Wang C, Yadavalli VK. Spatial recognition and mapping of proteins using DNA aptamers.
NANOTECHNOLOGY 2014;
25:455101. [PMID:
25338629 DOI:
10.1088/0957-4484/25/45/455101]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Atomic force microscopy-based adhesion force measurements have emerged as a powerful tool for the biophysical analyses of biological systems. Such measurements can now be extended to detection and mapping of biomolecules on surfaces via integrated imaging and force spectroscopy techniques. Critical to these experiments is the choice of the biomolecular recognition probe. In this study, we demonstrate how oligonucleotide aptamers can be used as versatile probes to simultaneously image and spatially locate targets on surfaces. We focus on two structurally distinct proteins relevant to the clotting cascade - human α-thrombin and vascular endothelial growth factor. Via AFM-recognition mapping using specific DNA aptamers on a commercially available instrument, we show a clear consistency between height and force measurements obtained simultaneously. Importantly, we are able to observe changes in binding due to changes in the external microenvironment, which demonstrate the ability to study fluctuating biological systems in real time. The aptamer specificity and the ability to distinguish their targets are shown through positive and negative controls. It is therefore possible to generate high resolution maps to spatially and temporally identify proteins at the molecular level on complex surfaces.
Collapse