1
|
Gao W, Zhang X, Hu W, Han J, Liu X, Zhang Y, Long M. Neutrophils exhibit flexible migration strategies and trail formation mechanisms on varying adhesive substrates. Biomaterials 2025; 314:122881. [PMID: 39454506 DOI: 10.1016/j.biomaterials.2024.122881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
Substrate anchorage is essential for cell migration, and actin polymerization at cell front and myosin contractility at cell rear are known to govern cell forward movement. Yet their differential driving strategies for neutrophil migration on distinct adhesiveness substrates and their contributions to the migration-induced trail formation remain unclear. Here we explore the morphological changes, migration dynamics, and trail formation of neutrophils on ICAM-1 and PLL substrates, with a focus on the relationships among adhesive forces, traction forces, and out-of-plane forces. Results indicate that, on ICAM-1, neutrophil migration and trail formation rely on the coordinated interactions of Arp2/3 and myosin, along with biochemical regulation (via Syk and calpain) of adhesion and de-adhesion. This pattern leads to traction forces being concentrated at relatively fewer adhesive sites, facilitating cell forward migration. On PLL, however, neutrophils primarily depend on Arp2/3-mediated actin polymerization, resulting in a broader distribution of traction forces and weaker adhesions, which allows for higher leading-edge migrating velocities. Elevated membrane tension and out-of-plane forces generated by bleb protrusions on PLL reduce the reliance on myosin-driven contraction at the trailing edge, enabling easier tail detachment through elastic recoil. This work highlights the differential impact of substrate adhesiveness on neutrophil migration and trail formation and dynamics, providing new insights into cell migration mechanisms and potential therapeutic targets for inflammatory and immune-related disorders.
Collapse
Affiliation(s)
- Wenbo Gao
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoning Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenhui Hu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Han
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Yan Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Mian Long
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Duru J, Rüfenacht A, Löhle J, Pozzi M, Forró C, Ledermann L, Bernardi A, Matter M, Renia A, Simona B, Tringides CM, Bernhard S, Ihle SJ, Hengsteler J, Maurer B, Zhang X, Nakatsuka N. Driving electrochemical reactions at the microscale using CMOS microelectrode arrays. LAB ON A CHIP 2023; 23:5047-5058. [PMID: 37916299 PMCID: PMC10661664 DOI: 10.1039/d3lc00630a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
Precise control of pH values at electrode interfaces enables the systematic investigation of pH-dependent processes by electrochemical means. In this work, we employed high-density complementary metal-oxide-semiconductor (CMOS) microelectrode arrays (MEAs) as miniaturized systems to induce and confine electrochemical reactions in areas corresponding to the pitch of single electrodes (17.5 μm). First, we present a strategy for generating localized pH patterns on the surface of the CMOS MEA with unprecedented spatial resolution. Leveraging the versatile routing capabilities of the switch matrix beneath the CMOS MEA, we created arbitrary combinations of anodic and cathodic electrodes and hence pH patterns. Moreover, we utilized the system to produce polymeric surface patterns by additive and subtractive methods. For additive patterning, we controlled the in situ formation of polydopamine at the microelectrode surface through oxidation of free dopamine above a threshold pH > 8.5. For subtractive patterning, we removed cell-adhesive poly-L-lysine from the electrode surface and backfilled the voids with antifouling polymers. Such polymers were chosen to provide a proof-of-concept application of controlling neuronal growth via electrochemically-induced patterns on the CMOS MEA surface. Importantly, our platform is compatible with commercially available high-density MEAs and requires no custom equipment, rendering the findings generalizable and accessible.
Collapse
Affiliation(s)
- Jens Duru
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland.
| | - Arielle Rüfenacht
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland.
| | - Josephine Löhle
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland.
| | - Marcello Pozzi
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland.
| | - Csaba Forró
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland.
| | - Linus Ledermann
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland.
| | - Aeneas Bernardi
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland.
| | - Michael Matter
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland.
| | - André Renia
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland.
| | | | - Christina M Tringides
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland.
| | - Stéphane Bernhard
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland
| | - Stephan J Ihle
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland.
| | - Julian Hengsteler
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland.
| | - Benedikt Maurer
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland.
| | - Xinyu Zhang
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland.
| | - Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland.
| |
Collapse
|
3
|
Schamberger B, Ziege R, Anselme K, Ben Amar M, Bykowski M, Castro APG, Cipitria A, Coles RA, Dimova R, Eder M, Ehrig S, Escudero LM, Evans ME, Fernandes PR, Fratzl P, Geris L, Gierlinger N, Hannezo E, Iglič A, Kirkensgaard JJK, Kollmannsberger P, Kowalewska Ł, Kurniawan NA, Papantoniou I, Pieuchot L, Pires THV, Renner LD, Sageman-Furnas AO, Schröder-Turk GE, Sengupta A, Sharma VR, Tagua A, Tomba C, Trepat X, Waters SL, Yeo EF, Roschger A, Bidan CM, Dunlop JWC. Curvature in Biological Systems: Its Quantification, Emergence, and Implications across the Scales. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206110. [PMID: 36461812 DOI: 10.1002/adma.202206110] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes.
Collapse
Affiliation(s)
- Barbara Schamberger
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Ricardo Ziege
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Karine Anselme
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Université de Strasbourg, F-67081, Strasbourg, France
| | - Martine Ben Amar
- Department of Physics, Laboratoire de Physique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75005, Paris, France
| | - Michał Bykowski
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - André P G Castro
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
- ESTS, Instituto Politécnico de Setúbal, 2914-761, Setúbal, Portugal
| | - Amaia Cipitria
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Group of Bioengineering in Regeneration and Cancer, Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Rhoslyn A Coles
- Cluster of Excellence, Matters of Activity, Humboldt-Universität zu Berlin, 10178, Berlin, Germany
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Michaela Eder
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Sebastian Ehrig
- Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 10115, Berlin, Germany
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013, Seville, Spain
- Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Myfanwy E Evans
- Institute for Mathematics, University of Potsdam, 14476, Potsdam, Germany
| | - Paulo R Fernandes
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In Silico Medicine, University of Liège, 4000, Liège, Belgium
| | - Notburga Gierlinger
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (Boku), 1190, Vienna, Austria
| | - Edouard Hannezo
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical engineering, University of Ljubljana, Tržaška 25, SI-1000, Ljubljana, Slovenia
| | - Jacob J K Kirkensgaard
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
- Ingredients and Dairy Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg, Denmark
| | - Philip Kollmannsberger
- Center for Computational and Theoretical Biology, University of Würzburg, 97074, Würzburg, Germany
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - Nicholas A Kurniawan
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Ioannis Papantoniou
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology (FORTH), Stadiou Str., 26504, Patras, Greece
| | - Laurent Pieuchot
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Université de Strasbourg, F-67081, Strasbourg, France
| | - Tiago H V Pires
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Lars D Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, 01069, Dresden, Germany
| | | | - Gerd E Schröder-Turk
- School of Physics, Chemistry and Mathematics, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia
- Department of Materials Physics, Research School of Physics, The Australian National University, Canberra, ACT, 2600, Australia
| | - Anupam Sengupta
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg City, Grand Duchy of Luxembourg
| | - Vikas R Sharma
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Antonio Tagua
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013, Seville, Spain
- Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Caterina Tomba
- Univ Lyon, CNRS, INSA Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, 69622, Villeurbanne, France
| | - Xavier Trepat
- ICREA at the Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08028, Barcelona, Spain
| | - Sarah L Waters
- Mathematical Institute, University of Oxford, OX2 6GG, Oxford, UK
| | - Edwina F Yeo
- Mathematical Institute, University of Oxford, OX2 6GG, Oxford, UK
| | - Andreas Roschger
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Cécile M Bidan
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - John W C Dunlop
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| |
Collapse
|
4
|
Vila JC, Castro-Aguirre N, López-Muñoz GA, Ferret-Miñana A, De Chiara F, Ramón-Azcón J. Disposable Polymeric Nanostructured Plasmonic Biosensors for Cell Culture Adhesion Monitoring. Front Bioeng Biotechnol 2021; 9:799325. [PMID: 34938725 PMCID: PMC8685410 DOI: 10.3389/fbioe.2021.799325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Over the last years, optical biosensors based on plasmonic nanomaterials have gained great scientific interest due to their unquestionable advantages compared to other biosensing technologies. They can achieve sensitive, direct, and label-free analysis with exceptional potential for multiplexing and miniaturization. Recently, it has been demonstrated the potential of using optical discs as high throughput nanotemplates for the development of plasmonic biosensors in a cost-effective way. This work is a pilot study focused on the development of an integrated plasmonic biosensor for the monitoring of cell adhesion and growth of human retinal pigmented cell line (ARPE-19) under different media conditions (0 and 2% of FBS). We observed an increase of the plasmonic band displacement under 2% FBS compared to 0% conditions over time (1, 3, and 5 h). These preliminary results show that the proposed plasmonic biosensing approach is a direct, non-destructive, and real-time tool that could be employed in the study of living cells behavior and culture conditions. Furthermore, this setup could assess the viability of the cells and their growth over time with low variability between the technical replicates improving the experimental replicability.
Collapse
Affiliation(s)
- Judith Camaló Vila
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nerea Castro-Aguirre
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Gerardo A López-Muñoz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ainhoa Ferret-Miñana
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Francesco De Chiara
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Javier Ramón-Azcón
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
5
|
Rajnicek AM, Zhao Z, Moral-Vico J, Cruz AM, McCaig CD, Casañ-Pastor N. Controlling Nerve Growth with an Electric Field Induced Indirectly in Transparent Conductive Substrate Materials. Adv Healthc Mater 2018; 7:e1800473. [PMID: 29975820 DOI: 10.1002/adhm.201800473] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/05/2018] [Indexed: 11/05/2022]
Abstract
Innovative neurostimulation therapies require improved electrode materials, such as poly(3,4-ethylenedioxythiophene) (PEDOT) polymers or IrOx mixed ionic-electronic conductors and better understanding of how their electrochemistry influences nerve growth. Amphibian neurons growing on transparent films of electronic (metal) conductors and electronic-ionic conductors (polymers and semiconducting oxides) are monitored. Materials are not connected directly to the power supply, but a dipole is created wirelessly within them by electrodes connected to the culture medium in which they are immersed. Without electrical stimulation neurons grow on gold, platinum, PEDOT-polystyrene sulfonate (PEDOT-PSS), IrOx , and mixed oxide (Ir-Ti)Ox , but growth is not related to surface texture or hydrophilicity. Stimulation induces a dipole in all conductive materials, but neurons grow differently on electronic conductors and mixed-valence mixed-ionic conductors. Stimulation slows, but steers neurite extension on gold but not on platinum. The rate and direction of neurite growth on PEDOT-PSS resemble that on glass, but on IrOx and (Ir-Ti)Ox neurites grow faster and in random directions. This suggests electrochemical changes induced in these materials control growth speed and direction selectively. Evidence that the electric dipole induced in conductive material controls nerve growth will impact electrotherapies exploiting wireless stimulation of implanted material arrays, even where transparency is required.
Collapse
Affiliation(s)
- Ann M. Rajnicek
- School of Medicine, Medical Sciences and Nutrition; Institute of Medical Sciences; University of Aberdeen; Aberdeen AB25 2ZD UK
| | - Zhiqiang Zhao
- School of Medicine, Medical Sciences and Nutrition; Institute of Medical Sciences; University of Aberdeen; Aberdeen AB25 2ZD UK
| | - Javier Moral-Vico
- Instituto de Ciencia de Materiales de Barcelona; CSIC; Campus de la Universidad Autónoma de Barcelona; E-08193 Barcelona Spain
| | - Ana M. Cruz
- Instituto de Ciencia de Materiales de Barcelona; CSIC; Campus de la Universidad Autónoma de Barcelona; E-08193 Barcelona Spain
| | - Colin D. McCaig
- School of Medicine, Medical Sciences and Nutrition; Institute of Medical Sciences; University of Aberdeen; Aberdeen AB25 2ZD UK
| | - Nieves Casañ-Pastor
- Instituto de Ciencia de Materiales de Barcelona; CSIC; Campus de la Universidad Autónoma de Barcelona; E-08193 Barcelona Spain
| |
Collapse
|
6
|
Weydert S, Zürcher S, Tanner S, Zhang N, Ritter R, Peter T, Aebersold MJ, Thompson-Steckel G, Forró C, Rottmar M, Stauffer F, Valassina IA, Morgese G, Benetti EM, Tosatti S, Vörös J. Easy to Apply Polyoxazoline-Based Coating for Precise and Long-Term Control of Neural Patterns. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8594-8605. [PMID: 28792773 DOI: 10.1021/acs.langmuir.7b01437] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Arranging cultured cells in patterns via surface modification is a tool used by biologists to answer questions in a specific and controlled manner. In the past decade, bottom-up neuroscience emerged as a new application, which aims to get a better understanding of the brain via reverse engineering and analyzing elementary circuitry in vitro. Building well-defined neural networks is the ultimate goal. Antifouling coatings are often used to control neurite outgrowth. Because erroneous connectivity alters the entire topology and functionality of minicircuits, the requirements are demanding. Current state-of-the-art coating solutions such as widely used poly(l-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) fail to prevent primary neurons from making undesired connections in long-term cultures. In this study, a new copolymer with greatly enhanced antifouling properties is developed, characterized, and evaluated for its reliability, stability, and versatility. To this end, the following components are grafted to a poly(acrylamide) (PAcrAm) backbone: hexaneamine, to support spontaneous electrostatic adsorption in buffered aqueous solutions, and propyldimethylethoxysilane, to increase the durability via covalent bonding to hydroxylated culture surfaces and antifouling polymer poly(2-methyl-2-oxazoline) (PMOXA). In an assay for neural connectivity control, the new copolymer's ability to effectively prevent unwanted neurite outgrowth is compared to the gold standard, PLL-g-PEG. Additionally, its versatility is evaluated on polystyrene, glass, and poly(dimethylsiloxane) using primary hippocampal and cortical rat neurons as well as C2C12 myoblasts, and human fibroblasts. PAcrAm-g-(PMOXA, NH2, Si) consistently outperforms PLL-g-PEG with all tested culture surfaces and cell types, and it is the first surface coating which reliably prevents arranged nodes of primary neurons from forming undesired connections over the long term. Whereas the presented work focuses on the proof of concept for the new antifouling coating to successfully and sustainably prevent unwanted connectivity, it is an important milestone for in vitro neuroscience, enabling follow-up studies to engineer neurologically relevant networks. Furthermore, because PAcrAm-g-(PMOXA, NH2, Si) can be quickly applied and used with various surfaces and cell types, it is an attractive extension to the toolbox for in vitro biology and biomedical engineering.
Collapse
Affiliation(s)
- Serge Weydert
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | | | - Stefanie Tanner
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Ning Zhang
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , 210096 Nanjing, China
| | - Rebecca Ritter
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Thomas Peter
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Mathias J Aebersold
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Greta Thompson-Steckel
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Csaba Forró
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Markus Rottmar
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology , 9014 St. Gallen, Switzerland
| | - Flurin Stauffer
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | | | - Giulia Morgese
- Laboratory for Surface Science and Technology, ETH Zürich , Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Edmondo M Benetti
- Laboratory for Surface Science and Technology, ETH Zürich , Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | | | - János Vörös
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| |
Collapse
|
7
|
Ajetunmobi A, McAllister D, Jain N, Brazil O, Corvin A, Volkov Y, Tropea D, Prina-Mello A. Characterization of SH-SY5Y human neuroblastoma cell growth over glass and SU-8 substrates. J Biomed Mater Res A 2017; 105:2129-2138. [PMID: 28371423 DOI: 10.1002/jbm.a.36071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/11/2017] [Accepted: 03/22/2017] [Indexed: 11/05/2022]
Abstract
The physical properties of substrates can have profound effects on the structure and function of cultured cells. In this study, we aimed to examine the viability, adherence, and morphological and functional variations between SH-SY5Y human neuroblastoma cells cultured on SU-8 surfaces compared with control surfaces composed of borosilicate glass, which are routinely used for cell culture. The SU-8 polymer has been extensively studied for its biocompatibility, but there has been little investigation into the characteristic differences between cells cultured on SU-8 when compared with glass. SH-SY5Y cells were cultured within polydimethylsiloxane wells on both SU-8 and glass substrates for up to 72 h after which flow cytometry and enzyme-linked immunosorbent assay analysis was performed to examine cell viability and neurotoxicity. Immunocytochemistry was also performed to analyze the morphological and functional characteristics of the cells. Atomic force microscopy was performed to measure surface roughness and to map cell-substrate interactions. Nanoindentation testing was used to characterize the mechanical properties of polymer surface. Results showed that SH-SY5Y cells grown on SU-8 have significantly improved viability and increased morphological and functional characteristics of neurodevelopment. The results from this study suggest that the mechanical properties of the polymer are optimal for the study of cultured cell lines, which could account for the increased viability, adherence, and morphological and functional characteristics of neurodevelopment. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2129-2138, 2017.
Collapse
Affiliation(s)
- A Ajetunmobi
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin 8, Ireland.,Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
| | - D McAllister
- Department of Psychiatry and Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin 2, Ireland
| | - N Jain
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - O Brazil
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
| | - A Corvin
- Department of Psychiatry and Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin 2, Ireland
| | - Y Volkov
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin 8, Ireland.,Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
| | - D Tropea
- Department of Psychiatry and Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin 2, Ireland
| | - A Prina-Mello
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin 8, Ireland.,Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
8
|
Aebersold MJ, Dermutz H, Forró C, Weydert S, Thompson-Steckel G, Vörös J, Demkó L. “Brains on a chip”: Towards engineered neural networks. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.01.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Quantifying the effect of electric current on cell adhesion studied by single-cell force spectroscopy. Biointerphases 2016; 11:011004. [PMID: 26790407 DOI: 10.1116/1.4940214] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study presents the effect of external electric current on the cell adhesive and mechanical properties of the C2C12 mouse myoblast cell line. Changes in cell morphology, viability, cytoskeleton, and focal adhesion structure were studied by standard staining protocols, while single-cell force spectroscopy based on the fluidic force microscopy technology provided a rapid, serial quantification and detailed analysis of cell adhesion and its dynamics. The setup allowed measurements of adhesion forces up to the μN range, and total detachment distances over 40 μm. Force-distance curves have been fitted with a simple elastic model including a cell detachment protocol in order to estimate the Young's modulus of the cells, as well as to reveal changes in the dynamic properties as functions of the applied current dose. While the cell spreading area decreased monotonously with increasing current doses, small current doses resulted only in differences related to cell elasticity. Current doses above 11 As/m(2), however, initiated more drastic changes in cell morphology, viability, cellular structure, as well as in properties related to cell adhesion. The observed differences, eventually leading to cell death toward higher doses, might originate from both the decrease in pH and the generation of reactive oxygen species.
Collapse
|
10
|
Jaatinen L, Vörös J, Hyttinen J. Controlling cell migration and adhesion into a scaffold by external electric currents. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:3549-3552. [PMID: 26737059 DOI: 10.1109/embc.2015.7319159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Fabrication of more complex tissue-engineered structures, resembling the tissues and organs in vivo requires combining more than one cell type within the same construct. This can be achieved by designing and fabricating complex scaffolds with asymmetric properties but controlled arrangement of cells within the scaffold could also be realized by using electric current. External electric currents are able to modify cell adhesion, orientation and migration and this can be used for influencing cell location within a scaffold. In this paper we studied the effect of an electric current on cell migration and adhesion into a three-dimensional scaffold through a conductive mesh.
Collapse
|
11
|
Röttgermann PJF, Hertrich S, Berts I, Albert M, Segerer FJ, Moulin JF, Nickel B, Rädler JO. Cell Motility on Polyethylene Glycol Block Copolymers Correlates to Fibronectin Surface Adsorption. Macromol Biosci 2014; 14:1755-63. [DOI: 10.1002/mabi.201400246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/13/2014] [Indexed: 01/27/2023]
Affiliation(s)
- Peter J. F. Röttgermann
- Faculty of Physics and Center for NanoScience (CeNS); Ludwig-Maximilians-University; Geschwister-Scholl-Platz 1 80539 Munich Germany
| | - Samira Hertrich
- Faculty of Physics and Center for NanoScience (CeNS); Ludwig-Maximilians-University; Geschwister-Scholl-Platz 1 80539 Munich Germany
| | - Ida Berts
- Faculty of Physics and Center for NanoScience (CeNS); Ludwig-Maximilians-University; Geschwister-Scholl-Platz 1 80539 Munich Germany
| | - Max Albert
- Faculty of Physics and Center for NanoScience (CeNS); Ludwig-Maximilians-University; Geschwister-Scholl-Platz 1 80539 Munich Germany
| | - Felix J. Segerer
- Faculty of Physics and Center for NanoScience (CeNS); Ludwig-Maximilians-University; Geschwister-Scholl-Platz 1 80539 Munich Germany
| | - Jean-François Moulin
- Helmholtz Zentrum Geesthacht; Institut für Werkstoffforschung; FRM II; Lichtenbergstr. 1 85747 Garching Germany
| | - Bert Nickel
- Faculty of Physics and Center for NanoScience (CeNS); Ludwig-Maximilians-University; Geschwister-Scholl-Platz 1 80539 Munich Germany
| | - Joachim O. Rädler
- Faculty of Physics and Center for NanoScience (CeNS); Ludwig-Maximilians-University; Geschwister-Scholl-Platz 1 80539 Munich Germany
| |
Collapse
|
12
|
Dermutz H, Grüter RR, Truong AM, Demkó L, Vörös J, Zambelli T. Local polymer replacement for neuron patterning and in situ neurite guidance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:7037-46. [PMID: 24850409 DOI: 10.1021/la5012692] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
By locally dispensing poly-L-lysine (PLL) molecules with a FluidFM onto a protein and cell resistant poly-L-lysine-graft-polyethylene glycol (PLL-g-PEG) coated substrate, the antifouling layer can be replaced under the tip aperture by the cell adhesive PLL. We used this approach for guiding the adhesion and axonal outgrowth of embryonic hippocampal neurons in situ. Cultures of hippocampal neurons were chosen because they mostly contain pyramidal neurons. The hippocampus is known to be involved in memory formation, and the stages of network development are well characterized, which is an asset to fundamental research. After fabricating diffuse PLL spots with 10-250 μm diameter, seeded hippocampal cells stick preferentially onto the spots migrating toward the spot center along the PLL gradient. Cell clusters were formed depending on the lateral size of the PLL dots and the density of seeded cells. In a second step of this protocol, the FluidFM is used to connect in situ the obtained clusters. The outgrowth of neurites, which are known to grow preferentially on adhesive substrates, is tailored by writing PLL lines. Antibody staining confirms that the outgrowing neurites are mostly axons, while the activity of the neurons is assessed by a calcium indicator, proving cell viability. The calcium signal intensity of two actively interconnected clusters showed to be correlated, corroborating the formation of vectored and polarized interconnections.
Collapse
Affiliation(s)
- Harald Dermutz
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich , CH-8092 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
13
|
ZHAO PC, LV YG, ZOU Y, ZHANG XM, CHEN GB, YANG L. Research Advancement on Injured Peripheral Nerve Regeneration by Stem Cells Combined With Electrical Stimulation*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Vignaud T, Galland R, Tseng Q, Blanchoin L, Colombelli J, Théry M. Reprogramming cell shape with laser nano-patterning. J Cell Sci 2012; 125:2134-40. [DOI: 10.1242/jcs.104901] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell shape in vitro can be directed by geometrically-defined micropatterned adhesion substrates. However conventional methods are limited by the fixed micropattern design, which can not recapitulate the dynamic changes of the cell's microenvironment. Here, we manipulate the shape of living cells in real time by using scanned and tightly focused pulsed laser to introduce additional geometrically-defined adhesion sites. This easy-to-handle method allows a precise control of specific actin-based structures that regulate cell architecture. Actin filament bundles or branched meshworks were induced, displaced or removed in response to specific dynamic modifications of cell adhesion pattern. Isotropic branched actin meshworks could be forced to assemble locally new stress fibers and polarise in response to specific geometrical cues. The sub-micrometer resolution of the laser patterning allowed us to identify the critical distances between cell adhesion sites required for cell shape extension and contraction.
Collapse
|
15
|
The effect of acetylcholine-like biomimetic polymers on neuronal growth. Biomaterials 2011; 32:3253-64. [DOI: 10.1016/j.biomaterials.2011.01.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 01/14/2011] [Indexed: 11/17/2022]
|
16
|
Théry M. Micropatterning as a tool to decipher cell morphogenesis and functions. J Cell Sci 2010; 123:4201-13. [DOI: 10.1242/jcs.075150] [Citation(s) in RCA: 530] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In situ, cells are highly sensitive to geometrical and mechanical constraints from their microenvironment. These parameters are, however, uncontrolled under classic culture conditions, which are thus highly artefactual. Micro-engineering techniques provide tools to modify the chemical properties of cell culture substrates at sub-cellular scales. These can be used to restrict the location and shape of the substrate regions, in which cells can attach, so-called micropatterns. Recent progress in micropatterning techniques has enabled the control of most of the crucial parameters of the cell microenvironment. Engineered micropatterns can provide a micrometer-scale, soft, 3-dimensional, complex and dynamic microenvironment for individual cells or for multi-cellular arrangements. Although artificial, micropatterned substrates allow the reconstitution of physiological in situ conditions for controlled in vitro cell culture and have been used to reveal fundamental cell morphogenetic processes as highlighted in this review. By manipulating micropattern shapes, cells were shown to precisely adapt their cytoskeleton architecture to the geometry of their microenvironment. Remodelling of actin and microtubule networks participates in the adaptation of the entire cell polarity with respect to external constraints. These modifications further impact cell migration, growth and differentiation.
Collapse
Affiliation(s)
- Manuel Théry
- Laboratoire de Physiologie Cellulaire et Végétale, iRTSV, CEA/CNRS/UJF/INRA, 17 Rue des Martyrs, 38054, Grenoble, France
| |
Collapse
|
17
|
Gabi M, Hefermehl L, Lukic D, Zahn R, Vörös J, Eberli D. Electrical microcurrent to prevent conditioning film and bacterial adhesion to urological stents. ACTA ACUST UNITED AC 2010; 39:81-8. [PMID: 20686759 DOI: 10.1007/s00240-010-0284-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 06/11/2010] [Indexed: 11/28/2022]
Abstract
Long-term catheters remain a significant clinical problem in urology due to the high rate of bacterial colonization, infection, and encrustation. Minutes after insertion of a catheter, depositions of host urinary components onto the catheter surface form a conditioning film actively supporting the bacterial adhesion process. We investigated the possibility of reducing or avoiding the buildup of these naturally forming conditioning films and of preventing bacterial adhesion by applying different current densities to platinum electrodes as a possible catheter coating material. In this model we employed a defined environment using artificial urine and Proteus mirabilis. The film formation and desorption was analyzed by highly mass sensitive quartz crystal microbalance and surface sensitive atomic force microscopy. Further, we performed bacterial staining to assess adherence, growth, and survival on the electrodes with different current densities. By applying alternating microcurrent densities on platinum electrodes, we could produce a self regenerative surface which actively removed the conditioning film and significantly reduced bacterial adherence, growth, and survival. The results of this study could easily be adapted to a catheter design for clinical use.
Collapse
Affiliation(s)
- Michael Gabi
- Laboratory of Biosensors and Bioelectronics, Swiss Federal Institute of Technology, Gloriastrasse 35, 8092, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|