1
|
Zhang Y, Rojas OJ. Immunosensors for C-Reactive Protein Based on Ultrathin Films of Carboxylated Cellulose Nanofibrils. Biomacromolecules 2017; 18:526-534. [PMID: 28036163 DOI: 10.1021/acs.biomac.6b01681] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
C-reactive protein (CRP) is an acute phase protein that has been widely used as a predictor of cardiovascular diseases. We report herein the synthesis of immunosensors based on carboxylated cellulose nanofibrils (CNF) for CRP detection, as demonstrated by quartz crystal microgravimetry (QCM). QCM sensors carrying ultrathin films of carboxylated CNF were prepared by using two protocols: (i) spin coating of CNF on the sensors followed by carboxylation via in situ oxidation with 2,2,6,6-tetramethylpiperidine 1-oxyl and (ii) carboxymethylation of CNF in aqueous dispersion followed by spin coating deposition on the sensors. Protein A was conjugated to the carboxylated CNF via N-(3-(Dimethylamino)propyl)-N'-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide and used as a ligand for oriented immobilization of anti C-reactive protein (anti-CRP). The different carboxyl group density of the two oxidized CNF surfaces influenced Protein A binding and, subsequently, the available immobilized anti-CRP molecules. The detection efficiency for CRP, specificity, and concentration range displayed by the carboxylated CNF-based immunosensors coupled with oriented and unoriented anti-CRP were determined and compared.
Collapse
Affiliation(s)
- Yanxia Zhang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University , Suzhou, Jiangsu 215007, People's Republic of China
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University , FI-00076 Aalto, Finland.,Departments of Forest Biomaterials and Chemical and Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| |
Collapse
|
2
|
Deng X, Chen M, Fu Q, Smeets NMB, Xu F, Zhang Z, Filipe CDM, Hoare T. A Highly Sensitive Immunosorbent Assay Based on Biotinylated Graphene Oxide and the Quartz Crystal Microbalance. ACS APPLIED MATERIALS & INTERFACES 2016; 8:1893-1902. [PMID: 26725646 DOI: 10.1021/acsami.5b10026] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A high-sensitivity flow-based immunoassay is reported based on a gold-coated quartz crystal microbalance (QCM) chip functionalized directly in the QCM without requiring covalent conjugation steps. Specifically, the irreversible adsorption of a biotinylated graphene oxide-avidin complex followed by loading of a biotinylated capture antibody is applied to avoid more complex conventional surface modification chemistries and enable chip functionalization and sensing all within the QCM instrument. The resulting immunosensors exhibit significantly lower nonspecific protein adsorption and stronger signal for antigen sensing relative to simple avidin-coated sensors. Reproducible quantification of rabbit IgG concentrations ranging from 0.1 ng/mL to 10 μg/mL (6 orders of magnitude) can be achieved depending on the approach used to quantify the binding with simple mass changes used to detect higher concentrations and a horseradish peroxidase-linked detection antibody that converts its substrate to a measurable precipitate used to detect very low analyte concentrations. Sensor fabrication and assay performance take ∼5 h in total, which is on par with or faster than other techniques. Quantitative sensing is possible in the presence of complex protein mixtures, such as human plasma. Given the broad availability of biotinylated capture antibodies, this method offers both an easy and flexible platform for the quantitative sensing of a variety of biomolecule targets.
Collapse
Affiliation(s)
- Xudong Deng
- Department of Chemical Engineering, McMaster University , Hamilton, Ontario L8S 4L7, Canada
| | - Mengsu Chen
- Department of Biochemistry and Biomedical Sciences, McMaster University , Hamilton, Ontario L8S 4L8, Canada
| | - Qiang Fu
- Department of Chemical Engineering, McMaster University , Hamilton, Ontario L8S 4L7, Canada
| | - Niels M B Smeets
- Department of Chemical Engineering, McMaster University , Hamilton, Ontario L8S 4L7, Canada
| | - Fei Xu
- Department of Chemical Engineering, McMaster University , Hamilton, Ontario L8S 4L7, Canada
| | - Zhuyuan Zhang
- Department of Chemical Engineering, McMaster University , Hamilton, Ontario L8S 4L7, Canada
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University , Hamilton, Ontario L8S 4L7, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University , Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
3
|
Li ZB, Xiang YH, Zhou XJ, Nie JJ, Peng M, Du BY. Thermo-sensitive poly(DEGMMA-co-MEA) microgels: Synthesis, characterization and interfacial interaction with adsorbed protein layer. CHINESE JOURNAL OF POLYMER SCIENCE 2015. [DOI: 10.1007/s10118-015-1694-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Fang J, Ren C, Zhu T, Wang K, Jiang Z, Ma Y. Comparison of the different responses of surface plasmon resonance and quartz crystal microbalance techniques at solid–liquid interfaces under various experimental conditions. Analyst 2015; 140:1323-36. [DOI: 10.1039/c4an01756k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The different characteristics of surface plasmon resonance and quartz crystal microbalance techniques under different experimental scenarios are discussed.
Collapse
Affiliation(s)
- Jiajie Fang
- Collaborative Innovation Center of Advanced Microstructures and Department of Physics
- Nanjing University
- Nanjing 210093
- China
| | - Chunlai Ren
- Collaborative Innovation Center of Advanced Microstructures and Department of Physics
- Nanjing University
- Nanjing 210093
- China
| | - Tao Zhu
- Collaborative Innovation Center of Advanced Microstructures and Department of Physics
- Nanjing University
- Nanjing 210093
- China
| | - Kaiyu Wang
- Collaborative Innovation Center of Advanced Microstructures and Department of Physics
- Nanjing University
- Nanjing 210093
- China
| | - Zhongying Jiang
- Collaborative Innovation Center of Advanced Microstructures and Department of Physics
- Nanjing University
- Nanjing 210093
- China
- School of Electronics and Information and College of Chemistry and Biological Science
| | - Yuqiang Ma
- Collaborative Innovation Center of Advanced Microstructures and Department of Physics
- Nanjing University
- Nanjing 210093
- China
- Laboratory of Soft Condensed Matter Physics and Interdisciplinary Research
| |
Collapse
|
5
|
Trend of telomerase activity change during human iPSC self-renewal and differentiation revealed by a quartz crystal microbalance based assay. Sci Rep 2014; 4:6978. [PMID: 25381797 PMCID: PMC4225532 DOI: 10.1038/srep06978] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/20/2014] [Indexed: 11/09/2022] Open
Abstract
Telomerase plays an important role in governing the life span of cells for its capacity to extend telomeres. As high activity of telomerase has been found in stem cells and cancer cells specifically, various methods have been developed for the evaluation of telomerase activity. To overcome the time-consuming procedures and complicated manipulations of existing methods, we developed a novel method named Telomeric Repeat Elongation Assay based on Quartz crystal microbalance (TREAQ) to monitor telomerase activity during the self-renewal and differentiation of human induced pluripotent stem cells (hiPSCs). TREAQ results indicated hiPSCs possess invariable telomerase activity for 11 passages on Matrigel and a steady decline of telomerase activity when differentiated for different periods, which is confirmed with existing golden standard method. The pluripotency of hiPSCs during differentiation could be estimated through monitoring telomerase activity and compared with the expression levels of markers of pluripotency gene via quantitative real time PCR. Regular assessment for factors associated with pluripotency or stemness was expensive and requires excessive sample consuming, thus TREAQ could be a promising alternative technology for routine monitoring of telomerase activity and estimate the pluripotency of stem cells.
Collapse
|
6
|
Mitsakakis K, Tsortos A, Gizeli E. Quantitative determination of protein molecular weight with an acoustic sensor; significance of specific versus non-specific binding. Analyst 2014; 139:3918-25. [DOI: 10.1039/c4an00616j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multi-analyte acoustic biosensor determines the molecular weight of proteinsviathe phase change of the acoustic signal.
Collapse
Affiliation(s)
- Konstantinos Mitsakakis
- Institute of Molecular Biology & Biotechnology
- Foundation for Research & Technology Hellas
- GR-70013 Heraklion, Greece
- Department of Materials Science & Technology
- University of Crete
| | - Achilleas Tsortos
- Institute of Molecular Biology & Biotechnology
- Foundation for Research & Technology Hellas
- GR-70013 Heraklion, Greece
| | - Electra Gizeli
- Institute of Molecular Biology & Biotechnology
- Foundation for Research & Technology Hellas
- GR-70013 Heraklion, Greece
- Department of Biology
- University of Crete
| |
Collapse
|
7
|
Zhang Y, Carbonell RG, Rojas OJ. Bioactive Cellulose Nanofibrils for Specific Human IgG Binding. Biomacromolecules 2013; 14:4161-8. [DOI: 10.1021/bm4007979] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | | | - Orlando J. Rojas
- School
of Science and Technology, Department of Forest Products Technology, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
8
|
Liang H, Tuppurainen JP, Lehtinen J, Viitala T, Yliperttula M. Non-labeled monitoring of targeted liposome interactions with a model receptor surface: effect of flow rate and water content. Eur J Pharm Sci 2013; 50:492-501. [PMID: 23981331 DOI: 10.1016/j.ejps.2013.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/06/2013] [Accepted: 08/12/2013] [Indexed: 11/18/2022]
Abstract
In this study, we present a novel in vitro approach that utilizes two surface-sensitive and label-free techniques, i.e. surface plasmon resonance (SPR) and quartz crystal microbalance (QCM), to study the interfacial events during liposome-target surface interactions. The flow channels of SPR and QCM devices were first synchronized via hydrodynamic modeling. Biotin-streptavidin was used as a model pair and self-assembled monolayers (SAMs) were utilized as model surfaces for targeted liposome-surface interaction studies. The interactions between biotin-liposomes and the streptavidin-biotin-SAM surfaces were investigated under controlled shear flows using the synchronized SPR and QCM devices. The response of the liposome interaction was monitored as a function of the flow rate. The affinity and the amount of bound liposome indicated that the increased flow rate improved the binding of the targeted liposomes to the model membrane surfaces. The combined use of the synchronized SPR and QCM devices for nanoparticle interaction studies clearly demonstrates the effect of the flow rate (or the shear stress) on the liposome binding. Our results suggest that the binding of liposomes to the model membranes is flow rate and shear stress regulated. Thus, the flow rate (or the shear stress), which is usually neglected, should be taken into account during the development and optimization of targeted liposome formulations. In addition, the water content within the liposome layer (including the water inside the liposomes and the water between the liposomes) had a significant influence on the visco-elasticity and the binding kinetics to the SAM surfaces.
Collapse
Affiliation(s)
- Huamin Liang
- Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
9
|
Speight RE, Cooper MA. A Survey of the 2010 Quartz Crystal Microbalance Literature. J Mol Recognit 2012; 25:451-73. [DOI: 10.1002/jmr.2209] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Robert E. Speight
- Institute for Molecular Bioscience; The University of Queensland; St. Lucia; Brisbane; 4072; Australia
| | - Matthew A. Cooper
- Institute for Molecular Bioscience; The University of Queensland; St. Lucia; Brisbane; 4072; Australia
| |
Collapse
|
10
|
Fu L, Chen Y, Ma H. Solidified liquid layer model expands the application fields of quartz crystal microbalance. Macromol Rapid Commun 2012; 33:735-41. [PMID: 22492463 DOI: 10.1002/marc.201100878] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 02/22/2012] [Indexed: 11/11/2022]
Abstract
The application of a quartz crystal microbalance (QCM) in liquid is hindered by the complexity of data analysis. Recently, a "solidified liquid layer" (SLL) model has been proposed to simplify the data analysis. Here, missing evidence to support the SLL model is provided: 1) the SLL model is responsive to the density change of the liquid environment, 2) thickness values from the SLL model (T(SLL) ) are in agreement with values measured by ellipsometry. The SLL model predicts that a 0.18 nm change of T(SLL) will lead to a 1 Hz signal, which is the resolution that most commercial QCMs could easily achieve. Using the SLL model, Au-S bond breakage has been successful. Biosensor applications are also being designed according to the SLL model. It is believed that with these results, the SLL model will bring QCM back to the radar screen of scientists.
Collapse
Affiliation(s)
- Long Fu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P R China
| | | | | |
Collapse
|
11
|
The change in thickness of the solidified liquid layer rather than the immobilized mass determines the frequency response of a quartz crystal microbalance. Sci China Chem 2011. [DOI: 10.1007/s11426-011-4467-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|