1
|
Javadi P, Derakhshan MA, Heidari R, Ashrafi H, Azarpira N, Shahbazi MA, Azadi A. A thermoresponsive chitosan-based in situ gel formulation incorporated with 5-FU loaded nanoerythrosomes for fibrosarcoma local chemotherapy. Int J Biol Macromol 2024; 278:134781. [PMID: 39151860 DOI: 10.1016/j.ijbiomac.2024.134781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Local administration of drugs at tumor sites over an extended period of time shows potential as a promising approach for cancer treatment. In the present study, the temperature-induced phase transition of chitosan and poloxamer 407 is used to construct an injectable hydrogel encapsulating 5-FU-loaded nanoerythrosome (5-FU-NER-gel). The 5-FU-NERs were found to be spherical, measuring approximately 115 ± 20 nm in diameter and having a surface potential of -7.06 ± 0.4. The drug loading efficiency was approximately 40 %. In situ gel formation took place within 15 s when the gel was exposed to body temperature or subcutaneous injection. A sustained release profile was observed at pH 7.4 and 6.8, with a total 5-FU release of 76.57 ± 4.4 and 98.07 ± 6.31 in 24 h, respectively. MTT, Live/dead, and migration assays confirmed the cytocompatibility of the drug carrier and its effectiveness as a chemotherapeutic formulation. After in vivo antitumor assessment in a subcutaneous autograft model, it was demonstrated that tumor growth inhibition in 14 days was 90 %. Therefore, the obtained injectable chitosan-based hydrogel containing 5-FU-loaded nanoerythrosomes illustrated promising potential as a candidate for local and enhanced delivery of chemotherapeutics at the tumor site.
Collapse
Affiliation(s)
- Parisa Javadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Derakhshan
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Ashrafi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Azadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Huang Z, Li M, Qin Z, Ma X, Huang R, Liu Y, Xie J, Zeng H, Zhan R, Su Z. Intestines-erythrocytes-mediated bio-disposition deciphers the hypolipidemic effect of berberine from Rhizoma Coptidis: A neglected insight. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116600. [PMID: 37196811 DOI: 10.1016/j.jep.2023.116600] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhizoma Coptidis (RC), the dried rhizome of Coptis Chinensis Franch., can dispel dampness and heat within the body and has been traditionally used for the treatment of cardiovascular disease (CVD)-associated problems including hyperlipidemia in China. Berberine (BBR) is the main active component of RC, which has been shown to possess significant therapeutic potential. However, only 0.14% of BBR is metabolized in the liver, and the extremely low bioavailability (<1%) and blood concentration of BBR in experimental and clinical settings is insufficient to achieve the effects as observed under in vitro conditions, which imposes challenges to explain its excellent pharmacological actions. Intense efforts are currently being devoted to defining its specific pharmacological molecular targets, while the exploration from the perspective of its pharmacokinetic disposition has rarely been reported to date, which could hardly make a comprehensive understanding of its hypolipidemic enigma. AIM OF THE STUDY This study made a pioneering endeavor to unveil the hypolipidemic mechanism of BBR from RC focusing on its unique intestines-erythrocytes-mediated bio-disposition. MATERIALS AND METHODS The fate of BBR in intestines and erythrocytes was probed by a rapid and sensitive LC/MS-IT-TOF method. To analyze the disposition of BBR, a reliable HPLC method was subsequently developed and validated for simultaneous determination of BBR and its key active metabolite oxyberberine (OBB) in whole blood, tissues, and excreta. Meanwhile, the enterohepatic circulation (BDC) of BBR and OBB was verified by bile duct catheterization rats. Finally, lipid overloading models of L02 and HepG2 cells were employed to probe the lipid-lowering activity of BBR and OBB at in vivo concentration. RESULTS The results showed that BBR underwent biotransformation in both intestines and erythrocytes, and converted into the major metabolite oxyberberine (OBB). The AUC0-t ratio of total BBR to OBB was approximately 2:1 after oral administration. Besides, the AUC0-t ratio of bound BBR to its unbound counterpart was 4.6:1, and this ratio of OBB was 2.5:1, indicative of abundant binding-type form in the blood. Liver dominated over other organs in tissue distribution. BBR was excreted in bile, while the excretion of OBB in feces was significantly higher than that in bile. Furthermore, the bimodal phenomenon of both BBR and OBB disappeared in BDC rats and the AUC0-t was significantly lower than that in the sham-operated control rats. Interestingly, OBB significantly decreased triglycerides and cholesterol levels in lipid overloading models of L02 and HepG2 cells at in vivo-like concentration, which was superior to the prodrug BBR. CONCLUSIONS Cumulatively, BBR underwent unique extrahepatic metabolism and disposition into OBB by virtue of intestines and erythrocytes. BBR and OBB were mainly presented and transported in the protein-bound form within the circulating erythrocytes, potentially resulting in hepatocyte targeting accompanied by obvious enterohepatic circulation. The unique extrahepatic disposition of BBR via intestines and erythrocytes conceivably contributed enormously to its hypolipidemic effect. OBB was the important material basis for the hypolipidemic effect of BBR and RC.
Collapse
Affiliation(s)
- Ziwei Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China
| | - Minhua Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China
| | - Zehui Qin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China
| | - Xingdong Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China
| | - Ronglei Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China
| | - Jianhui Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510120, PR China
| | - Huifang Zeng
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China.
| | - Ruoting Zhan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China.
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China.
| |
Collapse
|
3
|
Guguloth S, Jampanapalli SR, Patloth T, Suhasini K, Ingua HC, Shaik H. Evaluation of Chitosan and Ferric Sulphate as Pulpotomy Agents in Primary Teeth: A Randomized Controlled Trial. Int J Clin Pediatr Dent 2023; 16:223-226. [PMID: 37519981 PMCID: PMC10373769 DOI: 10.5005/jp-journals-10005-2514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Introduction Preservation of healthy pulp tissue is detrimental for the function and vitality of carious primary teeth. Several hemostatic agents used for pulpotomy in primary teeth showed adverse effects on viable surrounding structures. Aims To assess the clinical and radiographic success of chitosan (CH) pulpotomy in primary molars and to compare it with ferric sulphate (FS). Materials and methods A total of 40 carious lower primary second molars in 5-9 years children are selected for conventional pulpotomy technique. Over radicular stumps, FS is placed for 15 seconds in the control group, and CH for 4-5 minutes in the study group, followed by intermediate restoration (IRM). Intraoral periapical radiographs were taken immediately after 1 week and after 3rd and 6th months. The clinical and radiographic success rate is assessed and statistically analyzed. Results Chitosan (CH) showed a 65% radiographical and 100% clinical success rate, and FS showed 55 and 95%, respectively. Conclusion Chitosan (CH) showed better results than FS as a pulpotomy agent in primary teeth. How to cite this article Guguloth S, Jamnapalli SR, Patloth T, et al. Evaluation of Chitosan and Ferric Sulphate as Pulpotomy Agents in Primary Teeth: A Randomized Controlled Trial. Int J Clin Pediatr Dent 2023;16(2):223-226.
Collapse
Affiliation(s)
- Shirisha Guguloth
- Department of Pedodontics, Government Dental College and Hospital, Hyderabad, Telangana, India
| | | | - Tarasingh Patloth
- Department of Pedodontics, Government Dental College and Hospital, Hyderabad, Telangana, India
| | - Konda Suhasini
- Department of Pedodontics, Government Dental College and Hospital, Hyderabad, Telangana, India
| | - Hema Chandrika Ingua
- Department of Pedodontics, Government Dental College and Hospital, Hyderabad, Telangana, India
| | - Hasanuddin Shaik
- Department of Pedodontics, Government Dental College and Hospital, Hyderabad, Telangana, India
| |
Collapse
|
4
|
dos Santos MCF, dos Santos Cavalcante LP, de Andrade KF, da Silva AF, de Araújo Ferreira Muniz I, de Lima JM, Aguiar RT, Tavares JF, Castellano LRC, da Silva SD, Bonan PRF. Chitosan sponges and polycaprolactone nanoparticles carrying tranexamic acid as hemostatic agent: Synthesis, characterization and bioapplication. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Maria Carolina Fernandes dos Santos
- Laboratory for Cell Culture and Analysis Federal University of Paraiba, Health Sciences Center—Campus I, Technical School of Health João Pessoa Paraíba Brazil
| | - Luiza Peixoto dos Santos Cavalcante
- Laboratory for Cell Culture and Analysis Federal University of Paraiba, Health Sciences Center—Campus I, Technical School of Health João Pessoa Paraíba Brazil
| | - Karlivânia Ferreira de Andrade
- Laboratory for Cell Culture and Analysis Federal University of Paraiba, Health Sciences Center—Campus I, Technical School of Health João Pessoa Paraíba Brazil
| | - Alan Frazão da Silva
- Laboratory for Cell Culture and Analysis Federal University of Paraiba, Health Sciences Center—Campus I, Technical School of Health João Pessoa Paraíba Brazil
| | | | - Jefferson Muniz de Lima
- Post Graduate Program in Dentistry Federal University of Pernambuco, Health Sciences Center Recife Prince Edward Island Brazil
| | - Rebeca Tibau Aguiar
- Integrated Laboratory of Biomaterials Federal University of Paraíba, Health Sciences Center João Pessoa Paraíba Brazil
| | - Josean Fechine Tavares
- Laboratory of Pharmaceutical Technology Federal University of Paraíba João Pessoa Paraíba Brazil
| | - Lúcio Roberto Cançado Castellano
- Laboratory for Cell Culture and Analysis Federal University of Paraiba, Health Sciences Center—Campus I, Technical School of Health João Pessoa Paraíba Brazil
| | | | - Paulo Rogério Ferreti Bonan
- Department of Clinical and Social Dentistry Federal University of Paraíba, Health Sciences Center João Pessoa Paraíba Brazil
| |
Collapse
|
5
|
Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. Cytotoxicity Enhancement in MCF-7 Breast Cancer Cells with Depolymerized Chitosan Delivery of α-Mangostin. Polymers (Basel) 2022; 14:polym14153139. [PMID: 35956654 PMCID: PMC9371181 DOI: 10.3390/polym14153139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
The application of α-mangostin (AMG) in breast cancer research has wide intentions. Chitosan-based nanoparticles (CSNPs) have attractive prospects for developing anticancer drugs, especially in their high flexibility for modification to enhance their anticancer action. This research aimed to study the impact of depolymerized chitosan (CS) on the cytotoxicity enhancement of AMG in MCF-7 breast cancer cells. CSNPs effectivity depends on size, shape, crystallinity degree, and charge surface. Modifying CS molecular weight (MW) is expected to influence CSNPs’ characteristics, impacting size, shape, crystallinity degree, and charge surface. CSNPs are developed using the method of ionic gelation with sodium tripolyphosphate (TPP) as a crosslinker and spray pyrolysis procedure. Nanoparticles’ (NPs) sizes vary from 205.3 ± 81 nm to 450.9 ± 235 nm, ZP charges range from +10.56 mV to +51.56 mV, and entrapment efficiency from 85.35% to 90.45%. The morphology of NPs are all the same spherical forms. In vitro release studies confirmed that AMG–Chitosan–High Molecular Weight (AMG–CS–HMW) and AMG–Chitosan–Low Molecular Weight (AMG–CS–LMW) had a sustained-release system profile. MW has a great influence on surface, drug release, and cytotoxicity enhancement of AMG in CSNPs to MCF-7 cancer cells. The preparations AMG–CS–HMW and AMG–CS–LMW NPs considerably enhanced the cytotoxicity of MCF-7 cells with IC50 values of 5.90 ± 0.08 µg/mL and 4.90 ± 0.16 µg/mL, respectively, as compared with the non-nano particle formulation with an IC50 of 8.47 ± 0.29 µg/mL. These findings suggest that CSNPs can enhance the physicochemical characteristics and cytotoxicity of AMG in breast cancer treatment.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Correspondence: (Y.H.); (M.M.)
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
- Nanobiotech Research Initiative, Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia
- USM-RIKEN Interdisciplinary Collaboration on Advanced Sciences (URICAS), Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Correspondence: (Y.H.); (M.M.)
| |
Collapse
|
6
|
Sheffey VV, Siew EB, Tanner EEL, Eniola‐Adefeso O. PLGA's Plight and the Role of Stealth Surface Modification Strategies in Its Use for Intravenous Particulate Drug Delivery. Adv Healthc Mater 2022; 11:e2101536. [PMID: 35032406 PMCID: PMC9035064 DOI: 10.1002/adhm.202101536] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/31/2021] [Indexed: 12/17/2022]
Abstract
Numerous human disorders can benefit from targeted, intravenous (IV) drug delivery. Polymeric nanoparticles have been designed to undergo systemic circulation and deliver their therapeutic cargo to target sites in a controlled manner. Poly(lactic-co-glycolic) acid (PLGA) is a particularly promising biomaterial for designing intravenous drug carriers due to its biocompatibility, biodegradability, and history of clinical success across other routes of administration. Despite these merits, PLGA remains markedly absent in clinically approved IV drug delivery formulations. A prominent factor in PLGA particles' inability to succeed intravenously may lie in the hydrophobic character of the polyester, leading to the adsorption of serum proteins (i.e., opsonization) and a cascade of events that end in their premature clearance from the bloodstream. PEGylation, or surface-attached polyethylene glycol chains, is a common strategy for shielding particles from opsonization. Polyethylene glycol (PEG) continues to be regarded as the ultimate "stealth" solution despite the lack of clinical progress of PEGylated PLGA carriers. This review reflects on some of the reasons for the clinical failure of PLGA, particularly the drawbacks of PEGylation, and highlights alternative surface coatings on PLGA particles. Ultimately, a new approach will be needed to harness the potential of PLGA nanoparticles and allow their widespread clinical adoption.
Collapse
Affiliation(s)
- Violet V. Sheffey
- Macromolecular Science and Engineering Program University of Michigan Ann Arbor NCRC Building 28, 2800 Plymouth Rd. Ann Arbor MI 48109 USA
| | - Emily B. Siew
- Department of Chemical Engineering University of Michigan Ann Arbor NCRC 28, 2800 Plymouth Rd. Ann Arbor MI 48109 USA
| | - Eden E. L. Tanner
- Department of Chemistry and Biochemistry University of Mississippi 179 Coulter Hall University MS 38677 USA
| | - Omolola Eniola‐Adefeso
- Macromolecular Science and Engineering Program University of Michigan Ann Arbor NCRC Building 28, 2800 Plymouth Rd. Ann Arbor MI 48109 USA
- Department of Chemical Engineering University of Michigan Ann Arbor NCRC 28, 2800 Plymouth Rd. Ann Arbor MI 48109 USA
| |
Collapse
|
7
|
Yu Q, Li M, Chen H, Xu L, Cheng J, Lin G, Liu Y, Su Z, Yang X, Li Y, Chen J, Xie J. The discovery of berberine erythrocyte-hemoglobin self-assembly delivery system: a neglected carrier underlying its pharmacokinetics. Drug Deliv 2022; 29:856-870. [PMID: 35277093 PMCID: PMC8920379 DOI: 10.1080/10717544.2022.2036870] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Berberine (BBR) has extremely low concentration and high tissue distribution. However, current pharmacokinetic studies predominantly focus on its concentration in plasma, which could hardly make a comprehensive understanding of its pharmacokinetic process. This study made a pioneering endeavor to explore the erythrocyte-hemoglobin (Hb) self-assembly system of BBR by exploring the interaction of BBR with erythrocyte and the combination of BBR with Hb. Results showed that BBR had a low bioavailability (C0 = 2.833 μg/mL via intravenous administration of 2.5 mg/kg BBR and Cmax = 0.260 μg/mL via oral administration of 400 mg/kg BBR). Besides, BBR achieved higher concentrations in erythrocytes than plasma, and the erythrocytes count and Hb content were significantly decreased after intravenous administration. Hemolysis rate indicated the BBR-erythrocyte system (with 2% erythrocytes) was relatively stable without hemolysis at the concentration of 1.00 mg/mL. And the maximum percentage of drug loading was 100% when the BBR-erythrocyte concentration was 0.185 μg/mL. Furthermore, incubation of BBR and erythrocytes resulted in internalization of the erythrocyte membrane and the formation of intracellular vacuoles. The thermodynamic parameters indicated that the binding process of bovine hemoglobin (BHB) and BBR was spontaneous. UV-vis absorption spectra, synchronous fluorescence, circular dichroism and Raman spectra collectively indicated that BBR showed strong binding affinity toward BHB and affected the molecular environment of residues like tryptophan and tyrosine in BHB, resulting in the conformational changes of its secondary and tertiary structure. Molecular docking indicated BBR interacted with Arg-141 residue of BHB via hydrogen bond with the bond length of 2.55 Å. The ΔG value of the BHB-BBR system was −31.79 kJ/mol. Molecular dynamics simulation indicated the root mean square derivation of BBR-BHB was <0.025 nm, suggestive of stable conformation. Cumulatively, there was an erythrocyte-Hb self-assembled drug delivery system after oral or intravenous administration of BBR, which conceivably gained novel insight into the discrepancy between the extremely low plasma concentration and relatively high tissue concentration of BBR.
Collapse
Affiliation(s)
- Qiuxia Yu
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, China
| | - Minhua Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanbin Chen
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lieqiang Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Juanjuan Cheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoshu Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobo Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianhui Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| |
Collapse
|
8
|
Ding Y, Lv B, Zheng J, Lu C, Liu J, Lei Y, Yang M, Wang Y, Li Z, Yang Y, Gong W, Han J, Gao C. RBC-hitchhiking chitosan nanoparticles loading methylprednisolone for lung-targeting delivery. J Control Release 2021; 341:702-715. [PMID: 34933051 PMCID: PMC8684098 DOI: 10.1016/j.jconrel.2021.12.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/24/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
Hyper-inflammation associated with cytokine storm syndrome causes high mortality in patients with COVID-19. Glucocorticoids, such as methylprednisolone sodium succinate (MPSS), effectively inhibit this inflammatory response. However, frequent and chronic administration of glucocorticoids at high doses leads to hormone dependence and serious side effects. The aim of the present study was to combine nanoparticles with erythrocytes for the targeted delivery of MPSS to the lungs. Chitosan nanoparticles loading MPSS (MPSS-CSNPs) were prepared and adsorbed on the surface of red blood cells (RBC-MPSS-CSNPs) by non-covalent interaction. In vivo pharmacokinetic study indicated that RBC-hitchhiking could significantly reduce the plasma concentration of the drug and prolong the circulation time. The mean residence time (MRT) and area under the curve (AUC) of the RBC-MPSS-CSNPs group were significantly higher than those of the MPSS-CSNPs group and the MPSS injection group. Moreover, in vivo imaging and tissue distribution indicated that RBC-hitchhiking facilitated the accumulation of nanoparticles loading fluorescein in the lung, preventing uptake of these nanoparticles by the liver. Furthermore, compared with the MPSS-CSNPs and MPSS treatment groups, treatment with RBC-MPSS-CSNPs considerably inhibited the production of inflammatory cytokines such as TNF-α and IL-6, and consequently attenuated lung injury induced by lipopolysaccharide in rats. Therefore, RBC-hitchhiking is a potentially effective strategy for the delivery of nanoparticles to the lungs for the treatment of acute lung injury and acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Yaning Ding
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110017, China; State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Bai Lv
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Jinpeng Zheng
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Caihong Lu
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Jingzhou Liu
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yaran Lei
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110017, China; State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Meiyan Yang
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yuli Wang
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zhiping Li
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yang Yang
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Wei Gong
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Jing Han
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Chunsheng Gao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110017, China; State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
9
|
Ponce M, Zuasti E, Reales E, Anguís V, Fernández-Díaz C. Evaluation of an oral DNA nanovaccine against photobacteriosis in Solea senegalensis. FISH & SHELLFISH IMMUNOLOGY 2021; 117:157-168. [PMID: 34358703 DOI: 10.1016/j.fsi.2021.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/19/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Infectious diseases are one of the main causes of social and economical losses in world aquaculture. Senegalese sole (Solea senegalensis) is an important species for aquaculture in southern Europe, whose production is affected by the appearance of bacterial diseases such as photobacteriosis, a septicemia caused by Photobacterium damselae subsp. piscicida (Phdp). The aim of this study was to obtain an oral DNA nanovaccine and to evaluate its efficacy against Phdp in S. senegalensis juveniles. For this purpose, the amplified product corresponding to the protein inosine-5'-monophophate dehydrogenase (IMPDH) from Phdp, was cloned into the expression vector pcDNA™6.2/C-EmGFP-GW obtaining the DNA vaccine named as pPDPimpdh. The correct transcription and protein expression was verified at 48 h post tansfection in HEK293 cells. Chitosan nanoparticles (CS-TPP NPs) were prepared by ionotropic gelation and their features were appropriate for use as oral delivery system. Therefore, pPDPimpdh was protected with chitosan CS-TPP NPs throughout complex coacervation method giving as a result a DNA nanovaccine referred as CS-TPP+pPDPimpdh NPs. Sole juveniles were vaccinated orally with CS-TPP NPs, pPDPimpdh and CS-TPP+pPDPimpdh NPs followed by a challenge with Phdp at 30 days post vaccination (dpv). The relative percentage survival (RPS) for pPDPimpdh vaccinated groups was 6.25%, probably due to its degradation in the digestive tract. RPS value obtained for CS-TPP NPs and CS-TPP+pPDPimpdh NPs was 40% and antibodies were observed in both cases. However, a delay in mortality was observed in sole juveniles vaccinated orally with CS-TPP+pPDPimpdh NPs. In fact, an upregulation of tf, mhcII, cd8a and igm in the posterior gut and c3, hamp1, tf and cd4 in spleen was observed in juveniles vaccinated with CS-TPP+pPDPimpdh NPs. After challenge, a modulation of cd8a and cd4 expression levels in the posterior gut and c3, tf, lyg, cd4, igm and igt expression levels in spleen was observed. Moreover, the concentration of lysozyme in skin mucus significantly increased in fish vaccinated orally with CS-TPP+pPDPimpdh NPs at 11 dpc. These data indicate that oral vaccination with CS-TPP+pPDPimpdh NPs could be acting through the non-specific immune responses as well as the specific humoral and cell mediated immunity and provide the first step toward a development of an oral DNA nanovaccine against Phdp in sole.
Collapse
Affiliation(s)
- Marian Ponce
- IFAPA Centro El Toruño. Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.
| | - Eugenia Zuasti
- IFAPA Centro El Toruño. Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain
| | - Elena Reales
- Department of Organic Chemistry, School of Sciences, University of Cadiz, and Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cádiz, Spain
| | - Victoria Anguís
- IFAPA Centro El Toruño. Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain
| | - Catalina Fernández-Díaz
- IFAPA Centro El Toruño. Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.
| |
Collapse
|
10
|
Wang C, Huang J, Zhang Y, Jia H, Chen B. Construction and evaluation of red blood cells-based drug delivery system for chemo-photothermal therapy. Colloids Surf B Biointerfaces 2021; 204:111789. [PMID: 33932889 DOI: 10.1016/j.colsurfb.2021.111789] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
In this study, a novel tumor-targeting drug delivery system (DDS) based on red blood cells (RBCs) were fabricated for combinational chemo-phototherapy against cancer. Cyclic peptide (cRGD) and indocyanine green (ICG) were applied to the surface of RBCs to increase the targeting and photothermal effect, respectively. Doxorubicin (DOX) as a model drug was loaded into RBCs by the hypotonic dialysis method. A series of tests have been carried out to evaluate the RBCs-based DDS and these tasks include physicochemical properties, cellular uptake, targeting ability, and combination therapeutic efficiency. As a result, the DOX was successfully loaded into RBCs and the drug loading amount was 0.84 ± 0.09 mg/mL. There was no significant change of particle size after surface modification of RBCs. The RBCs-based DDS could target to the surface of cancer cells, which delivery DOX to the lesions efficiently and accurately. Meanwhile, due to the combined treatment effect, the RBCs-based DDS can effectively inhibit tumor growth. The RBCs-based DDS constructed in this research may have promising applications in cancer therapy due to their highly synergistic efficient therapy and to investigate its possibility for tumor therapy.
Collapse
Affiliation(s)
- Chen Wang
- School of Pharmacy, Xiamen Medical College, Xiamen, 361023, PR China; Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, 361023, PR China.
| | - Jingru Huang
- School of Pharmacy, Xiamen Medical College, Xiamen, 361023, PR China
| | - Yan Zhang
- Department of Pharmaceutics, School of Pharmacy, Harbin University of Commerce, 150076, PR China
| | - Hongxin Jia
- Department of Pharmaceutics, School of Pharmacy, Harbin University of Commerce, 150076, PR China
| | - Binbin Chen
- Department of Pharmacy, Xiamen Xianyue Hospital, Xiamen, 361012, PR China
| |
Collapse
|
11
|
Chen HB, Luo CD, Ai GX, Wang YF, Li CL, Tan LH, Lee SMY, Cheung AKK, Su ZR, Wu XL, Xie JH, Zeng HF. A comparative investigation of the interaction and pharmacokinetics of hemoglobin with berberine and its oxymetabolite. J Pharm Biomed Anal 2021; 199:114032. [PMID: 33774454 DOI: 10.1016/j.jpba.2021.114032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Berberine (BBR), isolated from Coptis chinensis, is one type of isoquinoline alkaloids. BBR exerts numerous of bioactivities but the plasma concentration is really low. In our previous study, a new oxymetabolite (OBB) has been discovered and showed superior anti-inflammatory effect comparing with BBR. The aim of this study is to investigate the interaction, metabolite and pharmacokinetics of BBR with hemoglobin. Sprague-Dawley rats were used to carry out the interaction, metabolite and pharmacokinetics of BBR and OBB in vivo. Fluorescence spectra were used to analyse the interaction in vitro. Results showed that OBB could be generated after intravenous injection or incubating with BBR in vitro and in vivo; Both BBR and OBB exerted much stronger binding interaction with hemoglobin than plasma and affect the conformation of bovine hemoglobin and change the fluorescence spectral properties; BBR and OBB were mainly presented and transported in the proteins-bound form. These results provide a new insight to understand the dynamic equilibrium of BBR and OBB within body from the perspective of new metabolic pathways.
Collapse
Affiliation(s)
- Han-Bin Chen
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China; Muscle Physiology Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Chao-Dan Luo
- Guangxi Institute of Subtropical Agricultural Products Processing, Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530001, People's Republic of China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Gao-Xiang Ai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Yong-Fu Wang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China
| | - Cai-Lan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, People's Republic of China
| | - Li-Hua Tan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Alex Kwok-Kuen Cheung
- Muscle Physiology Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Zi-Ren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Xiao-Li Wu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Jian-Hui Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510120, People's Republic of China.
| | - Hui-Fang Zeng
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.
| |
Collapse
|
12
|
Deshkar S, Sikchi S, Thakre A, Kale R. Poloxamer Modified Chitosan Nanoparticles for Vaginal Delivery of Acyclovir. Pharm Nanotechnol 2021; 9:141-156. [PMID: 33423655 DOI: 10.2174/2211738508666210108121541] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/12/2020] [Accepted: 11/26/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of the present study was to design a surface modified chitosan nanoparticle system for vaginal delivery of acyclovir for effective drug uptake into vaginal mucosa. METHODS Acyclovir-loaded chitosan nanoparticles, with and without modification by poloxamer 407, were prepared by ionic gelation method. The effects of two independent variables, chitosan to sodium tripolyphosphate mass ratio (X1) and acyclovir concentration (X2), on drug entrapment in nanoparticles were studied using 32 full factorial design. The surface response and counterplots were drawn to facilitate an understanding of the contribution of the variables and their interaction. The nanoparticles were evaluated for drug entrapment, size with zeta potential, morphological analysis by TEM, solid-state characterization by FTIR, DSC, XRD, in vitro dissolution, in vitro cell uptake using HeLa cell line and in vivo vaginal irritation test in Wistar rats. RESULTS Chitosan nanoparticle formulation with chitosan to sodium tripolyphosphate mass ratio of 2:1 and acyclovir concentration of 2 mg/mL resulted in the highest entrapment efficiency. The resulting nanoparticles revealed spherical morphology with a particle size of 191.2 nm. The surface modification of nanoparticles with poloxamer resulted in higher drug entrapment (74.3±1.5%), higher particle size (391.1 nm) as a result of dense surface coating, lower zeta potential and sustained drug release compared to unmodified nanoparticles. The change in the crystallinity of the drug during nanoparticle formulation was observed in DSC and XRD study. Cellular uptake of poloxamer-modified chitosan nanoparticles was found to be higher than chitosan nanoparticles in HeLa cells. Safety of nanoparticle formulations by vaginal route was evident when tested in female rats. CONCLUSION Conclusively, poloxamer-modified CH NP could serve as a promising and safe delivery system with enhanced cellular drug uptake.
Collapse
Affiliation(s)
- Sanjeevani Deshkar
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, Maharashtra, India
| | - Sumit Sikchi
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, Maharashtra, India
| | - Anjali Thakre
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, Maharashtra, India
| | - Rupali Kale
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, Maharashtra, India
| |
Collapse
|
13
|
Pan L, Yuan Z, Farouk MH, Qin G, Bao N. Isolation and analysation of soybean agglutinin-specific binding proteins for erythrocyte membrane in different animal species. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2020.1869600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Li Pan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zhijie Yuan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Mohammed Hamdy Farouk
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Guixin Qin
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Nan Bao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
14
|
de Sousa Victor R, Marcelo da Cunha Santos A, Viana de Sousa B, de Araújo Neves G, Navarro de Lima Santana L, Rodrigues Menezes R. A Review on Chitosan's Uses as Biomaterial: Tissue Engineering, Drug Delivery Systems and Cancer Treatment. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4995. [PMID: 33171898 PMCID: PMC7664280 DOI: 10.3390/ma13214995] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
Chitosan, derived from chitin, is a biopolymer consisting of arbitrarily distributed β-(1-4)-linked D-glucosamine and N-acetyl-D-glucosamine that exhibits outstanding properties- biocompatibility, biodegradability, non-toxicity, antibacterial activity, the capacity to form films, and chelating of metal ions. Most of these peculiar properties are attributed to the presence of free protonable amino groups along the chitosan backbone, which also gives it solubility in acidic conditions. Moreover, this biopolymer can also be physically modified, thereby presenting a variety of forms to be developed. Consequently, this polysaccharide is used in various fields, such as tissue engineering, drug delivery systems, and cancer treatment. In this sense, this review aims to gather the state-of-the-art concerning this polysaccharide when used as a biomaterial, providing information about its characteristics, chemical modifications, and applications. We present the most relevant and new information about this polysaccharide-based biomaterial's applications in distinct fields and also the ability of chitosan and its various derivatives to selectively permeate through the cancer cell membranes and exhibit anticancer activity, and the possibility of adding several therapeutic metal ions as a strategy to improve the therapeutic potential of this polymer.
Collapse
Affiliation(s)
- Rayssa de Sousa Victor
- Graduate Program in Materials Science and Engineering, Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, Brazil
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| | - Adillys Marcelo da Cunha Santos
- Center for Science and Technology in Energy and Sustainability (CETENS), Federal University of Recôncavo da Bahia (UFRB), Feira de Santana 44042-280, Brazil;
| | - Bianca Viana de Sousa
- Department of Chemical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil;
| | - Gelmires de Araújo Neves
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| | - Lisiane Navarro de Lima Santana
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| | - Romualdo Rodrigues Menezes
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| |
Collapse
|
15
|
Caprifico AE, Polycarpou E, Foot PJS, Calabrese G. Biomedical and Pharmacological Uses of Fluorescein Isothiocyanate Chitosan-Based Nanocarriers. Macromol Biosci 2020; 21:e2000312. [PMID: 33016007 DOI: 10.1002/mabi.202000312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/26/2022]
Abstract
Chitosan-based nanocarriers (ChNCs) are considered suitable drug carriers due to their ability to encapsulate a variety of drugs and cross biological barriers to deliver the cargo to their target site. Fluorescein isothiocyanate-labeled chitosan-based NCs (FITC@ChNCs) are used extensively in biomedical and pharmacological applications. The main advantage of using FITC@ChNCs consists of the ability to track their fate both intra and extracellularly. This journey is strictly dependent on the physico-chemical properties of the carrier and the cell types under investigation. Other applications make use of fluorescent ChNCs in cell labeling for the detection of disorders in vivo and controlling of living cells in situ. This review describes the use of FITC@ChNCs in the various applications with a focus on understanding their usefulness in labeled drug-delivery systems.
Collapse
Affiliation(s)
- Anna E Caprifico
- A. E. Caprifico, Dr. E. Polycarpou, Prof. P. J. S. Foot, Dr. G. Calabrese, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Elena Polycarpou
- A. E. Caprifico, Dr. E. Polycarpou, Prof. P. J. S. Foot, Dr. G. Calabrese, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Peter J S Foot
- A. E. Caprifico, Dr. E. Polycarpou, Prof. P. J. S. Foot, Dr. G. Calabrese, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Gianpiero Calabrese
- A. E. Caprifico, Dr. E. Polycarpou, Prof. P. J. S. Foot, Dr. G. Calabrese, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| |
Collapse
|
16
|
Fractional order model for thermochemical flow of blood with Dufour and Soret effects under magnetic and vibration environment. Colloids Surf B Biointerfaces 2020; 197:111395. [PMID: 33045544 DOI: 10.1016/j.colsurfb.2020.111395] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/20/2020] [Accepted: 09/30/2020] [Indexed: 01/25/2023]
Abstract
We examine the effect of the Caputo-Fabrizio derivative of fractional-order model on the flow of blood in a porous tube having thermochemical properties under the magnetic and vibration mode. Blood is considered as the biviscosity non-Newtonian fluid having thermal radiation and chemical reaction properties to observe its impact on energy flux and mass flux gradients. We provided analytical solution via the Laplace, finite Hankel transform, and the corresponding inverse techniques. The study shows that blood velocity and temperature both decrease in ascending values of the fractional-order parameter as memory effect. The permeability of blood flow medium resists to drive the fluid fast. The chemical reaction causes an increase in wall shear stress. Dufour effect influences to rise in the Nusselt number. Thus the study may help to explore further information about the fractional-order model, adsorption of nutrients and their strong correlation with the surface chemistry and applied them in pathology.
Collapse
|
17
|
Rondon EP, Benabdoun HA, Vallières F, Segalla Petrônio M, Tiera MJ, Benderdour M, Fernandes JC. Evidence Supporting the Safety of Pegylated Diethylaminoethyl-Chitosan Polymer as a Nanovector for Gene Therapy Applications. Int J Nanomedicine 2020; 15:6183-6200. [PMID: 32922001 PMCID: PMC7450204 DOI: 10.2147/ijn.s252397] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/04/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Diethylaminoethyl-chitosan (DEAE-CH) is a derivative with excellent potential as a delivery vector for gene therapy applications. The aim of this study is to evaluate its toxicological profile for potential future clinical applications. METHODS An endotoxin-free chitosan (CH) modified with DEAE, folic acid (FA) and polyethylene glycol (PEG) was used to complex small interfering RNA (siRNA) and form nanoparticles (DEAE12-CH-PEG-FA2/siRNA). Based on the guidelines from the International Organization for Standardization (ISO), the American Society for Testing and Materials (ASTM), and the Nanotechnology Characterization Laboratory (NCL), we evaluated the effects of the interaction between these nanoparticles and blood components. In vitro screening assays such as hemolysis, hemagglutination, complement activation, platelet aggregation, coagulation times, cytokine production, and reactive species, such as nitric oxide (NO) and reactive oxygen species (ROS), were performed on erythrocytes, plasma, platelets, peripheral blood mononuclear cells (PBMC) and Raw 264.7 macrophages. Moreover, MTS and LDH assays on Raw 264.7 macrophages, PBMC and MG-63 cells were performed. RESULTS Our results show that a targeted theoretical plasma concentration (TPC) of DEAE12-CH-PEG-FA2/siRNA nanoparticles falls within the guidelines' thresholds: <1% hemolysis, 2.9% platelet aggregation, no complement activation, and no effect on coagulation times. ROS and NO production levels were comparable to controls. Cytokine secretion (TNF-α, IL-6, IL-4, and IL-10) was not affected by nanoparticles except for IL-1β and IL-8. Nanoparticles showed a slight agglutination. Cell viability was >70% for TPC in all cell types, although LDH levels were statistically significant in Raw 264.7 macrophages and PBMC after 24 and 48 h of incubation. CONCLUSION These DEAE12-CH-PEG-FA2/siRNA nanoparticles fulfill the existing ISO, ASTM and NCL guidelines' threshold criteria, and their low toxicity and blood biocompatibility warrant further investigation for potential clinical applications.
Collapse
Affiliation(s)
- Elsa Patricia Rondon
- Orthopedic Research Laboratory, Hôpital Du Sacré-Cœur De Montréal, Université De Montréal, Montréal, Québec, Canada
| | - Houda Abir Benabdoun
- Orthopedic Research Laboratory, Hôpital Du Sacré-Cœur De Montréal, Université De Montréal, Montréal, Québec, Canada
| | - Francis Vallières
- Orthopedic Research Laboratory, Hôpital Du Sacré-Cœur De Montréal, Université De Montréal, Montréal, Québec, Canada
| | - Maicon Segalla Petrônio
- Institute of Biosciences, Humanities and Exact Sciences, Department of Chemistry and Environmental Sciences, UNESP-São Paulo State University, São José Do Rio Preto, São Paulo State, Brazil
| | - Marcio José Tiera
- Institute of Biosciences, Humanities and Exact Sciences, Department of Chemistry and Environmental Sciences, UNESP-São Paulo State University, São José Do Rio Preto, São Paulo State, Brazil
| | - Mohamed Benderdour
- Orthopedic Research Laboratory, Hôpital Du Sacré-Cœur De Montréal, Université De Montréal, Montréal, Québec, Canada
| | - Julio Cesar Fernandes
- Orthopedic Research Laboratory, Hôpital Du Sacré-Cœur De Montréal, Université De Montréal, Montréal, Québec, Canada
| |
Collapse
|
18
|
Sabourian P, Ji J, Lotocki V, Moquin A, Hanna R, Frounchi M, Maysinger D, Kakkar A. Facile design of autogenous stimuli-responsive chitosan/hyaluronic acid nanoparticles for efficient small molecules to protein delivery. J Mater Chem B 2020; 8:7275-7287. [DOI: 10.1039/d0tb00772b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chitosan is functionalized with oxidative stress-sensitive thioketal entities in a one-pot methodology, and self-assembled into drugs or protein loaded dual stimuli responsive nanoparticles, which kill glioblastoma cells and increase nerve outgrowth.
Collapse
Affiliation(s)
- Parinaz Sabourian
- Department of Chemistry
- McGill University
- Montréal
- Canada
- Department of Chemical and Petroleum Engineering
| | - Jeff Ji
- Department of Pharmacology and Therapeutics
- McGill University
- Montréal
- Canada
| | | | - Alexandre Moquin
- Department of Chemistry
- McGill University
- Montréal
- Canada
- Department of Pharmacology and Therapeutics
| | - Ramez Hanna
- Department of Chemistry
- McGill University
- Montréal
- Canada
| | - Masoud Frounchi
- Department of Chemical and Petroleum Engineering
- Sharif University of Technology
- Tehran
- Iran
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics
- McGill University
- Montréal
- Canada
| | - Ashok Kakkar
- Department of Chemistry
- McGill University
- Montréal
- Canada
| |
Collapse
|
19
|
Karimidost S, Moniri E, Miralinaghi M. Thermodynamic and kinetic studies sorption of 5-fluorouracil onto single walled carbon nanotubes modified by chitosan. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0292-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
20
|
Intracellular Delivery: An Overview. TARGETED INTRACELLULAR DRUG DELIVERY BY RECEPTOR MEDIATED ENDOCYTOSIS 2019. [DOI: 10.1007/978-3-030-29168-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Influence of pravastatin chitosan nanoparticles on erythrocytes cholesterol and redox homeostasis: An in vitro study. ARAB J CHEM 2018. [DOI: 10.1016/j.arabjc.2015.10.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
22
|
Preparation, characterization and in vitro release of β-galactosidase loaded polyelectrolyte nanoparticles. Int J Biol Macromol 2018; 115:1-9. [PMID: 29649531 DOI: 10.1016/j.ijbiomac.2018.04.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 01/07/2023]
Abstract
Improving encapsulation efficacy (EE) and bioavailability of β-galactosidase (β-gal) is always a challenge due to its fragility. In this work, β-gal loaded β-chitosan (CS) nanoparticles (NPs) were successfully prepared based on ionic gelation technique and electrostatic attraction for improving its EE and in vitro releasing capacity. The particle size of β-gal loaded low and high molecular weight (LMW and HMW) β-CS NPs reached 584.37 and 652.46nm, with Zeta-potential (ZP) of 26.37 and 16.46mV under the optimal conditions, respectively. In vitro release study conducted at pH4.5 and 7.4 showed that β-gal loaded LMW and HMW β-CS NPs with EE of 68.32 and 58.64% sustained the release of the β-gal over 12h. The β-gal incorporated into β-CS NPs was confirmed with the results of physicochemical and structural properties of β-gal loaded β-CS NPs, and prepared NPs had hardly any cytotoxicity in the range of 0.1-1.0mg/mL. The results indicated that β-gal loaded β-CS NPs could serve as non-toxic delivery carriers for the treatment of lactose intolerance.
Collapse
|
23
|
Pan M, Tang Z, Tu J, Wang Z, Chen Q, Xiao R, Liu H. Porous chitosan microspheres containing zinc ion for enhanced thrombosis and hemostasis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 85:27-36. [PMID: 29407154 DOI: 10.1016/j.msec.2017.12.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/19/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022]
Abstract
Quick hemostats for non-lethal massive traumatic bleeding in battlefield and civilian accidents are important for reducing mortality and medical costs. Chitosan (CS) has been widely used as a clinic hemostat. To enhance its hemostatic efficiency, Zn2+ in the form of zinc alginate (ZnAlg) was introduced to CS to make porous CS@ZnAlg microspheres with ZnAlg component on the surface. Such microspheres were prepared by successive steps of micro-emulsion, polyelectrolyte adhesion, and thermally induced phase separation. Their structure and hemostatic performance were analyzed by SEM, FT-IR, XPS and a series of in vitro hemostatic experiments including thromboelastography analysis. The composite microspheres had an outer and internal interconnected porous structure. Their size, surface area, and water absorption ratio were ca. 70μm, 48m2/g, and 1850%, respectively. Compared to the neat chitosan microspheres, the CS@ZnAlg microspheres showed shorter onset of clot formation, much faster in vitro and in vivo whole blood clotting, bigger clot, less blood loss, and shorter hemostatic time in the rat liver laceration and tail amputation models. The synergetic hemostatic effects from (1) the electrostatic attraction between chitosan component and red blood cells, (2) the activation of coagulation factor XII by Zn2+ of zinc alginate component, and (3) physical blocking by microsphere matrix, contributed to the enhanced hemostatic performance of CS@ZnAlg microspheres.
Collapse
Affiliation(s)
- Meng Pan
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fujian 350007, China
| | - Zonghao Tang
- College of Life Science, Fujian Normal University, Fujian 350007, China
| | - Jianbing Tu
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fujian 350007, China
| | - Zhengchao Wang
- College of Life Science, Fujian Normal University, Fujian 350007, China.
| | - Qinhui Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fujian 350007, China
| | - Rongdong Xiao
- Department of Cardiovascular Surgery, Provincial Clinical College of Fujian Medical University, Fujian 350001, China.
| | - Haiqing Liu
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fujian 350007, China.
| |
Collapse
|
24
|
Shahriari MH, Atai M, Zandi M, Shokrollahi P, Solhi L. Preparation and characterization of eugenol-loaded oligochitosan nanoparticles through sol–gel and emulsion/sol–gel methods. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2196-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Simulation of the osmosis-based drug encapsulation in erythrocytes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 47:261-270. [DOI: 10.1007/s00249-017-1255-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/01/2017] [Accepted: 09/11/2017] [Indexed: 12/11/2022]
|
26
|
Park S, Choi D, Jeong H, Heo J, Hong J. Drug Loading and Release Behavior Depending on the Induced Porosity of Chitosan/Cellulose Multilayer Nanofilms. Mol Pharm 2017; 14:3322-3330. [DOI: 10.1021/acs.molpharmaceut.7b00371] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sohyeon Park
- School of Chemical Engineering
and Material Science, Chung-Ang University, 84 Heukseok-ro,
Dongjak-gu, Seoul 06974, Republic of Korea
| | - Daheui Choi
- School of Chemical Engineering
and Material Science, Chung-Ang University, 84 Heukseok-ro,
Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hyejoong Jeong
- School of Chemical Engineering
and Material Science, Chung-Ang University, 84 Heukseok-ro,
Dongjak-gu, Seoul 06974, Republic of Korea
| | - Jiwoong Heo
- School of Chemical Engineering
and Material Science, Chung-Ang University, 84 Heukseok-ro,
Dongjak-gu, Seoul 06974, Republic of Korea
| | - Jinkee Hong
- School of Chemical Engineering
and Material Science, Chung-Ang University, 84 Heukseok-ro,
Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
27
|
Fernández-Díaz C, Coste O, Malta EJ. Polymer chitosan nanoparticles functionalized with Ulva ohnoi extracts boost in vitro ulvan immunostimulant effect in Solea senegalensis macrophages. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
28
|
Zhang H, Jung J, Zhao Y. Preparation and characterization of cellulose nanocrystals films incorporated with essential oil loaded β-chitosan beads. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.01.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Ahmad M, Manzoor K, Singh S, Ikram S. Chitosan centered bionanocomposites for medical specialty and curative applications: A review. Int J Pharm 2017; 529:200-217. [DOI: 10.1016/j.ijpharm.2017.06.079] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/22/2017] [Accepted: 06/24/2017] [Indexed: 01/01/2023]
|
30
|
Almada M, Leal-Martínez BH, Hassan N, Kogan MJ, Burboa MG, Topete A, Valdez MA, Juárez J. Photothermal conversion efficiency and cytotoxic effect of gold nanorods stabilized with chitosan, alginate and poly(vinyl alcohol). MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:583-593. [PMID: 28532069 DOI: 10.1016/j.msec.2017.03.218] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/02/2017] [Accepted: 03/23/2017] [Indexed: 10/19/2022]
Abstract
Gold nanorods (GNR) use has been proposed in medical applications because of their intrinsic photothermal properties. However, the presence of CTAB molecules adsorbed onto the surface of GNRs results in a highly cytotoxic GNR system. In this work we replace the CTAB molecules with a thiolated chitosan. Once chitosan coated GNRs (Chi-SH-GNR) were attained, a film of alginate (Alg-Chi-SH-GNR) or polyvinyl alcohol (PVA-Chi-SH-GNR) was deposited onto the surface of Chi-GNR by a layer-by-layer process. The photothermal conversion efficiency for the GNR systems was determined irradiating the GNRs suspended in aqua media with a CW 808nm diode laser (CNI, China). The cytotoxicity effect and the photothermal cellular damage of GNR systems were evaluated on a breast cancer cell line. Results show that polymer coats did not affect the transduction photothermal efficiency. Values around 50% were obtained for the different coated gold nanorods. The cytotoxicity of coated gold nanorods diminished significantly compared with those GNR stabilized with CTAB. The laser irradiation of cells treated with gold nanorods showed a decrease in their viability compared with the cells treated but no irradiated.
Collapse
Affiliation(s)
- M Almada
- Departamento de Física, Universidad de Sonora, Hermosillo, Sonora 83000, Mexico
| | - B H Leal-Martínez
- Departamento de Física, Universidad de Sonora, Hermosillo, Sonora 83000, Mexico
| | - N Hassan
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana (UTEM), Chile
| | - M J Kogan
- Laboratorio de Nanobiotecnología, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile; Advanced Center for Chronic Diseases (ACCDiS), Chile
| | - M G Burboa
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Rosales y Transversal, 83000 Hermosillo, Sonora, Mexico
| | - A Topete
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, 44340 Guadalajara, Jalisco, Mexico
| | - M A Valdez
- Departamento de Física, Universidad de Sonora, Hermosillo, Sonora 83000, Mexico
| | - J Juárez
- Departamento de Física, Universidad de Sonora, Hermosillo, Sonora 83000, Mexico.
| |
Collapse
|
31
|
Safwat S, Ishak RA, Hathout RM, Mortada ND. Statins anticancer targeted delivery systems: re-purposing an old molecule. ACTA ACUST UNITED AC 2017; 69:613-624. [PMID: 28271498 DOI: 10.1111/jphp.12707] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/12/2017] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Exploring the use of statins as anticancer agents and exploiting different drug delivery systems in targeting these molecules to cancerous sites. Literature review was performed to investigate the use of statins in cancer treatment in one hand, and the different pharmaceutical approaches to deliver and target these drugs to their site of action. KEY FINDINGS Statins were used for decades as antihypercholestrolemic drugs but recently have been proven potential for broad anticancer activities. The incorporation of statins in nanoparticulate drug delivery systems not only augmented the cytotoxicity of statins but also overcame the resistance of cancerous cells against the traditional chemotherapeutic agents. Statins-loaded nanoparticles could be easily tampered to target the cancerous cells and consequently minimal drug amount could be utilized. SUMMARY This review reconnoitered the different endeavors to incorporate statins in various nanoparticles and summarized the successful effects in targeting cancerous cells and reducing their proliferation without the side effects of commonly used chemotherapeutic agents.
Collapse
Affiliation(s)
- Sally Safwat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Rania A Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Nahed D Mortada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
32
|
Lee YC, Kang IJ. Optimal Fabrication Conditions of Chitosan−Fe3O4-Gold Nanoshells as an Anticancer Drug Delivery Carriers. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yong-Choon Lee
- Department of Chemical & BioEngineering; Gachon University; Gyunggi-do 461-701 Korea
| | - Ik-Joong Kang
- Department of Chemical & BioEngineering; Gachon University; Gyunggi-do 461-701 Korea
| |
Collapse
|
33
|
Facile fabrication of poly(acrylic acid) coated chitosan nanoparticles with improved stability in biological environments. Eur J Pharm Biopharm 2016; 112:148-154. [PMID: 27890571 DOI: 10.1016/j.ejpb.2016.11.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 11/17/2016] [Accepted: 11/20/2016] [Indexed: 11/23/2022]
Abstract
Chitosan is one of the most important and commonly used natural polysaccharides in drug delivery for its biocompatible and biodegradable properties. However, poor blood circulation of the chitosan nanoparticles due to their cationic nature is one of the major bottlenecks of chitosan-based drug delivery systems. To address this problem, a versatile platform based on poly(acrylic acid) (PAA) coated ionically cross-linked chitosan/tripolyphosphate nanoparticles (CTS/TPP-PAA NPs), is reported. The zeta potentials of CTS/TPP and CTS/TPP-PAA NPs are approximately 33mV and -25mV, respectively. CTS/TPP NPs quickly aggregate in PBS (phosphate buffered saline) and DMEM (Dulbecco's modified Eagle's medium). Conversely, CTS/TPP-PAA NPs exhibit excellent colloidal stability in plasma solution for more than 24h. The PAA coating also endows CTS/TPP-PAA NPs with decreased protein adsorption capacity and improved buffering capacity. More importantly, the residual carboxyl and amino groups on CTS/TPP-PAA NPs provide abundant reactive sites for further functional modifications. Therefore, the CTS/TPP-PAA NPs reported here may be useful as an alternative drug delivery system.
Collapse
|
34
|
Bor G, Üçüncü M, Emrullahoğlu M, Tomak A, Şanlı-Mohamed G. BODIPY-conjugated chitosan nanoparticles as a fluorescent probe. Drug Chem Toxicol 2016; 40:375-382. [PMID: 27866417 DOI: 10.1080/01480545.2016.1238481] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Recently, development of fluorescent nanoparticle-based probes for various bioimaging applications has attracted great attention. This work aims to develop a new type fluorescent nanoparticle conjugate and evaluate its cytotoxic effects on A549 and BEAS 2B cell lines. Throughout the study, ionically crosslinked chitosan nanoparticles (CNs) were conjugated with carboxylated 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY-COOH). The results of conjugates (BODIPY-CNs) were investigated with regard to their physic-chemical, optical, cytotoxic properties and cellular internalization. The morphology of BODIPY-CNs was found to be spherical in shape and quite uniform having average diameter of 70.25 ± 11.99 nm. Cytotoxicty studies indicated that although BODIPY-COOH itself was quite toxic on both A549- and BEAS 2B-treated cells, CNs increased the cell viability of both cell lines via conjugation to BODIPY-COOH fluorescent molecule up to 67% for A549 and 74% for BEAS 2B cells. These results may suggest a possible utilization of the new fluorescent nanoparticle-based probe for bioimaging in biology and medicine.
Collapse
Affiliation(s)
- Gizem Bor
- a Biotechnology and Bioengineering Department
| | | | | | - Aysel Tomak
- c Materials Science and Engineering Department, Izmir Institute of Technology , Izmir , Turkey
| | | |
Collapse
|
35
|
Chen C, Yu Y, Wang X, Shi P, Wang Y, Wang P. Manipulation of pH-Sensitive interactions between podophyllotoxin-chitosan for enhanced controlled drug release. Int J Biol Macromol 2016; 95:451-461. [PMID: 27867056 DOI: 10.1016/j.ijbiomac.2016.11.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/04/2016] [Accepted: 11/12/2016] [Indexed: 01/17/2023]
Abstract
Podophyllotoxin (PPT) offers a broad-spectrum of anticancer activities, but little has been reported for its controlled release. This work shows that by manipulating molecular interactions between PPT and Chitosan, efficient nanoscale capsulation of PPT can be realized. The drug encapsulation efficiency is as high as 52%, with a final particle drug loading in the order of 10% (wt/wt). It further demonstrates that changes in pH can also significantly affect the rate of drug release from the Chitosan nanoparticles. Upon contact with cancer cells, chitosan nanoparticles enable efficient internalization and drug release. In vitro evaluations with HepG-2 and MCF-7 cells indicate that the chitosan nanoparticle carriers can improve drug efficacy in comparison to free PPT, most likely by regulating the intrinsic apoptotic signaling pathway to induce apoptosis. Overall, PPT chitosan nanoparticles promise a safe and efficient drug delivery system for PPT.
Collapse
Affiliation(s)
- Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Yong Yu
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Xiaoli Wang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Yibing Wang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| | - Ping Wang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China; Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
36
|
Bukara K, Drvenica I, Ilić V, Stančić A, Mišić D, Vasić B, Gajić R, Vučetić D, Kiekens F, Bugarski B. Comparative studies on osmosis based encapsulation of sodium diclofenac in porcine and outdated human erythrocyte ghosts. J Biotechnol 2016; 240:14-22. [PMID: 27773756 DOI: 10.1016/j.jbiotec.2016.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 10/16/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
The objective of our study was to develop controlled drug delivery system based on erythrocyte ghosts for amphiphilic compound sodium diclofenac considering the differences between erythrocytes derived from two readily available materials - porcine slaughterhouse and outdated transfusion human blood. Starting erythrocytes, empty erythrocyte ghosts and diclofenac loaded ghosts were compared in terms of the encapsulation efficiency, drug releasing profiles, size distribution, surface charge, conductivity, surface roughness and morphology. The encapsulation of sodium diclofenac was performed by an osmosis based process - gradual hemolysis. During this process sodium diclofenac exerted mild and delayed antihemolytic effect and increased potassium efflux in porcine but not in outdated human erythrocytes. FTIR spectra revealed lack of any membrane lipid disorder and chemical reaction with sodium diclofenac in encapsulated ghosts. Outdated human erythrocyte ghosts with detected nanoscale damages and reduced ability to shrink had encapsulation efficiency of only 8%. On the other hand, porcine erythrocyte ghosts had encapsulation efficiency of 37% and relatively slow drug release rate. More preserved structure and functional properties of porcine erythrocytes related to their superior encapsulation and release performances, define them as more appropriate for the usage in sodium diclofenac encapsulation process.
Collapse
Affiliation(s)
- Katarina Bukara
- Department Pharmaceutics, Campus Drie Eiken, University of Antwerp, Antwerp, Belgium; Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia.
| | - Ivana Drvenica
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Vesna Ilić
- Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Ana Stančić
- Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Danijela Mišić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Borislav Vasić
- Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Zemun, Belgrade, Serbia
| | - Radoš Gajić
- Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Zemun, Belgrade, Serbia
| | - Dušan Vučetić
- Institute for Tranfusiology and Haemobiology of Military Medical Academy, Belgrade, Serbia
| | - Filip Kiekens
- Department Pharmaceutics, Campus Drie Eiken, University of Antwerp, Antwerp, Belgium
| | - Branko Bugarski
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
37
|
Harisa GI, Attia SM, Zoheir KMA, Alanazi FK. Chitosan treatment abrogates hypercholesterolemia-induced erythrocyte's arginase activation. Saudi Pharm J 2016; 25:120-127. [PMID: 28223872 PMCID: PMC5310152 DOI: 10.1016/j.jsps.2016.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/19/2016] [Indexed: 12/16/2022] Open
Abstract
This study aimed to evaluate the protective effect of chitosan (CS) against hypercholesterolemia (HC) induced arginase activation and disruption of nitric oxide (NO) biosynthesis using erythrocytes as cellular model. Human erythrocytes were isolated and classified into eight groups. Next, cells were treated with l-arginine (l-ARG), Nω-nitro-l-arginine methyl ester (l-NAME), CS or CS + l-ARG in the presence of normal plasma or cholesterol enriches plasma. Then, erythrocytes were incubated at 37 °C for 24 h. The present results revealed that, HC induced significant increase of cholesterol inclusion into erythrocytes membrane compared to control. Moreover, HC caused significant decrease in nitric oxide synthase (NOS) activity similar to l-NAME; however, arginase activity and arginase/NOS ratio significantly increased compared to control. On contrast, treatment of HC with, l-arginine, CS or CS plus l-arginine prevents HC induced cholesterol loading into erythrocytes membrane, NOS inhibition and arginase activation. This study suggested that CS could be protective agent against HC induced disruption of erythrocyte’s oxidative status and arginase activation.
Collapse
Affiliation(s)
- Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Departments of Biochemistry, Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University (Boys), Nasr City, Cairo, Egypt
| | - Sabry M Attia
- Departments of Biochemistry, Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University (Boys), Nasr City, Cairo, Egypt; Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khairy M A Zoheir
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Cell Biology, National Research Centre, Cairo 12622, Egypt
| | - Fars K Alanazi
- Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
38
|
Preparation, characterization and evaluation of antibacterial activity of catechins and catechins–Zn complex loaded β-chitosan nanoparticles of different particle sizes. Carbohydr Polym 2016; 137:82-91. [DOI: 10.1016/j.carbpol.2015.10.036] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/28/2015] [Accepted: 10/10/2015] [Indexed: 12/18/2022]
|
39
|
The efficient hemostatic effect of Antarctic krill chitosan is related to its hydration property. Carbohydr Polym 2015; 132:295-303. [DOI: 10.1016/j.carbpol.2015.06.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/26/2015] [Accepted: 06/02/2015] [Indexed: 01/28/2023]
|
40
|
Deák R, Mihály J, Szigyártó IC, Wacha A, Lelkes G, Bóta A. Physicochemical characterization of artificial nanoerythrosomes derived from erythrocyte ghost membranes. Colloids Surf B Biointerfaces 2015; 135:225-234. [PMID: 26255166 DOI: 10.1016/j.colsurfb.2015.07.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/16/2015] [Accepted: 07/23/2015] [Indexed: 10/23/2022]
Abstract
Colloidal stabile nanoerythrosomes with 200 nm average diameter were formed from hemoglobin-free erythrocyte ghost membrane via sonication and membrane extrusion. The incorporation of extra lipid (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC), added to the sonicated ghosts, caused significant changes in the thermotropic character of the original membranes. As a result of the increased DPPC ratio the chain melting of the hydrated DPPC system and the characteristic small angle X-ray scattering (SAXS) of the lipid bilayers appeared. Significant morphological changes were followed by transmission electron microscopy combined with freeze fracture method (FF-TEM). After the ultrasonic treatment the large entities of erythrocyte ghosts transformed into nearly spherical nanoerythrosomes with diameters between 100 and 300 nm and at the same time a great number of 10-30 nm large membrane proteins or protein clusters were dispersed in the aqueous medium. The infrared spectroscopy (FT-IR) pointed out, that the sonication did not cause changes in the secondary structures of the membrane proteins under our preparation conditions. About fivefold of extra lipid--compared to the lipid content of the original membrane--caused homogeneous dispersion of nanoerythrosomes however the shape of the vesicles was not uniform. After the addition of about tenfold of DPPC, monoform and monodisperse nanoerythrosomes became typical. The outer surfaces of these roughly spherical objects were frequently polygonal, consisting of a net of pentagons and hexagons.
Collapse
Affiliation(s)
- Róbert Deák
- Research Group of Biological Nanochemistry, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Magyar tudósok körútja 2, Hungary
| | - Judith Mihály
- Research Group of Biological Nanochemistry, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Magyar tudósok körútja 2, Hungary
| | - Imola Cs Szigyártó
- Research Group of Biological Nanochemistry, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Magyar tudósok körútja 2, Hungary
| | - András Wacha
- Research Group of Biological Nanochemistry, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Magyar tudósok körútja 2, Hungary
| | - Gábor Lelkes
- Central Laboratory of the National Institute of Rheumatology and Physiotherapy, 1023 Budapest, Frankel Leó u. 25-29, Hungary
| | - Attila Bóta
- Research Group of Biological Nanochemistry, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Magyar tudósok körútja 2, Hungary.
| |
Collapse
|
41
|
Zhang H, Zhao Y. Preparation, characterization and evaluation of tea polyphenol–Zn complex loaded β-chitosan nanoparticles. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2015.02.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
42
|
Harisa GI, Badran MM, AlQahtani SA, Alanazi FK, Attia SM. Pravastatin chitosan nanogels-loaded erythrocytes as a new delivery strategy for targeting liver cancer. Saudi Pharm J 2015; 24:74-81. [PMID: 26903771 PMCID: PMC4720020 DOI: 10.1016/j.jsps.2015.03.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/16/2015] [Indexed: 01/07/2023] Open
Abstract
Chitosan nanogels (CNG) are developed as one of the most promising carriers for cancer targeting. However, these carriers are rapidly eliminated from circulation by reticuloendothelial system (RES), which limits their application. Therefore, erythrocytes (ER) loaded CNG as multifunctional carrier may overcome the massive elimination of nanocarriers by RES. In this study, erythrocytes loaded pravastatin-chitosan nanogels (PR-CNG-ER) were utilized as a novel drug carrier to target liver cancer. Thus, PR-CNG formula was developed in nanosize, with good entrapment efficiency, drug loading and sustained release over 48 h. Then, PR-CNG loaded into ER were prepared by hypotonic preswelling technique. The resulting PR-CNG-ER showed 36.85% of entrapment efficiency, 66.82% of cell recovery and release consistent to that of hemoglobin over 48 h. Moreover, PR-CNG-ER exhibited negative zeta potential, increasing of hemolysis percent, marked phosphatidylserine exposure and stomatocytes shape compared to control unloaded erythrocytes. PR-CNG-ER reduced cells viability of HepG2 cells line by 28% compared to unloaded erythrocytes (UER). These results concluded that PR-CNG-ER are promising drug carriers to target liver cancer.
Collapse
Affiliation(s)
- Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; Department of Biochemistry, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohamed M Badran
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; Department of Pharmaceutics, College of Pharmacy, Al-Azhar University Cairo, Egypt
| | - Saeed A AlQahtani
- Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Fars K Alanazi
- Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
43
|
Tripathy S, Chattopadhyay S, Dash SK, Ray Chowdhuri A, Das S, Sahu SK, Majumdar S, Roy S. Chitosan conjugated chloroquine: Proficient to protect the induction of liver apoptosis during malaria. Int J Biol Macromol 2015; 74:585-600. [DOI: 10.1016/j.ijbiomac.2014.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 11/23/2014] [Accepted: 12/02/2014] [Indexed: 12/20/2022]
|
44
|
Evaluation of hemagglutination activity of chitosan nanoparticles using human erythrocytes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:247965. [PMID: 25759815 PMCID: PMC4339715 DOI: 10.1155/2015/247965] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 11/17/2022]
Abstract
Chitosan is a polysaccharide composed of randomly distributed chains of β-(1-4) D-glucosamine and N-acetyl-D-glucosamine. This compound is obtained by partial or total deacetylation of chitin in acidic solution. The chitosan-based hemostatic agents have been gaining much attention in the management of bleeding. The aim of this study was to evaluate in vitro hemagglutination activity of chitosan nanoparticles using human erythrocytes. The preparation of nanoparticles was achieved by ionotropic gelification technique followed by neutralization with NaOH 1 mol/L(-1). The hemagglutination activity was performed on a solution of 2% erythrocytes (pH 7.4 on PBS) collected from five healthy volunteers. The hemolysis determination was made by spectrophotometric analysis. Chitosan nanoparticle solutions without NaOH addition changed the reddish colour of the wells into brown, suggesting an oxidative reaction of hemoglobin and possible cell lysis. All neutralized solutions of chitosan nanoparticles presented positive haemagglutination, without any change in reaction color. Chitosan nanoparticles presented hemolytic activity ranging from 186.20 to 223.12%, while neutralized solutions ranged from 2.56 to 72.54%, comparing to distilled water. Results highlight the need for development of new routes of synthesis of chitosan nanoparticles within human physiologic pH.
Collapse
|
45
|
Huang Y, Cai Y, Lapitsky Y. Factors affecting the stability of chitosan/tripolyphosphate micro- and nanogels: resolving the opposing findings. J Mater Chem B 2015; 3:5957-5970. [DOI: 10.1039/c5tb00431d] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stability of submicron chitosan/tripolyphosphate particles depends on the chitosan type, pH, ionic strength and particle concentration.
Collapse
Affiliation(s)
- Yan Huang
- Department of Chemical and Environmental Engineering
- University of Toledo
- Toledo
- USA
| | - Yuhang Cai
- Department of Chemical and Environmental Engineering
- University of Toledo
- Toledo
- USA
| | - Yakov Lapitsky
- Department of Chemical and Environmental Engineering
- University of Toledo
- Toledo
- USA
- School of Green Chemistry and Engineering
| |
Collapse
|
46
|
Kostić IT, Ilić VL, Đorđević VB, Bukara KM, Mojsilović SB, Nedović VA, Bugarski DS, Veljović ĐN, Mišić DM, Bugarski BM. Erythrocyte membranes from slaughterhouse blood as potential drug vehicles: Isolation by gradual hypotonic hemolysis and biochemical and morphological characterization. Colloids Surf B Biointerfaces 2014; 122:250-259. [DOI: 10.1016/j.colsurfb.2014.06.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/17/2014] [Accepted: 06/22/2014] [Indexed: 11/30/2022]
|
47
|
Fan B, Xing Y, Zheng Y, Sun C, Liang G. pH-responsive thiolated chitosan nanoparticles for oral low-molecular weight heparin delivery: in vitro and in vivo evaluation. Drug Deliv 2014; 23:238-47. [PMID: 24865290 DOI: 10.3109/10717544.2014.909908] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of present study was to investigate a pH-responsive and mucoadhesive nanoparticle system for oral bioavailability enhancement of low-molecular weight heparin (LMWH). The thioglycolic acid (TGA) was first covalently attached to chitosan (CS) with 396.97 ± 54.54 μmol thiol groups per gram of polymer and then the nanoparticles were prepared with thiolated chitosan (TCS) and pH-sensitive polymer hydroxypropyl methylcellulose phthalate (HPMCP) by ionic cross-linking method. The obtained nanoparticles were characterized for the shape, particle size, zeta potential, drug entrapment efficiency and loading capacity. In vitro results revealed the acid stability of pH-responsive nanoparticles, which had a significant control over LMWH release and could effectively protect entrapped drugs in simulated gastric conditions. By the attachment of the thiol ligand, an improvement of permeation-enhancing effect on freshly excised carp intestine (1.86-fold improvement) could be found. The mucoadhesive properties were evaluated using fluorescently labeled TCS or CS nanoparticles. As compared with the controls, a significant improvement of mucoadhesion on rat intestinal mucosa was observed in TCS/HPMCP nanoparticles via confocal laser scanning microscopy. The activated partial thromboplastin time (APTT) was significantly prolonged and an increase in the oral bioavailability of LMWH was turned out to be pronounced after oral delivered LMWH-loaded TCS/HPMCP nanoparticles in rats, which suggested enhanced anticoagulant effects and improved absorption of LMWH. In conclusion, pH-responsive TCS/HPMCP nanoparticles hold promise for oral delivery of LMWH.
Collapse
Affiliation(s)
- Bo Fan
- a School of Pharmaceutical Science , Shanxi Medical University , Taiyuan , Shanxi , People's Republic of China
| | - Yang Xing
- a School of Pharmaceutical Science , Shanxi Medical University , Taiyuan , Shanxi , People's Republic of China
| | - Ying Zheng
- a School of Pharmaceutical Science , Shanxi Medical University , Taiyuan , Shanxi , People's Republic of China
| | - Chuan Sun
- a School of Pharmaceutical Science , Shanxi Medical University , Taiyuan , Shanxi , People's Republic of China
| | - Guixian Liang
- a School of Pharmaceutical Science , Shanxi Medical University , Taiyuan , Shanxi , People's Republic of China
| |
Collapse
|
48
|
Lam PL, Kok SL, Bian ZX, Lam KH, Tang JO, Lee KH, Gambari R, Chui CH. d-glucose as a modifying agent in gelatin/collagen matrix and reservoir nanoparticles for Calendula officinalis delivery. Colloids Surf B Biointerfaces 2014; 117:277-83. [DOI: 10.1016/j.colsurfb.2014.02.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/27/2014] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
|
49
|
Harisa GI. Blood viscosity as a sensitive indicator for paclitaxel induced oxidative stress in human whole blood. Saudi Pharm J 2014; 23:48-54. [PMID: 25685043 DOI: 10.1016/j.jsps.2014.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/14/2014] [Indexed: 12/15/2022] Open
Abstract
In this study, the in vitro effects of paclitaxel (PTX) and Cremophor-EL (CrEL) on blood viscosity and oxidative stress markers were investigated. Whole-blood samples were collected from healthy volunteers and co-incubated with PTX, CrEL or their combination then compared with control blood samples. After a 24 h incubation time, the whole-blood viscosity (WBV), erythrocyte sedimentation rate (ESR), levels of whole-blood malondialdehyde (MDA), protein carbonyl content (PCC) and reduced glutathione (GSH) were determined. Moreover, plasma nitrite and plasma sialic acid (SA) values were measured. The present results revealed that the incubation of blood samples with PTX, CrEL or PTX plus CrEL significantly increased the values of WBV, ESR, MDA and PCC compared to control samples. In contrast, a significant decrease in levels of GSH, SA and nitrite was observed after incubation of blood samples with tested agents compared to control. The effects of tested agents on the measured parameters were more pronounced in the case of blood samples treated with PTX plus CrEL. The present study demonstrates that PTX-induced oxidative stress is associated with an increase of WBV.
Collapse
Affiliation(s)
- Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
50
|
Ionically crosslinked polyelectrolyte nanocarriers: Recent advances and open problems. Curr Opin Colloid Interface Sci 2014. [DOI: 10.1016/j.cocis.2014.03.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|