1
|
Hatch KKA, Burrell RE, Ward CN. Effect of a Novel sputtering process on the chemical and biological properties of silver-gold alloys. Int Wound J 2024; 21:e14475. [PMID: 37948116 PMCID: PMC10898371 DOI: 10.1111/iwj.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023] Open
Abstract
Silver-gold nanocrystalline films were sputtered on HDPE substrates by a physical vapour deposition process using alloys with a nominal composition of 65% silver/35% gold or 35% silver/65% gold by weight, with comparison to a 100% silver target. Novel process conditions were introduced to include both water and oxygen as reactive gases. X-ray diffraction and chemical digests were used to assess the structure and chemical composition of the films. Log reductions and corrected zone of inhibition tests were used to measure the biological properties. Despite a range of physical and chemical properties, biological tests showed that the bactericidal properties of all silver-gold films were comparable with silver-only films in the short term and 65% silver films made with Novel sputtering conditions had comparable bacteriostatic abilities to silver-only over a 7-day period. The benefit of including gold may be seen in future studies of anti-inflammatory activity.
Collapse
Affiliation(s)
| | | | - Colleen Nancy Ward
- Department of Biomedical EngineeringUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
2
|
Candreva A, De Rose R, Perrotta ID, Guglielmelli A, La Deda M. Light-Induced Clusterization of Gold Nanoparticles: A New Photo-Triggered Antibacterial against E. coli Proliferation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040746. [PMID: 36839113 PMCID: PMC9967119 DOI: 10.3390/nano13040746] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 05/14/2023]
Abstract
Metallic nanoparticles show plasmon resonance phenomena when irradiated with electromagnetic radiation of a suitable wavelength, whose value depends on their composition, size, and shape. The damping of the surface electron oscillation causes a release of heat, which causes a large increase in local temperature. Furthermore, this increase is enhanced when nanoparticle aggregation phenomena occur. Local temperature increase is extensively exploited in photothermal therapy, where light is used to induce cellular damage. To activate the plasmon in the visible range, we synthesized 50 nm diameter spherical gold nanoparticles (AuNP) coated with polyethylene glycol and administered them to an E. coli culture. The experiments were carried out, at different gold nanoparticle concentrations, in the dark and under irradiation. In both cases, the nanoparticles penetrated the bacterial wall, but a different toxic effect was observed; while in the dark we observed an inhibition of bacterial growth of 46%, at the same concentration, under irradiation, we observed a bactericidal effect (99% growth inhibition). Photothermal measurements and SEM observations allowed us to conclude that the extraordinary effect is due to the formation, at low concentrations, of a light-induced cluster of gold nanoparticles, which does not form in the absence of bacteria, leading us to the conclusion that the bacterium wall catalyzes the formation of these clusters which are ultimately responsible for the significant increase in the measured temperature and cause of the bactericidal effect. This photothermal effect is achieved by low-power irradiation and only in the presence of the pathogen: in its absence, the lack of gold nanoparticles clustering does not lead to any phototoxic effect. Therefore, it may represent a proof of concept of an innovative nanoscale pathogen responsive system against bacterial infections.
Collapse
Affiliation(s)
- Angela Candreva
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
- CNR-NANOTEC, Institute of Nanotechnology U.O.S, Cosenza, 87036 Rende, Italy
| | - Renata De Rose
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
| | - Ida Daniela Perrotta
- Department of Biology, Ecology and Earth Sciences, Centre for Microscopy and Microanalysis (CM2), University of Calabria, 87036 Rende, Italy
| | - Alexa Guglielmelli
- CNR-NANOTEC, Institute of Nanotechnology U.O.S, Cosenza, 87036 Rende, Italy
- Department of Physics, NLHT-Lab, University of Calabria, 87036 Rende, Italy
| | - Massimo La Deda
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
- CNR-NANOTEC, Institute of Nanotechnology U.O.S, Cosenza, 87036 Rende, Italy
- Correspondence:
| |
Collapse
|
3
|
Zhan X, Yan J, Tang H, Xia D, Lin H. Antibacterial Properties of Gold Nanoparticles in the Modification of Medical Implants: A Systematic Review. Pharmaceutics 2022; 14:pharmaceutics14122654. [PMID: 36559152 PMCID: PMC9785922 DOI: 10.3390/pharmaceutics14122654] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
The widespread occurrence of bacterial infections and their increased resistance to antibiotics has led to the development of antimicrobial coatings for multiple medical implants. Owing to their desirable properties, gold nanoparticles (AuNPs) have been developed as antibacterial agents. This systematic investigation sought to analyze the antibacterial effects of implant material surfaces modified with AuNPs. The data from 27 relevant studies were summed up. The included articles were collected from September 2011 to September 2021. According to the retrieved literature, we found that medical implants modified by AuNPs have good antibacterial effects against gram-positive and gram-negative bacteria, and the antibacterial effects would be improved by near-infrared (NIR) radiation.
Collapse
Affiliation(s)
- Xinxin Zhan
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Jianglong Yan
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Hao Tang
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Dandan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
- Correspondence: (D.X.); (H.L.)
| | - Hong Lin
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
- Correspondence: (D.X.); (H.L.)
| |
Collapse
|
4
|
Kozicki M, Pawlaczyk A, Adamska A, Szynkowska-Jóźwik MI, Sąsiadek-Andrzejczak E. Golden and Silver-Golden Chitosan Hydrogels and Fabrics Modified with Golden Chitosan Hydrogels. Int J Mol Sci 2022; 23:5406. [PMID: 35628215 PMCID: PMC9141307 DOI: 10.3390/ijms23105406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/10/2022] Open
Abstract
Golden and silver-golden chitosan hydrogels and hydrogel-modified textiles of potential biomedical applications are investigated in this work. The hydrogels are formed by reactions of chitosan with HAuCl4·xH2O. For above the critical concentration of chitosan (c*), chitosan-Au hydrogels were prepared. For chitosan concentrations lower than c*, chitosan-Au nano- and microgels were formed. To characterise chitosan-Au structures, sol-gel analysis, UV-Vis spectrophotometry and dynamic light scattering were performed. Au concentration in the hydrogels was determined by the flame atomic absorption spectrophotometry. Colloidal chitosan-Au solutions were used for the modification of fabrics. The Au content in the modified fabrics was quantified by inductively coupled plasma mass spectrometry technique. Scanning electron microscopy with energy dispersion X-ray spectrometer was used to analyse the samples. Reflectance spectrophotometry was applied to examine the colour of the fabrics. The formation of chitosan-Au-Ag hydrogels by the competitive reaction of Au and Ag ions with the chitosan macromolecules is reported.
Collapse
Affiliation(s)
- Marek Kozicki
- Department of Mechanical Engineering, Informatics and Chemistry of Polymer Materials, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Zeromskiego 116, 90-543 Lodz, Poland;
| | - Aleksandra Pawlaczyk
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 114, 90-543 Lodz, Poland; (A.P.); (A.A.); (M.I.S.-J.)
| | - Aleksandra Adamska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 114, 90-543 Lodz, Poland; (A.P.); (A.A.); (M.I.S.-J.)
| | - Małgorzata Iwona Szynkowska-Jóźwik
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 114, 90-543 Lodz, Poland; (A.P.); (A.A.); (M.I.S.-J.)
| | - Elżbieta Sąsiadek-Andrzejczak
- Department of Mechanical Engineering, Informatics and Chemistry of Polymer Materials, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Zeromskiego 116, 90-543 Lodz, Poland;
| |
Collapse
|
5
|
Abstract
Metal nanoparticles (NPs) are increasingly being used in many areas, e.g., industry, pharmacy, and biomedical engineering. NPs can be obtained through chemical and biological synthesis or using physical methods. AgNPs, AuNPs, CuNPs, FeNPs, MgNPs, SnO2NPs, TiO2NPs, and ZnONPs are the most commonly synthesized metal nanoparticles. Many of them have anti-microbial properties and documented activity supported by many tests against some species of pathogenic bacteria, viruses, and fungi. AgNPs, which are used for the production of commercial self-sterilizing packages, are one of the best-explored nanoparticles. Moreover, the EFSA has approved the use of small doses of silver nanoparticles (0.05 mg Ag·kg−1) to food products. Recent studies have shown that metal NPs can be used for the production of coatings to prevent the spread of the SARS-CoV-2 virus, which has caused the global pandemic. Some nanoparticles (e.g., ZnONPs and MgONPs) have the Generally Recognized As Safe (GRAS) status, i.e., they are considered safe for consumption and can be used for the production of edible coatings, protecting food against spoilage. Promising results have been obtained in research on the use of more than one type of nanometals, which prevents the development of pathogen resistance through various mechanisms of inactivation thereof.
Collapse
|
6
|
Sani A, Cao C, Cui D. Toxicity of gold nanoparticles (AuNPs): A review. Biochem Biophys Rep 2021; 26:100991. [PMID: 33912692 PMCID: PMC8063742 DOI: 10.1016/j.bbrep.2021.100991] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Gold nanoparticles are a kind of nanomaterials that have received great interest in field of biomedicine due to their electrical, mechanical, thermal, chemical and optical properties. With these great potentials came the consequence of their interaction with biological tissues and molecules which presents the possibility of toxicity. This paper aims to consolidate and bring forward the studies performed that evaluate the toxicological aspect of AuNPs which were categorized into in vivo and in vitro studies. Both indicate to some extent oxidative damage to tissues and cell lines used in vivo and in vitro respectively with the liver, spleen and kidney most affected. The outcome of these review showed small controversy but however, the primary toxicity and its extent is collectively determined by the characteristics, preparations and physicochemical properties of the NPs. Some studies have shown that AuNPs are not toxic, though many other studies contradict this statement. In order to have a holistic inference, more studies are required that will focus on characterization of NPs and changes of physical properties before and after treatment with biological media. So also, they should incorporate controlled experiment which includes supernatant control Since most studies dwell on citrate or CTAB-capped AuNPs, there is the need to evaluate the toxicity and pharmacokinetics of functionalized AuNPs with their surface composition which in turn affects their toxicity. Functionalizing the NPs surface with more peculiar ligands would however help regulate and detoxify the uptake of these NPs.
Collapse
Affiliation(s)
- A. Sani
- Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
- Department of Biological Sciences, Bayero University Kano, P.M.B. 3011, Kano, Nigeria
| | - C. Cao
- Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - D. Cui
- Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| |
Collapse
|
7
|
Clasky AJ, Watchorn JD, Chen PZ, Gu FX. From prevention to diagnosis and treatment: Biomedical applications of metal nanoparticle-hydrogel composites. Acta Biomater 2021; 122:1-25. [PMID: 33352300 DOI: 10.1016/j.actbio.2020.12.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Recent advances in biomaterials integrate metal nanoparticles with hydrogels to generate composite materials that exhibit new or improved properties. By precisely controlling the composition, arrangement and interactions of their constituents, these hybrid materials facilitate biomedical applications through myriad approaches. In this work we seek to highlight three popular frameworks for designing metal nanoparticle-hydrogel hybrid materials for biomedical applications. In the first approach, the properties of metal nanoparticles are incorporated into a hydrogel matrix such that the composite is selectively responsive to stimuli such as light and magnetic flux, enabling precisely activated therapeutics and self-healing biomaterials. The second approach mediates the dynamic reorganization of metal nanoparticles based on environment-directed changes in hydrogel structure, leading to chemosensing, microbial and viral detection, and drug-delivery capabilities. In the third approach, the hydrogel matrix spatially arranges metal nanoparticles to produce metamaterials or passively enhance nanoparticle properties to generate improved substrates for biomedical applications including tissue engineering and wound healing. This article reviews the construction, properties and biomedical applications of metal nanoparticle-hydrogel composites, with a focus on how they help to prevent, diagnose and treat diseases. Discussion includes how the composites lead to new or improved properties, how current biomedical research leverages these properties and the emerging directions in this growing field.
Collapse
|
8
|
Overview for multimetallic nanostructures with biomedical, environmental and industrial applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114669] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
9
|
Min JG, Sanchez Rangel UJ, Franklin A, Oda H, Wang Z, Chang J, Fox PM. Topical Antibiotic Elution in a Collagen-Rich Hydrogel Successfully Inhibits Bacterial Growth and Biofilm Formation In Vitro. Antimicrob Agents Chemother 2020; 64:e00136-20. [PMID: 32690648 PMCID: PMC7508589 DOI: 10.1128/aac.00136-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/01/2020] [Indexed: 01/24/2023] Open
Abstract
Chronic wounds are a prominent concern, accounting for $25 billion of health care costs annually. Biofilms have been implicated in delayed wound closure, but they are susceptible to developing antibiotic resistance and treatment options continue to be limited. A novel collagen-rich hydrogel derived from human extracellular matrix presents an avenue for treating chronic wounds by providing appropriate extracellular proteins for healing and promoting neovascularization. Using the hydrogel as a delivery system for localized secretion of a therapeutic dosage of antibiotics presents an attractive means of maximizing delivery while minimizing systemic side effects. We hypothesize that the hydrogel can provide controlled elution of antibiotics leading to inhibition of bacterial growth and disruption of biofilm formation. The rate of antibiotic elution from the collagen-rich hydrogel and the efficacy of biofilm disruption was assessed with Pseudomonas aeruginosa Bacterial growth inhibition, biofilm disruption, and mammalian cell cytotoxicity were quantified using in vitro models. The antibiotic-loaded hydrogel showed sustained release of antibiotics for up to 24 h at therapeutic levels. The treatment inhibited bacterial growth and disrupted biofilm formation at multiple time points. The hydrogel was capable of accommodating various classes of antibiotics and did not result in cytotoxicity in mammalian fibroblasts or adipose stem cells. The antibiotic-loaded collagen-rich hydrogel is capable of controlled antibiotic release effective for bacteria cell death without native cell death. A human-derived hydrogel that is capable of eluting therapeutic levels of antibiotic is an exciting prospect in the field of chronic wound healing.
Collapse
Affiliation(s)
- Jung Gi Min
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Uriel J Sanchez Rangel
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Austin Franklin
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Hiroki Oda
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Zhen Wang
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - James Chang
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Paige M Fox
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
10
|
de Solorzano IO, Prieto M, Mendoza G, Sebastian V, Arruebo M. Triggered drug release from hybrid thermoresponsive nanoparticles using near infrared light. Nanomedicine (Lond) 2020; 15:219-234. [DOI: 10.2217/nnm-2019-0270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: Developing hybrid poly(N-isopropylacrylamide)-based nanogels decorated with plasmonic hollow gold nanoparticles for on-demand drug delivery and their physico-chemical characterization, bupivacaine loading and release ability upon light irradiation, and in vitro cell viability. Materials & methods: Hollow gold nanoparticles were prepared by galvanic replacement reaction; poly(N-isopropylacrylamide)-based nanogels were synthesized via precipitation polymerization and their electrostatic coupling was accomplished using poly(allylamine hydrochloride) as cationic polyelectrolyte linker. Results & conclusion: Colloidal stability of the resulted hybrid nanovectors was demonstrated under physiological conditions together with their fast response and excellent heating efficiency after light stimulation, indicating their potential use as triggered drug-delivery vectors. Moreover, their influence on cell metabolism and cell cycle under subcytotoxic doses were studied showing excellent cytocompatibility.
Collapse
Affiliation(s)
- Isabel Ortiz de Solorzano
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018-Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine, CIBER-BBN, 28029-Madrid, Spain
| | - Martin Prieto
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018-Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Gracia Mendoza
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018-Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Victor Sebastian
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018-Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine, CIBER-BBN, 28029-Madrid, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018-Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine, CIBER-BBN, 28029-Madrid, Spain
| |
Collapse
|
11
|
Manickam P, Vashist A, Madhu S, Sadasivam M, Sakthivel A, Kaushik A, Nair M. Gold nanocubes embedded biocompatible hybrid hydrogels for electrochemical detection of H 2O 2. Bioelectrochemistry 2019; 131:107373. [PMID: 31525638 DOI: 10.1016/j.bioelechem.2019.107373] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 10/26/2022]
Abstract
Smart electrochemical biosensors have emerged as a promising alternative analytical diagnostic tool in recent clinical practice. However, improvement in the biocompatibility and electrical conductivity of the biosensor matrix and the immobilization of various bioactive molecules such as enzymes still remain challenging. The present research reports the synthesis of a biocompatible hydrogel network and its integration with gold nanocubes (AuNCs) for developing a novel biosensor with improved functionality. The interpenetrating hydrogel network consist of biopolymers developed using graft co-polymerization of β-cyclodextrin (β-CD) and chitosan (CS). The novelty of this work is in integrating the CS-g-β-CD hydrogel network with conductive AuNCs for improving hydrogel conductivity, biosensor sensitivity and use of the material for a biocompatible sensor. The present protocol advances the state of the art for the utilization of biopolymeric hydrogels system in synergy with an enzymatic biosensing protocol for exclusively detecting hydrogen peroxide (H2O2). Immobilization of the mitochondrial protein, cytochrome c (cyt c) into the hydrogel nanocomposite matrix was performed via thiol cross-linking. This organic-inorganic hybrid nanocomposite hydrogel matrix exhibited high biocompatibility (RAW 264.7 and N2a cell lines), improved electrical conductivity to attain high sensitivity (1.2 mA mM-1 cm-2) and a low detection limit (15 × 10-9 M) for H2O2.
Collapse
Affiliation(s)
- Pandiaraj Manickam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630 003, Tamil Nadu, India.
| | - Arti Vashist
- Department of Immunology & Nano-Medicine, Institute of NeuroImmune Pharmacology, Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Sekar Madhu
- Department of Nanoscience & Technology, Bharathiar University, Coimbatore 641 046, India
| | - Mohanraj Sadasivam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630 003, Tamil Nadu, India
| | - Arunkumar Sakthivel
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630 003, Tamil Nadu, India; Academy of Scientific and Innovative Research, Ghaziabad 201 002, Uttar Pradesh, India
| | - Ajeet Kaushik
- Department of Natural Sciences, Division of Sciences, Art & Mathematics, Florida Polytechnic University, Lakeland, FL 33805, USA
| | - Madhavan Nair
- Department of Immunology & Nano-Medicine, Institute of NeuroImmune Pharmacology, Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
12
|
Mahmoud NN, Hikmat S, Abu Ghith D, Hajeer M, Hamadneh L, Qattan D, Khalil EA. Gold nanoparticles loaded into polymeric hydrogel for wound healing in rats: Effect of nanoparticles’ shape and surface modification. Int J Pharm 2019; 565:174-186. [DOI: 10.1016/j.ijpharm.2019.04.079] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022]
|
13
|
Grijalvo S, Eritja R, Díaz Díaz D. On the Race for More Stretchable and Tough Hydrogels. Gels 2019; 5:E24. [PMID: 31035400 PMCID: PMC6632012 DOI: 10.3390/gels5020024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 01/09/2023] Open
Abstract
Hydrogels are tridimensional networks that are able to retain important amounts of water. These soft materials can be obtained through self-assembling processes involving either hydrophilic molecules or polymers, allowing the formation of the corresponding covalently and physically cross-linked networks. Although the applicability of hydrogels in biomedicine has been exponentially growing due to their biocompatibility and different responses to stimuli, these materials have exhibited the particular feature of poor mechanical strength, and consequently, are brittle materials with low deformation. Due to this reason, a race has started to obtain more stretchable and tough hydrogels through different approaches. Within this context, this review article describes the most representative strategies and examples involving synthetic polymers with potential for biomedical applications.
Collapse
Affiliation(s)
- Santiago Grijalvo
- Institute for Advanced Chemistry of Catalonia (IQAC, CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC, CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - David Díaz Díaz
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain.
- Institut für Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany.
| |
Collapse
|
14
|
Tan HL, Teow SY, Pushpamalar J. Application of Metal Nanoparticle⁻Hydrogel Composites in Tissue Regeneration. Bioengineering (Basel) 2019; 6:E17. [PMID: 30754677 PMCID: PMC6466392 DOI: 10.3390/bioengineering6010017] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 02/06/2023] Open
Abstract
Challenges in organ transplantation such as high organ demand and biocompatibility issues have led scientists in the field of tissue engineering and regenerative medicine to work on the use of scaffolds as an alternative to transplantation. Among different types of scaffolds, polymeric hydrogel scaffolds have received considerable attention because of their biocompatibility and structural similarity to native tissues. However, hydrogel scaffolds have several limitations, such as weak mechanical property and a lack of bioactive property. On the other hand, noble metal particles, particularly gold (Au) and silver (Ag) nanoparticles (NPs), can be incorporated into the hydrogel matrix to form NP⁻hydrogel composite scaffolds with enhanced physical and biological properties. This review aims to highlight the potential of these hybrid materials in tissue engineering applications. Additionally, the main approaches that have been used for the synthesis of NP⁻hydrogel composites and the possible limitations and challenges associated with the application of these materials are discussed.
Collapse
Affiliation(s)
- Hui-Li Tan
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, 47500 Selangor Darul Ehsan, Malaysia.
| | - Sin-Yeang Teow
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia.
| | - Janarthanan Pushpamalar
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, 47500 Selangor Darul Ehsan, Malaysia.
- Monash-Industry Palm Oil Education and Research Platform (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
15
|
Liu Q, Sacco P, Marsich E, Furlani F, Arib C, Djaker N, Lamy de la Chapelle M, Donati I, Spadavecchia J. Lactose-Modified Chitosan Gold(III)-PEGylated Complex-Bioconjugates: From Synthesis to Interaction with Targeted Galectin-1 Protein. Bioconjug Chem 2018; 29:3352-3361. [PMID: 30215508 DOI: 10.1021/acs.bioconjchem.8b00520] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Galectins (Gal) are a family of glycan-binding proteins characterized by their affinity for β-galactosides. Galectin-1 (Gal-1), a dimeric lectin with two galactoside-binding sites, regulates cancer progression and immune responses. Coordination chemistry has been engaged to develop versatile multivalent neoglycoconjugates for binding Gal-1. In this study we report a fast and original method to synthesize hybrid gold nanoparticles in which a hydrochloride lactose-modified chitosan, named CTL, is mixed with dicarboxylic acid-terminated polyethylene glycol (PEG), leading to shell-like hybrid polymer-sugar-metal nanoparticles (CTL-PEG-AuNPs). The aim of this paper is to preliminarily study the interaction of the CTL-PEG-AuNPs with a target protein, namely, Gal-1, under specific conditions. The molecular interaction has been measured by Transmission Electron Microscopy (TEM), UV-vis, and Raman Spectroscopy on a large range of Gal-1 concentrations (from 0 to 10-12 M). We observed that the interaction was strongly dependent on the Gal-1 concentration at the surface of the gold nanoparticles.
Collapse
Affiliation(s)
- Qiqian Liu
- CNRS, UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques , Université Paris 13, Sorbonne Paris Cité , 93000 Bobigny , France
| | - Pasquale Sacco
- Department of Life Sciences , University of Trieste , Via L. Giorgieri 5 , I-34127 Trieste , Italy
| | - Eleonora Marsich
- Department of Medicine, Surgery and Health Sciences , University of Trieste , Piazza dell'Ospitale 1 , I-34129 Trieste , Italy
| | - Franco Furlani
- Department of Life Sciences , University of Trieste , Via L. Giorgieri 5 , I-34127 Trieste , Italy
| | - Celia Arib
- CNRS, UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques , Université Paris 13, Sorbonne Paris Cité , 93000 Bobigny , France
| | - Nadia Djaker
- CNRS, UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques , Université Paris 13, Sorbonne Paris Cité , 93000 Bobigny , France
| | - Marc Lamy de la Chapelle
- Institut des Molécules et Matériaux du Mans (IMMM - UMR CNRS 6283) , Le Mans Université , Avenue Olivier Messiaen , 72085 Le Mans cedex 9, France.,Department of Clinical Laboratory Medicine, Southwest Hospital , Third Military Medical University , 400038 Chongqing , China
| | - Ivan Donati
- Department of Life Sciences , University of Trieste , Via L. Giorgieri 5 , I-34127 Trieste , Italy
| | - Jolanda Spadavecchia
- CNRS, UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques , Université Paris 13, Sorbonne Paris Cité , 93000 Bobigny , France
| |
Collapse
|
16
|
In vitro and In vivo characterization of quercetin loaded multiphase hydrogel for wound healing application. Int J Biol Macromol 2018; 115:1211-1217. [DOI: 10.1016/j.ijbiomac.2018.05.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 04/25/2018] [Accepted: 05/02/2018] [Indexed: 11/22/2022]
|
17
|
Tarusha L, Paoletti S, Travan A, Marsich E. Alginate membranes loaded with hyaluronic acid and silver nanoparticles to foster tissue healing and to control bacterial contamination of non-healing wounds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:22. [PMID: 29396683 DOI: 10.1007/s10856-018-6027-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/10/2018] [Indexed: 06/07/2023]
Abstract
Chronic non-healing wounds are a clinically important problem in terms of number of patients and costs. Wound dressings such as hydrogels, hydrocolloids, polyurethane films and foams are commonly used to manage these wounds since they tend to maintain a moist environment which is shown to accelerate re-epithelialization. The use of antibacterial compounds is important in the management of wound infections. A novel wound-dressing material based on a blended matrix of the polysaccharides alginate, hyaluronic acid and Chitlac-silver nanoparticles is here proposed and its application for wound healing is examined. The manufacturing approach to obtain membranes is based on gelling, foaming and freeze-casting of alginate, hyaluronic acid and Chitlac-silver nanoparticles mixtures using calcium ions as the cross-linking agent. Comprehensive evaluations of the morphology, swelling kinetics, permeability, mechanical characteristics, cytotoxicity, capability to inhibit metalloproteinases and of antibacterial property were conducted. Biological in vitro studies demonstrated that hyaluronic acid released by the membrane is able to stimulate the wound healing meanwhile the metal silver exploits an efficient antibacterial activity against both planktonic bacteria and biofilms. Overall, the experimental data evidence that the studied material could be used as antibacterial wound dressing for wound healing promotion.
Collapse
Affiliation(s)
- Lorena Tarusha
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127, Trieste, Italy
| | - Sergio Paoletti
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127, Trieste, Italy
| | - Andrea Travan
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127, Trieste, Italy
| | - Eleonora Marsich
- Department of Medical, Surgical and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34129, Trieste, Italy.
| |
Collapse
|
18
|
Wahid F, Zhong C, Wang HS, Hu XH, Chu LQ. Recent Advances in Antimicrobial Hydrogels Containing Metal Ions and Metals/Metal Oxide Nanoparticles. Polymers (Basel) 2017; 9:E636. [PMID: 30965938 PMCID: PMC6418809 DOI: 10.3390/polym9120636] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/17/2017] [Accepted: 11/19/2017] [Indexed: 02/08/2023] Open
Abstract
Recently, the rapid emergence of antibiotic-resistant pathogens has caused a serious health problem. Scientists respond to the threat by developing new antimicrobial materials to prevent or control infections caused by these pathogens. Polymer-based nanocomposite hydrogels are versatile materials as an alternative to conventional antimicrobial agents. Cross-linking of polymeric materials by metal ions or the combination of polymeric hydrogels with nanoparticles (metals and metal oxide) is a simple and effective approach for obtaining a multicomponent system with diverse functionalities. Several metals and metal oxides such as silver (Ag), gold (Au), zinc oxide (ZnO), copper oxide (CuO), titanium dioxide (TiO₂) and magnesium oxide (MgO) have been loaded into hydrogels for antimicrobial applications. The incorporation of metals and metal oxide nanoparticles into hydrogels not only enhances the antimicrobial activity of hydrogels, but also improve their mechanical characteristics. Herein, we summarize recent advances in hydrogels containing metal ions, metals and metal oxide nanoparticles with potential antimicrobial properties.
Collapse
Affiliation(s)
- Fazli Wahid
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China.
| | - Cheng Zhong
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China.
| | - Hai-Song Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China.
| | - Xiao-Hui Hu
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China.
| | - Li-Qiang Chu
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China.
| |
Collapse
|
19
|
Tentor FR, de Oliveira JH, Scariot DB, Lazarin-Bidóia D, Bonafé EG, Nakamura CV, Venter SA, Monteiro JP, Muniz EC, Martins AF. Scaffolds based on chitosan/pectin thermosensitive hydrogels containing gold nanoparticles. Int J Biol Macromol 2017; 102:1186-1194. [DOI: 10.1016/j.ijbiomac.2017.04.106] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/24/2017] [Accepted: 04/26/2017] [Indexed: 12/22/2022]
|
20
|
Switchable on/off drug release from gold nanoparticles-grafted dual light- and temperature-responsive hydrogel for controlled drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:242-248. [DOI: 10.1016/j.msec.2017.03.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/04/2017] [Accepted: 03/04/2017] [Indexed: 01/16/2023]
|
21
|
González-Henríquez CM, Sarabia-Vallejos MA, Rodriguez-Hernandez J. Advances in the Fabrication of Antimicrobial Hydrogels for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E232. [PMID: 28772591 PMCID: PMC5503311 DOI: 10.3390/ma10030232] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/07/2017] [Accepted: 02/20/2017] [Indexed: 12/02/2022]
Abstract
This review describes, in an organized manner, the recent developments in the elaboration of hydrogels that possess antimicrobial activity. The fabrication of antibacterial hydrogels for biomedical applications that permits cell adhesion and proliferation still remains as an interesting challenge, in particular for tissue engineering applications. In this context, a large number of studies has been carried out in the design of hydrogels that serve as support for antimicrobial agents (nanoparticles, antibiotics, etc.). Another interesting approach is to use polymers with inherent antimicrobial activity provided by functional groups contained in their structures, such as quaternary ammonium salt or hydrogels fabricated from antimicrobial peptides (AMPs) or natural polymers, such as chitosan. A summary of the different alternatives employed for this purpose is described in this review, considering their advantages and disadvantages. Finally, more recent methodologies that lead to more sophisticated hydrogels that are able to react to external stimuli are equally depicted in this review.
Collapse
Affiliation(s)
- Carmen M González-Henríquez
- Departamento de Química, Matemáticas y del Medio Ambiente, Facultad de Ciencias Naturales, Universidad Tecnológica Metropolitana, P.O. Box 9845, Correo 21, Santiago 7800003, Chile.
| | - Mauricio A Sarabia-Vallejos
- Departamento de Ingeniería Estructural y Geotecnia, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, P.O. Box 306, Correo 22, Santiago 7820436, Chile.
| | - Juan Rodriguez-Hernandez
- Departamento de Química y Propiedades de Polímeros, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Juan de la Cierva 3, Madrid 28006, Spain.
| |
Collapse
|
22
|
Kumari S, Häring M, Gupta SS, Díaz Díaz D. Catalytic Macroporous Biohydrogels Made of Ferritin-Encapsulated Gold Nanoparticles. Chempluschem 2017; 82:225-232. [PMID: 31961537 DOI: 10.1002/cplu.201600454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/28/2016] [Indexed: 11/11/2022]
Abstract
Reported is a modular approach for the incorporation and stabilization of gold nanoparticles inside a three-dimensional macroporous hydrogel made of ferritin. The strategy, which involves the dynamic templating of surfactant H1 domains, demineralization, and remineralization helps to overcome aggregation and degradation issues usually associated with bare-metal-based nanocatalysts. The catalytic activity of the so-synthesized bionanocomposite hydrogel was demonstrated in both nitroaldol (Henry) and nitroreduction model reactions in aqueous solution at room temperature. An interesting synergistic effect between basic residues of the protein and the gold nanoparticles was found in the nitroaldol reaction when carried out in water in the presence of a phase-transfer catalyst. Furthermore, the reduction of 4-nitrophenol and 4-nitroaniline catalyzed by the nanocomposite scaffold in the presence of NaBH4 proceeded significantly faster than that using other known Au- and Ag-based catalysts under similar conditions.
Collapse
Affiliation(s)
- Sushma Kumari
- CReST Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Marleen Häring
- Institute of Organic Chemistry, University of Regensburg, Universitätstrasse 31, Regensburg, 93053, Germany
| | - Sayam Sen Gupta
- CReST Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, India.,Current affiliation: Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata Mohanpur, West Bengal, 741 246, India
| | - David Díaz Díaz
- Institute of Organic Chemistry, University of Regensburg, Universitätstrasse 31, Regensburg, 93053, Germany.,IQAC-CSIC, Jordi Girona 18-26, Barcelona, 08034, Spain
| |
Collapse
|
23
|
Tripathi A, Melo JS. Development of Nano-Antimicrobial Biomaterials for Biomedical Applications. ADVANCES IN BIOMATERIALS FOR BIOMEDICAL APPLICATIONS 2017; 66. [PMCID: PMC7122509 DOI: 10.1007/978-981-10-3328-5_12] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Around the globe, there is a great concern about controlling growth of pathogenic microorganisms for the prevention of infectious diseases. Moreover, the greater incidences of cross contamination and overuse of drugs has contributed towards the development of drug resistant microbial strains making conditions even worse. Hospital acquired infections pose one of the leading complications associated with implantation of any biomaterial after surgery and critical care. In this regard, developing non-conventional antimicrobial agents which would prevent the aforementioned causes is under the quest. The rapid development in nanoscience and nanotechnology has shown promising potential for developing novel biocidal agents that would integrate with a biomaterial to prevent bacterial colonization and biofilm formation. Metals with inherent antimicrobial properties such as silver, copper, zinc at nano scale constitute a special class of antimicrobials which have broad spectrum antimicrobial nature and pose minimum toxicity to humans. Hence, novel biomaterials that inhibit microbial growth would be of great significance to eliminate medical device/instruments associated infections. This chapter comprises the state-of-art advancements in the development of nano-antimicrobial biomaterials for biomedical applications. Several strategies have been targeted to satisfy few important concern such as enhanced long term antimicrobial activity and stability, minimize leaching of antimicrobial material and promote reuse. The proposed strategies to develop new hybrid antimicrobial biomaterials would offer a potent antibacterial solution in healthcare sector such as wound healing applications, tissue scaffolds, medical implants, surgical devices and instruments.
Collapse
Affiliation(s)
- Anuj Tripathi
- Nuclear Agriculture & Biotechnology Div, Bhabha Atomic Research Centre, Mumbai, Maharashtra India
| | - Jose Savio Melo
- Nuclear Agriculture & Biotechnology Div, Bhabha Atomic Research Centre, Mumbai, Maharashtra India
| |
Collapse
|
24
|
Giovannini G, Kunc F, Piras CC, Stranik O, Edwards AA, Hall AJ, Gubala V. Stabilizing silica nanoparticles in hydrogels: impact on storage and polydispersity. RSC Adv 2017. [DOI: 10.1039/c7ra02427d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
For successful nanomedicine, it is important that the unique, size-dependent physico-chemical properties of the nanomaterial remain predictably constant during both the storage and the manipulation of the material.
Collapse
Affiliation(s)
| | - Filip Kunc
- Medway School of Pharmacy
- University of Kent
- Chatham
- UK
| | | | - Ondrej Stranik
- The Leibniz Institute of Photonic Technology (IPHT)
- 07745 Jena
- Germany
| | | | | | | |
Collapse
|
25
|
Staruch RMT, Glass GE, Rickard R, Hettiaratchy SP, Butler PEM. Injectable Pore-Forming Hydrogel Scaffolds for Complex Wound Tissue Engineering: Designing and Controlling Their Porosity and Mechanical Properties. TISSUE ENGINEERING PART B-REVIEWS 2016; 23:183-198. [PMID: 27824295 DOI: 10.1089/ten.teb.2016.0305] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Traumatic soft tissue wounds present a significant reconstructive challenge. The adoption of closed-circuit negative pressure wound therapy (NPWT) has enabled surgeons to temporize these wounds before reconstruction. Such systems use porous synthetic foam scaffolds as wound fillers at the interface between the negative pressure system and the wound bed. The idea of using a bespoke porous biomaterial that enhances wound healing, as filler for an NPWT system, is attractive as it circumvents concerns regarding reconstructive delay and the need for dressing changes that are features of the current systems. Porous foam biomaterials are mechanically robust and able to synthesize in situ. Hence, they exhibit potential to fulfill the niche for such a functionalized injectable material. Injectable scaffolds are currently in use for minimally invasive surgery, but the design parameters for large-volume expansive foams remain unclear. Potential platforms include hydrogel systems, (particularly superabsorbent, superporous, and nanocomposite systems), polyurethane-based moisture-cured foams, and high internal phase emulsion polymer systems. The aim of this review is to discuss the design parameters for such future biomaterials and review potential candidate materials for further research into this up and coming field.
Collapse
Affiliation(s)
- Robert M T Staruch
- 1 School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts
| | - Graeme E Glass
- 2 Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford , Oxford, United Kingdom
| | - Rory Rickard
- 3 Academic Department of Military Surgery and Trauma , ICT Business Park, Birmingham, United Kingdom
| | | | - Peter E M Butler
- 5 Department of Surgery and Interventional Sciences, The Royal Free Hospital, University College London , London, United Kingdom
| |
Collapse
|
26
|
Lingabathula H, Yellu N. Cytotoxicity, oxidative stress, and inflammation in human Hep G2 liver epithelial cells following exposure to gold nanorods. Toxicol Mech Methods 2016; 26:340-7. [DOI: 10.3109/15376516.2016.1164268] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Hydrogels made from chitosan and silver nitrate. Carbohydr Polym 2016; 140:74-87. [DOI: 10.1016/j.carbpol.2015.12.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/26/2015] [Accepted: 12/07/2015] [Indexed: 11/24/2022]
|
28
|
Memic A, Alhadrami HA, Hussain MA, Aldhahri M, Al Nowaiser F, Al-Hazmi F, Oklu R, Khademhosseini A. Hydrogels 2.0: improved properties with nanomaterial composites for biomedical applications. ACTA ACUST UNITED AC 2015; 11:014104. [PMID: 26694229 DOI: 10.1088/1748-6041/11/1/014104] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The incorporation of nanomaterials in hydrogels (hydrated networks of crosslinked polymers) has emerged as a useful method for generating biomaterials with tailored functionality. With the available engineering approaches it is becoming much easier to fabricate nanocomposite hydrogels that display improved performance across an array of electrical, mechanical, and biological properties. In this review, we discuss the fundamental aspects of these materials as well as recent developments that have enabled their application. Specifically, we highlight synthesis and fabrication, and the choice of nanomaterials for multifunctionality as ways to overcome current material property limitations. In addition, we review the use of nanocomposite hydrogels within the framework of biomedical and pharmaceutical disciplines.
Collapse
Affiliation(s)
- Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia. Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Clinicians and investigators have been implanting biomedical devices into patients and experimental animals for centuries. There is a characteristic complex inflammatory response to the presence of the biomedical device with diverse cell signaling, followed by migration of fibroblasts to the implant surface and the eventual walling off of the implant in a collagen capsule. If the device is to interact with the surrounding tissues, the collagen envelope will eventually incapacitate the device or myofibroblasts can cause capsular contracture with resulting distortion, migration, or firmness. This review analyzes the various tactics used in the past to modify or control capsule formation with suggestions for future investigative approaches.
Collapse
|
30
|
Hauser AW, Evans AA, Na JH, Hayward RC. Photothermally Reprogrammable Buckling of Nanocomposite Gel Sheets. Angew Chem Int Ed Engl 2015; 54:5434-7. [DOI: 10.1002/anie.201412160] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/18/2015] [Indexed: 01/20/2023]
|
31
|
Hauser AW, Evans AA, Na JH, Hayward RC. Photothermally Reprogrammable Buckling of Nanocomposite Gel Sheets. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201412160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
Shi X, Jietang, Wang A. Development of a superporous hydroxyethyl cellulose-based hydrogel by anionic surfactant micelle templating with fast swelling and superabsorbent properties. J Appl Polym Sci 2015. [DOI: 10.1002/app.42027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoning Shi
- Department of Applied Chemistry; Gansu University of Traditional Chinese Medicine; Lanzhou 730000 China
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou 730000 China
| | - Jietang
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou 730000 China
| | - Aiqin Wang
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou 730000 China
| |
Collapse
|
33
|
Thoniyot P, Tan MJ, Karim AA, Young DJ, Loh XJ. Nanoparticle-Hydrogel Composites: Concept, Design, and Applications of These Promising, Multi-Functional Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2015; 2:1400010. [PMID: 27980900 PMCID: PMC5115280 DOI: 10.1002/advs.201400010] [Citation(s) in RCA: 433] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Indexed: 05/19/2023]
Abstract
New technologies rely on the development of new materials, and these may simply be the innovative combination of known components. The structural combination of a polymer hydrogel network with a nanoparticle (metals, non-metals, metal oxides, and polymeric moieties) holds the promise of providing superior functionality to the composite material with applications in diverse fields, including catalysis, electronics, bio-sensing, drug delivery, nano-medicine, and environmental remediation. This mixing may result in a synergistic property enhancement of each component: for example, the mechanical strength of the hydrogel and concomitantly decrease aggregation of the nanoparticles. These mutual benefits and the associated potential applications have seen a surge of interest in the past decade from multi-disciplinary research groups. Recent advances in nanoparticle-hydrogel composites are herein reviewed with a focus on their synthesis, design, potential applications, and the inherent challenges accompanying these exciting materials.
Collapse
Affiliation(s)
- Praveen Thoniyot
- Institute of Materials Research and Engineering 3 Research Link Singapore 117602 Singapore
| | - Mein Jin Tan
- Institute of Materials Research and Engineering 3 Research Link Singapore 117602 Singapore
| | - Anis Abdul Karim
- Institute of Materials Research and Engineering 3 Research Link Singapore 117602 Singapore
| | - David James Young
- Institute of Materials Research and Engineering 3 Research Link Singapore 117602 Singapore; School of Science Monash University Malaysia Bandar Sunway 47500 Malaysia
| | - Xian Jun Loh
- Institute of Materials Research and Engineering 3 Research Link Singapore 117602 Singapore; Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 Singapore 117576 Singapore
| |
Collapse
|
34
|
Veiga AS, Schneider JP. Antimicrobial hydrogels for the treatment of infection. Biopolymers 2013; 100:637-44. [PMID: 24122459 PMCID: PMC3929057 DOI: 10.1002/bip.22412] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/10/2013] [Accepted: 09/16/2013] [Indexed: 12/15/2022]
Abstract
The increasing prevalence of microbial infections, especially those associated with impaired wound healing and biomedical implant failure has spurred the development of new materials having antimicrobial activity. Hydrogels are a class of highly hydrated material finding use in diverse medical applications such as drug delivery, tissue engineering, as wound fillers, and as implant coatings, to name a few. The biocompatible nature of many gels make them a convenient starting platform to develop selectively active antimicrobial materials. Hydrogels with antimicrobial properties can be obtained through the encapsulation or covalent immobilization of known antimicrobial agents, or the material itself can be designed to possess inherent antimicrobial activity. In this review we present an overview of antimicrobial hydrogels that have recently been developed and when possible provide a discussion relevant to their mechanism of action.
Collapse
Affiliation(s)
- Ana Salomé Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Joel P. Schneider
- Chemical Biology Lab, National Cancer Institute, Frederick, MD, 21702
| |
Collapse
|
35
|
Jovanović Ž, Radosavljević A, Kačarević-Popović Z, Stojkovska J, Perić-Grujić A, Ristić M, Matić IZ, Juranić ZD, Obradovic B, Mišković-Stanković V. Bioreactor validation and biocompatibility of Ag/poly(N-vinyl-2-pyrrolidone) hydrogel nanocomposites. Colloids Surf B Biointerfaces 2013; 105:230-5. [DOI: 10.1016/j.colsurfb.2012.12.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/28/2012] [Accepted: 12/31/2012] [Indexed: 11/28/2022]
|
36
|
Dolya N, Rojas O, Kosmella S, Tiersch B, Koetz J, Kudaibergenov S. “One-Pot” In Situ Formation of Gold Nanoparticles within Poly(acrylamide) Hydrogels. MACROMOL CHEM PHYS 2013. [DOI: 10.1002/macp.201200727] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Voicu G, Grumezescu V, Andronescu E, Grumezescu AM, Ficai A, Ficai D, Ghitulica CD, Gheorghe I, Chifiriuc MC. Caprolactam-silica network, a strong potentiator of the antimicrobial activity of kanamycin against Gram-positive and Gram-negative bacterial strains. Int J Pharm 2013; 446:63-9. [DOI: 10.1016/j.ijpharm.2013.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/31/2013] [Accepted: 02/01/2013] [Indexed: 11/24/2022]
|
38
|
Wang W, Wang F, Kang Y, Wang A. Facile self-assembly of Au nanoparticles on a magnetic attapulgite/Fe3O4 composite for fast catalytic decoloration of dye. RSC Adv 2013. [DOI: 10.1039/c3ra41836g] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
39
|
Kojic N, Pritchard EM, Tao H, Brenckle MA, Mondia JP, Panilaitis B, Omenetto F, Kaplan DL. Focal Infection Treatment using Laser-Mediated Heating of Injectable Silk Hydrogels with Gold Nanoparticles. ADVANCED FUNCTIONAL MATERIALS 2012; 22:3793-3798. [PMID: 24015118 PMCID: PMC3760432 DOI: 10.1002/adfm.201200382] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Medical treatment of subcutaneous bacterial abscesses usually involves systemic high-dose antibiotics and incision-drainage of the wound. Such an approach suffers from two main deficiencies: bacterial resistance to antibiotics and pain associated with multiple incision-drainage-wound packing procedures. Furthermore, the efficacy of high-dose systemic antibiotics is limited because of the inability to penetrate into the abscess. To address these obstacles, we present a treatment relying on laser-induced heating of gold nanoparticles embedded in an injectable silk-protein hydrogel. Although bactericidal nanoparticle systems have been previously employed based on silver and nitric oxide, they have limitations regarding customization and safety. The method we propose is safe and uses biocompatible, highly tunable materials: an injectable silk hydrogel and Au nanoparticles, which are effective absorbers at low laser powers such as those provided by hand held devices. We demonstrate that a single 10-minute laser treatment of a subcutaneous infection in mice preserves the general tissue architecture, while achieving a bactericidal effect - even resulting in complete eradication in some cases. The unique materials platform presented here can provide the basis for an alternative treatment of focal infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fiorenzo Omenetto
- Corresponding authors: Fiorenzo Omenetto, David L. Kaplan, Tufts University, Department of Biomedical Engineering, 4 Colby St., Medford, Massachusetts 02155 U.S.A. Tel: 617-627-3251, Fax: 617-627-3231, ,
| | - David L. Kaplan
- Corresponding authors: Fiorenzo Omenetto, David L. Kaplan, Tufts University, Department of Biomedical Engineering, 4 Colby St., Medford, Massachusetts 02155 U.S.A. Tel: 617-627-3251, Fax: 617-627-3231, ,
| |
Collapse
|
40
|
Jia J, Yu JC, Zhu XM, Chan KM, Wang YXJ. Ultra-fast method to synthesize mesoporous magnetite nanoclusters as highly sensitive magnetic resonance probe. J Colloid Interface Sci 2012; 379:1-7. [PMID: 22608848 DOI: 10.1016/j.jcis.2012.04.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 03/22/2012] [Accepted: 04/14/2012] [Indexed: 11/26/2022]
Abstract
An ultra-fast method to synthesize mesoporous magnetite (Fe(3)O(4)) nanoclusters is reported. These mesoporous magnetite can be used as a highly sensitive magnetic resonance imaging (MRI) probe. The nanoclusters were synthesized by reducing iron (III) acetylacetonate with hydrazine in ethylene glycol under microwave irradiation and only 5 min was needed in the synthesis. The diameter of the nanoclusters could be controlled effectively between 75 nm and 115 nm by increasing the amount of iron (III) acetylacetonate. Brunauer-Emmett-Teller (BET) results reveal a mesoporous structure and a large surface area of 72.3 m(2) g(-1). Cytotoxicity test performed in HepG2 cell line indicated that the as-prepared nanoclusters were non-cytotoxic. The nanoclusters exhibited an enhanced T(2) relaxivity value of 417.4±29.9 s(-1) mM(-1). In vitro and in vivo MRI confirmed the high sensitivity of the magnetite nanoclusters as MRI probe. The biodistribution of the nanoclusters in rat liver and spleen after intravenous injection was also investigated.
Collapse
Affiliation(s)
- Juncai Jia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | |
Collapse
|
41
|
Ranga Reddy P, Varaprasad K, Narayana Reddy N, Mohana Raju K, Reddy NS. Fabrication of Au and Ag Bi-metallic nanocomposite for antimicrobial applications. J Appl Polym Sci 2012. [DOI: 10.1002/app.35192] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|