduces a very different surface wettability. The use of aminosilanes provides a viable approach to create gradient surfaces with different functional group distributions. These studies demonstrate that the controlled placement of functional groups on a surface can provide a new route to prepare gradient materials with improved performance.
Collapse
Affiliation(s)
- Kayesh
M. Ashraf
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Kallol Roy
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Daniel A. Higgins
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506-0401, United States
| | - Maryanne M. Collinson
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| |
Collapse
|
2
|
Ataman Sadık D, Eksi-Kocak H, Ertaş G, Boyacı İH, Mutlu M. Mixed-monolayer of N-hydroxysuccinimide-terminated cross-linker and short alkanethiol to improve the efficiency of biomolecule binding for biosensing. SURF INTERFACE ANAL 2018. [DOI: 10.1002/sia.6489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Demet Ataman Sadık
- Hacettepe University; Institute of Natural and Applied Sciences, Division of Nanotechnology and Nanomedicine, Plasma Aided Bioengineering and Biotechnology (PABB) Research Group Ankara Turkey
| | - Haslet Eksi-Kocak
- Istanbul Aydin University; Faculty of Engineering, Department of Biomedical Engineering Istanbul Turkey
| | - Gülay Ertaş
- Middle East Technical University; Department of Chemistry Ankara Turkey
| | - İsmail Hakkı Boyacı
- Hacettepe University; Faculty of Engineering, Department of Food Engineering Ankara Turkey
| | - Mehmet Mutlu
- TOBB Economy and Technology University; Faculty of Engineering, Department of Biomedical Engineering, Plasma Aided Biomedical (pabmed) Research Group Ankara Turkey
| |
Collapse
|
3
|
Ashraf KM, Khan MRK, Higgins DA, Collinson MM. pH and Surface Charge Switchability on Bifunctional Charge Gradients. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:663-672. [PMID: 29293005 DOI: 10.1021/acs.langmuir.7b02334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multifunctionalized pH-sensitive silica gradients containing acidic and basic functional groups have been prepared to evaluate how the spatial arrangement of active sites on a surface influences the surface charge and pH switchability. The gradient surfaces were prepared using controlled rate infusion in such a manner that the individual gradients in the strong acid (sulfonic acid) and in the weak base (propylamine) align, whereas a gradient in the weakly acidic silanol groups opposes them. The relative amounts of the three species were varied by controlling the composition of the deposition solution, whereas the hydrophobicity of the underlying surface was set by using base layer-coated substrates prepared from either tetramethoxysilane or tetramethoxysilane/octyltrimethoxysilane mixtures. Results from X-ray photoelectron spectroscopy confirm that aligned gradients are formed in both amine and sulfonic acid groups, and the relative amounts bound to the surface follow that expected from the solution composition. Water contact angle measurements show a 40°-50° change across the length of the gradient, the exact values being dependent on the hydrophobicity of the base layer. Zeta potential measurements on gradient mimics reveal that there is a pH where the net charge on the gradient surface is predicted to have a constant but nonzero value. Static contact angle measurements and modeling confirm this prediction. At a pH acidic of this value, the gradient in charge runs in one direction, whereas at a pH basic of this value, the gradient in charge runs in the other direction. This point can be strategically moved from acidic values to basic values by changing the relative amounts of acidic and basic functionalities on the surface. The origin of this unique pH switchability can be found in acid-base chemistry. By modeling the charge along the gradient surface using a simple equilibrium model, a distribution of pKa values were noted in these materials.
Collapse
Affiliation(s)
- Kayesh M Ashraf
- Department of Chemistry, Virginia Commonwealth University , Richmond, Virginia 23284-2006, United States
| | - Md Rezaul K Khan
- Department of Chemistry, Virginia Commonwealth University , Richmond, Virginia 23284-2006, United States
| | - Daniel A Higgins
- Department of Chemistry, Kansas State University , Manhattan, Kansas 66506-0401, United States
| | - Maryanne M Collinson
- Department of Chemistry, Virginia Commonwealth University , Richmond, Virginia 23284-2006, United States
| |
Collapse
|
4
|
Ashraf KM, Giri D, Wynne KJ, Higgins DA, Collinson MM. Cooperative Effects in Aligned and Opposed Multicomponent Charge Gradients Containing Strongly Acidic, Weakly Acidic, and Basic Functional Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3836-3847. [PMID: 27073019 DOI: 10.1021/acs.langmuir.6b00638] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Bifunctionalized surface charge gradients in which the individual component gradients either align with or oppose each other have been prepared. The multicomponent gradients contain strongly acidic, weakly acidic, and basic functionalities that cooperatively interact to define surface wettability, nanoparticle binding, and surface charge. The two-step process for gradient formation begins by modifying a siloxane coated silicon wafer in a spatially dependent fashion first with an aminoalkoxysilane and then with a mercapto-functionalized alkoxysilane. Immersion in hydrogen peroxide leads to oxidation of the surface immobilized sulfhydryl groups and subsequent protonation of the surface immobilized amines. Very different surface chemistries were obtained from gradients that either align with or oppose each other. X-ray photoelectron spectroscopy (XPS) data show that the degree of amine group protonation depends on the local concentration of sulfonate groups, which form ion pairs with the resulting ammonium ions. Contact angle measurements show that these ion pairs greatly enhance the wettability of the gradient surface. Finally, studies of colloidal gold binding show that the presence of both amine and thiol moieties enhance colloid binding, which is also influenced by surface charge. Cooperativity is also revealed in the distribution of charges on uniform samples used as models of the gradient surfaces, as evaluated via zeta potential measurements. Most significantly, the net surface charge and how it changes with distance and solution pH strongly depend on whether the gradients in amine and thiol align or oppose each other. The aligned multicomponent gradients show the most interesting behavior in that there appears to be a point at pH ∼ 6.5 where surface charge remains constant with distance. Setting the pH above or below this transition point leads to changes in the direction of charge variation along the length of the substrate.
Collapse
Affiliation(s)
- Kayesh M Ashraf
- Department of Chemistry, Virginia Commonwealth University , Richmond, Virginia 23284-2006, United States
| | - Dipak Giri
- Department of Chemistry, Kansas State University , Manhattan, Kansas 66506-0401, United States
| | - Kenneth J Wynne
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University , Richmond, Virginia 23284, United States
| | - Daniel A Higgins
- Department of Chemistry, Kansas State University , Manhattan, Kansas 66506-0401, United States
| | - Maryanne M Collinson
- Department of Chemistry, Virginia Commonwealth University , Richmond, Virginia 23284-2006, United States
| |
Collapse
|
5
|
Campos E, McVey CE, Carney RP, Stellacci F, Astier Y, Yates J. Sensing single mixed-monolayer protected gold nanoparticles by the α-hemolysin nanopore. Anal Chem 2013; 85:10149-58. [PMID: 24053797 DOI: 10.1021/ac4014836] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Gold nanoparticles are widely used in various applications in fields including chemistry, engineering, biology, medicine, and electronics. These materials can be synthesized and modified with ligands containing different functional groups. Among nanoparticles' characteristics, chemical surface composition is likely to be a crucial feature, demanding robust analytical methodologies for its assessment. Single molecule analysis using the biological nanopores α-hemolysin and its E111A mutant is presented here as a promising methodology to stochastically sense organic monolayer protected gold-nanoparticles with different ligand shell compositions. By monitoring the ionic current across a single protein nanopore, differences in the physical and chemical characteristics (e.g., size, ligand shell composition, and arrangement) of individual nanoparticles can be distinguished based on the differences in the current blockade events that they cause. Such differences are observed in the spread of both the amplitude and duration of current blockades. These values cannot be correlated with a single physical characteristic. Instead the spread represents a measure of heterogeneity within the nanoparticle population. While our results compare favorably with the more traditional analytical methodologies, further work will be required to improve the accuracy of identification of the NPs and understand the spread of values within a nanoparticle preparation as well as the overlap between similar preparations.
Collapse
Affiliation(s)
- Elisa Campos
- Single Molecule Processes Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa , Av. da República, 2780-157 Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
6
|
The use of mixed self-assembled monolayers as a strategy to improve the efficiency of carbamate detection in environmental monitoring. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.09.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Shen CH, Lin JC. Solvent and concentration effects on the surface characteristics and platelet compatibility of zwitterionic sulfobetaine-terminated self-assembled monolayers. Colloids Surf B Biointerfaces 2013; 101:376-83. [DOI: 10.1016/j.colsurfb.2012.07.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 07/23/2012] [Accepted: 07/26/2012] [Indexed: 10/28/2022]
|
8
|
Shen CH, Lin JC. Platelet compatibility improvement by proper choice of acidic terminal functionality for mixed-charge self-assembled monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:640-647. [PMID: 22111508 DOI: 10.1021/la203469b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this study two different series of mixed-charge self-assembled monolayers (SAMs) prepared with -N(+)(CH(3))(3)-terminated alkanethiol and strong dissociated monovalent -SO(3)H acid-terminated or weaker dissociated divalent -PO(3)H(2) acid-terminated alkanethiol in pure ethanol were characterized. The influence of the acidity of the anionic functionality in the mixed-charge SAMs on the surface characteristics and platelet compatibility was investigated. X-ray photoelectron spectroscopy indicated that a nearly equivalent amount of countercharged terminal groups was noted on the surface of -SO(3)H/-N(+)(CH(3))(3) mixed SAMs, while "-N(+)(CH(3))(3) thiol poor" phenomena were found on -PO(3)H(2)/-N(+)(CH(3))(3) mixed SAMs instead. This was caused by the distinct differences in solvation capability between the acidic anionic functional groups and solvent molecules and/or the interactions among the terminal ends of the thiols. This acidity difference also affected other interfacial properties and the platelet compatibility. The mixed SAMs formed from the mixture of -SO(3)H- and -N(+)(CH(3))(3)-terminated thiols showed higher surface hydrophilicity and exhibited the least amount of platelets adhered, but these two mixed SAMs were all fairly negatively surface charged. The structure of the hydration layer near the surfaces was likely affected by the acidity of the anionic functionality, and this would cause such a distinct behavior in platelet compatibility. It was concluded that the hydrophilic surfaces with nearly equal amounts of surface positively and negatively charged components could exhibit better platelet compatibility. This work demonstrated that the nature of the acidic terminal ends of alkanethiol is also a key factor for preparing mixed-charge SAMs with good platelet compatibility.
Collapse
Affiliation(s)
- Ching-Hsiung Shen
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan 70101
| | | |
Collapse
|
9
|
Shen CH, Lin JC. Improving the surface biocompatibility with the use of mixed zwitterionic self-assembled monolayers prepared by a proper solvent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:7091-7098. [PMID: 21563809 DOI: 10.1021/la200906b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this study, the mixed self-assembled monolayers (SAMs) containing the mixture of long-chain alkanethiol, SH(CH(2))(11)NH(2) and SH(CH(2))(10)SO(3)H, was prepared as a model surface to examine the interaction between the biological environment and artificial surface. The 10% (v/v) NH(4)OH ethanolic solution and DMSO were chosen as the solvents for the preparation of these mixed SAMs and the "solvent effect" was discussed. X-ray photoelectron spectroscopy (XPS) has indicated that -SO(3)H/-NH(2) mixed SAMs formed from 10% (v/v) NH(4)OH ethanolic solution were surface "-SO(3)H poor", while a nearly equivalent amount of surface -SO(3)H functionality was presented on the mixed SAMs formed from DMSO. This has resulted from the different solvation capability between solvent molecules and the alkanethiol. Such solvent effects were also reflected in various surface properties such as surface wettability and surface zeta potential. The mixed SAMs formed from DMSO were more surface hydrophilic and less negatively surface charged than from 10% (v/v) NH(4)OH ethanolic solution. In addition, these mixed SAMs formed from DMSO exhibited the least amount of protein adsorbed as well as a better platelet compatibility than its counterpart from 10% (v/v) NH(4)OH ethanolic solution. These findings indicated that choosing a proper solvent for mixed zwitterionic SAM can greatly affect its surface properties and biocompatibility, such as to form a surface with near neutrality for reducing protein adsorption and subsequent platelet adhesion and activation.
Collapse
Affiliation(s)
- Ching-Hsiung Shen
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan 70101
| | | |
Collapse
|