1
|
Rostami N, Gomari MM, Abdouss M, Moeinzadeh A, Choupani E, Davarnejad R, Heidari R, Bencherif SA. Synthesis and Characterization of Folic Acid-Functionalized DPLA-co-PEG Nanomicelles for the Targeted Delivery of Letrozole. ACS APPLIED BIO MATERIALS 2023; 6:1806-1815. [PMID: 37093754 PMCID: PMC10629236 DOI: 10.1021/acsabm.3c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/07/2023] [Indexed: 04/25/2023]
Abstract
An effective treatment for hormone-dependent breast cancer is chemotherapy using cytotoxic agents such as letrozole (LTZ). However, most anticancer drugs, including LTZ, are classified as class IV biopharmaceuticals, which are associated with low water solubility, poor bioavailability, and significant toxicity. As a result, developing a targeted delivery system for LTZ is critical for overcoming these challenges and limitations. Here, biodegradable LTZ-loaded nanocarriers were synthesized by solvent emulsification evaporation using nanomicelles prepared with dodecanol-polylactic acid-co-polyethylene glycol (DPLA-co-PEG). Furthermore, cancer cell-targeting folic acid (FA) was conjugated into the nanomicelles to achieve a more effective and safer cancer treatment. During our investigation, DPLA-co-PEG and DPLA-co-PEG-FA displayed a uniform and spherical morphology. The average diameters of DPLA-co-PEG and DPLA-co-PEG-FA nanomicelles were 86.5 and 241.3 nm, respectively. Our preliminary data suggest that both nanoformulations were cytocompatible, with ≥90% cell viability across all concentrations tested. In addition, the amphiphilic nature of the nanomicelles led to high drug loading and dispersion in water, resulting in the extended release of LTZ for up to 50 h. According to the Higuchi model, nanomicelles functionalized with FA have a greater potential for the controlled delivery of LTZ into target cells. This model was confirmed experimentally, as LTZ-containing DPLA-co-PEG-FA was significantly and specifically more cytotoxic (up to 90% cell death) toward MCF-7 cells, a hormone-dependent human breast cancer cell line, when compared to free LTZ and LTZ-containing DPLA-co-PEG. Furthermore, a half-maximal inhibitory concentration (IC50) of 87 ± 1 nM was achieved when MCF-7 cells were exposed to LTZ-containing DPLA-co-PEG-FA, whereas higher doses of 125 ± 2 and 100 ± 2 nM were required for free LTZ and LTZ-containing DPLA-co-PEG, respectively. Collectively, DPLA-co-PEG-FA represents a promising nanosized drug delivery system to target controllably the delivery of drugs such as chemotherapeutics.
Collapse
Affiliation(s)
- Neda Rostami
- Department
of Chemistry, Amirkabir University of Technology, Tehran 1591634311, Iran
| | - Mohammad Mahmoudi Gomari
- Department
of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Majid Abdouss
- Department
of Chemistry, Amirkabir University of Technology, Tehran 1591634311, Iran
| | - Alaa Moeinzadeh
- Department
of Tissue Engineering and Regenerative Medicine, Faculty of Advanced
Technologies in Medicine, Iran University
of Medical Sciences, Tehran 1449614535, Iran
| | - Edris Choupani
- Department
of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Reza Davarnejad
- Department
of Chemical Engineering, Faculty of Engineering, Arak University, Arak 3848177584, Iran
| | - Reza Heidari
- Research
Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran 1411718541, Iran
| | - Sidi A. Bencherif
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Sorbonne
University, UTC CNRS UMR 7338, Biomechanics and Bioengineering (BMBI),
University of Technology of Compiègne, Compiègne 60203, France
| |
Collapse
|
2
|
Acharya S, Praveena J, Guru BR. In Vitro Studies of Prednisolone Loaded PLGA Nanoparticles-Surface Functionalized With Folic Acid on Glioma and Macrophage Cell Lines. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Glucocorticoids are employed for their anti-inflammatory effects in treatingglioma, whose cells are known to overexpress the folate receptors. Some glucocorticoids haveshown inhibitory effects, but the efficacy of prednisolone when delivered via folate receptormediateduptake, has not been attempted. The study aimed to assess the efficacy of targeteddelivery of prednisolone on glioma cell lines like C6 and U87 via the folate receptors. Methods: Targeted delivery of prednisolone was achieved by initially conjugating folic acid (FA)to the di-block copolymer of polylactic acid (PLA) – polyethylene glycol (PEG). This moietycarrying di-block copolymer was incorporated on the surface of the drug-loaded poly lactic-coglycolicacid (PLGA) nanoparticle (NP) by employing the Interfacial Activity Assisted SurfaceFunctionalization (IAASF) technique. The NPs were evaluated for size, zeta potential, and drugloading. It was characterized using particle size analyser, SEM, 1H-NMR, and XRD. cell uptake,cytotoxicity, and anti-inflammatory activities were studied for various formulations. Results: The cytotoxicity assay indicated a high cell growth inhibitory effect of drug encapsulatedNPs with FA moiety as compared to free drug and NPs without the moiety for an incubationperiod of three, five, and six days. The growth-inhibitory effect of the free drug was short-lived,whereas FA functionalized NPs showed higher uptake and sustained inhibitory effect, and werealso able to significantly control the release of pro-inflammatory cytokines like tumour necrosisfactor-alpha (TNF-α) and nitric oxide (NO). Conclusion: Uptake, attenuation of pro-inflammatory signals, and the inhibitory effect ofprednisolone on the cells were more effective when targeted with the FA moiety on the surfaceof NPs as compared to free drug and NPs without the moiety.
Collapse
Affiliation(s)
- Sriprasad Acharya
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Joyceline Praveena
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Bharath Raja Guru
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
3
|
Tsolou A, Angelou E, Didaskalou S, Bikiaris D, Avgoustakis K, Agianian B, Koffa MD. Folate and Pegylated Aliphatic Polyester Nanoparticles for Targeted Anticancer Drug Delivery. Int J Nanomedicine 2020; 15:4899-4918. [PMID: 32764924 PMCID: PMC7369311 DOI: 10.2147/ijn.s244712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/09/2020] [Indexed: 01/05/2023] Open
Abstract
Purpose The use of chemotherapeutic agents to combat cancer is accompanied by high toxicity due to their inability to discriminate between cancer and normal cells. Therefore, cancer therapy research has focused on the targeted delivery of drugs to cancer cells. Here, we report an in vitro study of folate-poly(ethylene glycol)-poly(propylene succinate) nanoparticles (FA-PPSu-PEG-NPs) as a vehicle for targeted delivery of the anticancer drug paclitaxel in breast and cervical cancer cell lines. Methods Paclitaxel-loaded-FA-PPSu-PEG-NPs characterization was performed by in vitro drug release studies and cytotoxicity assays. The NPs cellular uptake and internalization mechanism were monitored by live-cell imaging in different cancer cell lines. Expression of folate receptor-α (FOLR1) was examined in these cell lines, and specific FOLR1-mediated entry of the FA-PPSu-PEG-NPs was investigated by free folic acid competition. Using inhibitors for other endocytic pathways, alternative, non-FOLR1 dependent routes for NPs uptake were also examined. Results Drug release experiments of Paclitaxel-loaded PPSu-PEG-NPs indicated a prolonged release of Paclitaxel over several days. Cytotoxicity of Paclitaxel-loaded PPSu-PEG-NPs was similar to free drug, as monitored in cancer cell lines. Live imaging of cells treated with either free Paclitaxel or Paclitaxel-loaded PPSu-PEG-NPs demonstrated tubulin-specific cell cycle arrest, with similar kinetics. Folate-conjugated NPs (FA-PPSu-PEG-NPs) targeted the FOLR1 receptor, as shown by free folic acid competition of the FA-PPSu-PEG-NPs cellular uptake in some of the cell lines tested. However, due to the differential expression of FOLR1 in the cancer cell lines, as well as the intrinsic differences between the different endocytic pathways utilized by different cell types, other mechanisms of nanoparticle cellular entry were also used, revealing that dynamin-dependent endocytosis and macropinocytosis pathways mediate, at least partially, cellular entry of the FA-PPSu-PEG NPs. Conclusion Our data provide evidence that Paclitaxel-loaded-FA-PPSu-PEG-NPs can be used for targeted delivery of the drug, FA-PPSu-PEG-NPs can be used as vehicles for other anticancer drugs and their cellular uptake is mediated through a combination of FOLR1 receptor-specific endocytosis, and macropinocytosis. The exploration of the different cellular uptake mechanisms could improve treatment efficacy or allow a decrease in dosage of anticancer drugs.
Collapse
Affiliation(s)
- Avgi Tsolou
- Laboratory of Molecular Cell Biology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Eftychia Angelou
- Biomolecular Structure and Function Group, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Stylianos Didaskalou
- Laboratory of Molecular Cell Biology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Dimitrios Bikiaris
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
| | | | - Bogos Agianian
- Biomolecular Structure and Function Group, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Maria D Koffa
- Laboratory of Molecular Cell Biology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis 68100, Greece
| |
Collapse
|
4
|
Wang S, Tang Q, Ya H, Fan Y, Feng W, Du J, Fang S, Shi C. Study on the optical and biological properties in vitro ofIR808‐PEG‐FA. J Biomed Mater Res A 2020; 108:1816-1823. [DOI: 10.1002/jbm.a.36946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 03/14/2020] [Accepted: 03/17/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Sujun Wang
- College of Food and Drug, Luoyang Normal University Luoyang China
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive MedicineThird Military Medical University Chongqing China
| | - Qianqian Tang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function‐Oriented Porous MaterialsLuoyang Normal University Luoyang China
| | - Huiyuan Ya
- College of Food and Drug, Luoyang Normal University Luoyang China
| | - Yanli Fan
- College of Food and Drug, Luoyang Normal University Luoyang China
| | - Wenjing Feng
- College of Food and Drug, Luoyang Normal University Luoyang China
| | - Jie Du
- College of Food and Drug, Luoyang Normal University Luoyang China
| | - Shengtao Fang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive MedicineThird Military Medical University Chongqing China
| | - Chunmeng Shi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive MedicineThird Military Medical University Chongqing China
| |
Collapse
|
5
|
Wang S, Luo Y, Zhou J, Wang M, Wang Y. PLA-PEG-FA NPs for drug delivery system: Evaluation of carrier micro-structure, degradation and size-cell proliferation relationship. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:297-302. [PMID: 30033258 DOI: 10.1016/j.msec.2018.05.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/29/2018] [Accepted: 05/14/2018] [Indexed: 02/05/2023]
Abstract
In this paper, the micro-structure of amphiphilic copolymer Polylactic acid-Polyethylene glycol-Folate (PLA-PEG-FA) was studied firstly by a differential scanning calorimetry (DSC). During the process of nanoparticles (NPs) preparation, we found good inter-structure consistency of polymer was the precondition for forming into stable NPs, and those with micro-phase separation structure were prepared of NPs within limits. Hemolytic test and CCK-8 assay results demonstrated the biotoxicity of both NPs and whose leaching liquor was far below related toxicity standards. Two kinds of cell, human breast cancer cell line (MCF-7) and human umbilical vein endothelial cells (EC), showed different manners in test of NPs size-cell proliferation relationship, respectively. Monitored by a nuclear magnetic resonance (NMR) and a gel permeation chromatography (GPC), the degradation behavior of NPs in aqueous solution indicated amide bond break more difficultly than ester bond, and FA classic proton peak disappeared in the third week, meanwhile lactic acid (LA) unit number became 25% of the initial. Finally the NPs was completely degraded in the eighth week. In the whole process, NPs underwent a change from compact to loose state. We hope these results will benefit to improve design of drug delivery system in nanomedicine, which could offer the selection rule for amphiphilic polymer NPs on material and size.
Collapse
Affiliation(s)
- Sujun Wang
- School of Food and Drug, Luoyang Normal University, Luoyang 471022, China; Key Laboratory of Biorheological Science and Technology under Ministry of Education, Research Center of Bioinspired Material Science and Engineering, Bioengineering College of Chongqing University, Chongqing 400044, China.
| | - Yanfeng Luo
- Key Laboratory of Biorheological Science and Technology under Ministry of Education, Research Center of Bioinspired Material Science and Engineering, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Jin Zhou
- Key Laboratory of Biorheological Science and Technology under Ministry of Education, Research Center of Bioinspired Material Science and Engineering, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Mingxing Wang
- School of Food and Drug, Luoyang Normal University, Luoyang 471022, China
| | - Yuanliang Wang
- Key Laboratory of Biorheological Science and Technology under Ministry of Education, Research Center of Bioinspired Material Science and Engineering, Bioengineering College of Chongqing University, Chongqing 400044, China.
| |
Collapse
|
6
|
Lv Y, Yang B, Li YM, He F, Zhuo RX. Folate-conjugated amphiphilic block copolymer micelle for targeted and redox-responsive delivery of doxorubicin. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:92-106. [PMID: 29090629 DOI: 10.1080/09205063.2017.1400146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this paper, novel folate-conjugated and redox-responsive crosslinked block copolymer was successfully synthesized for targeted and controlled release of doxorubicin (DOX) to cancer cells. Folate-conjugated poly(ethylene glycol)-b-copolycarbonates (FA-PEG-b-P(MAC-co-DTC)) and methoxy poly(ethylene glycol)-b-copolycarbonates (mPEG-b-P(MAC-co-DTC)) were firstly synthesized by enzymatic method. FA-PEG/mPEG-b-P(MAC-co-DTC)-SS was then obtained by further crosslinking reaction with cystamine. Non-conjugated crosslinked copolymer mPEG-b-P(MAC-co-DTC)-SS- and non-conjugated uncrosslinked copolymer mPEG-b-P(MAC-co-DTC) were also synthesized for comparison. All the amphiphlic copolymers could self-assemble to form nano-sized micelles which dispersed in spherical shape before and after DOX loading. The core crosslinking structure of FA-PEG/mPEG-b-P(MAC-co-DTC)-SS could improve the micellar stability and drug loading capacity, while in vitro release studies also showed more sustained drug release behavior which could be accelerated in reductive condition. Moreover, confocal laser scanning microscopy indicated that the conjugation of FA could enhance the cellular uptake efficiency obviously via FA-receptor-mediated endocytosis, and MTT assays demonstrated highly potent cytotoxic activity of FA-PEG/mPEG-b-P(MAC-co-DTC)-SS.
Collapse
Affiliation(s)
- Yin Lv
- a Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry , Wuhan University , Wuhan , China.,b Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan / School of Chemistry and Chemical Engineering , Shihezi University , Shihezi , China
| | - Bin Yang
- c Department of Biomedical Engineering, School of Basic Medical Sciences , Guangzhou Medical University , Guangzhou , China
| | - You-Mei Li
- a Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry , Wuhan University , Wuhan , China
| | - Feng He
- a Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry , Wuhan University , Wuhan , China
| | - Ren-Xi Zhuo
- a Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry , Wuhan University , Wuhan , China
| |
Collapse
|
7
|
Kilicay E, Karahaliloglu Z, Alpaslan P, Hazer B, Denkbas EB. In vitro evaluation of antisense oligonucleotide functionalized core-shell nanoparticles loaded with α-tocopherol succinate. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1762-1785. [PMID: 28696185 DOI: 10.1080/09205063.2017.1354670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Antisense oligonucleotide (ASO)-conjugated-α-tocopherol succinate (TCS)-loaded-poly(lactic acid)-g-poly(ethylene glycol) nanoparticles (ASO-TCS-PLA-PEG NPs), with the ratio of polymer/TCS of 10:2.5, 10:5, 10:7 (w/w) were prepared for targeting cancer therapy. The amphiphilic PLA, amino terminated PEG graft copolymers were synthesized by ring opening polymerization reaction. Nanoparticles were produced by using double emulsion (w/o/w) solvent evaporation method. ASO-TCS-PLA-PEG NPs demonstrated satisfactory encapsulation and loading efficiency and size distribution. The short-term stability studies were carried out at 4 and 25 °C for 30 days to assess their mean particle size, polydispersity index and zeta potential. The cellular uptake and extended cytoplasmic retention of the NPs in A549 human lung carcinoma and L929 mouse fibroblast cells were examined by fluorescence and confocal microscopy. In human lung cancer cells, ASO-TCS-PLA-PEG NPs exhibited better cellular internalization, cytotoxicity and apoptotic and necrotic effects compared to healthy cell line, L929. These findings showed that ASO-modified nanoparticles could serve as a promising nanocarrier for targeted tumor cells.
Collapse
Affiliation(s)
- Ebru Kilicay
- a Zonguldak Vocational High School, Bülent Ecevit University , Zonguldak , Turkey
| | - Zeynep Karahaliloglu
- b Faculty of Science, Biology Department , Aksaray University , Aksaray , Turkey
| | - Pınar Alpaslan
- c Department of Biomedical Engineering , TOBB University of Economics and Technology , Ankara , Turkey
| | - Baki Hazer
- d Physical Chemistry Division, Chemistry Department , Bülent Ecevit University , Zonguldak , Turkey
| | - Emir Baki Denkbas
- e Biochemistry Division, Department of Chemistry , Hacettepe University , Ankara , Turkey
| |
Collapse
|
8
|
Lakkireddy HR, Bazile D. Building the design, translation and development principles of polymeric nanomedicines using the case of clinically advanced poly(lactide(glycolide))-poly(ethylene glycol) nanotechnology as a model: An industrial viewpoint. Adv Drug Deliv Rev 2016; 107:289-332. [PMID: 27593265 DOI: 10.1016/j.addr.2016.08.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/19/2016] [Accepted: 08/27/2016] [Indexed: 12/16/2022]
Abstract
The design of the first polymeric nanoparticles could be traced back to the 1970s, and has thereafter received considerable attention, as evidenced by the significant increase of the number of articles and patents in this area. This review article is an attempt to take advantage of the existing literature on the clinically tested and commercialized biodegradable PLA(G)A-PEG nanotechnology as a model to propose quality building and outline translation and development principles for polymeric nano-medicines. We built such an approach from various building blocks including material design, nano-assembly - i.e. physicochemistry of drug/nano-object association in the pharmaceutical process, and release in relevant biological environment - characterization and identification of the quality attributes related to the biopharmaceutical properties. More specifically, as envisaged in a translational approach, the reported data on PLA(G)A-PEG nanotechnology have been structured into packages to evidence the links between the structure, physicochemical properties, and the in vitro and in vivo performances of the nanoparticles. The integration of these bodies of knowledge to build the CMC (Chemistry Manufacturing and Controls) quality management strategy and finally support the translation to proof of concept in human, and anticipation of the industrialization takes into account the specific requirements and biopharmaceutical features attached to the administration route. From this approach, some gaps are identified for the industrial development of such nanotechnology-based products, and the expected improvements are discussed. The viewpoint provided in this article is expected to shed light on design, translation and pharmaceutical development to realize their full potential for future clinical applications.
Collapse
|
9
|
Xiong XY, Tao L, Qin X, Li ZL, Gong YC, Li YP, Yang YJ, Liu ZY. Novel folated Pluronic/poly(lactic acid) nanoparticles for targeted delivery of paclitaxel. RSC Adv 2016. [DOI: 10.1039/c6ra09271c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In vivo prolonged circulation time and enhanced tumor resistant ability of targeted PTX-loaded FA–Pluronic–PLA nanoparticles.
Collapse
Affiliation(s)
- Xiang Yuan Xiong
- School of Life Science
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- China
| | - Long Tao
- School of Life Science
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- China
| | - Xiang Qin
- School of Life Science
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- China
| | - Zi Ling Li
- School of Life Science
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- China
| | - Yan Chun Gong
- School of Life Science
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- China
| | - Yu Ping Li
- School of Life Science
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- China
| | - Yi Jia Yang
- School of Life Science
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- China
| | - Zhi Yong Liu
- Laboratory Animal Science and Technology Center
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330045
- China
| |
Collapse
|
10
|
Siafaka P, Betsiou M, Tsolou A, Angelou E, Agianian B, Koffa M, Chaitidou S, Karavas E, Avgoustakis K, Bikiaris D. Synthesis of folate- pegylated polyester nanoparticles encapsulating ixabepilone for targeting folate receptor overexpressing breast cancer cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:275. [PMID: 26543021 DOI: 10.1007/s10856-015-5609-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/24/2015] [Indexed: 06/05/2023]
Abstract
The aim of this study was the preparation of novel polyester nanoparticles based on folic acid (FA)-functionalized poly(ethylene glycol)-poly(propylene succinate) (PEG-PPSu) copolymer and loaded with the new anticancer drug ixabepilone (IXA). These nanoparticles may serve as a more selective (targeted) treatment of breast cancer tumors overexpressing the folate receptor. The synthesized materials were characterized by (1)H-NMR, FTIR, XRD and DSC. The nanoparticles were prepared by a double emulsification and solvent evaporation method and characterized with regard to their morphology by scanning electron microscopy, drug loading with HPLC-UV and size by dynamic light scattering. An average size of 195 nm and satisfactory drug loading efficiency (3.5%) were observed. XRD data indicated that IXA was incorporated into nanoparticles in amorphous form. The nanoparticles exhibited sustained drug release properties in vitro. Based on in vitro cytotoxicity studies, the blank FA-PEG-PPSu nanoparticles were found to be non-toxic to the cells. Fluorescent nanoparticles were prepared by conjugating Rhodanine B to PEG-PPSu, and live cell, fluorescence, confocal microscopy was applied in order to demonstrate the ability of FA-PEG-PPSu nanoparticles to enter into human breast cancer cells expressing the folate receptor.
Collapse
Affiliation(s)
- P Siafaka
- Department of Chemistry, Aristotle University of Thessaloniki, 54 124, Thessaloniki, Macedonia, Greece
| | - M Betsiou
- Department of Chemistry, Aristotle University of Thessaloniki, 54 124, Thessaloniki, Macedonia, Greece
| | - A Tsolou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Xanthi, Greece
| | - E Angelou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Xanthi, Greece
| | - B Agianian
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Xanthi, Greece
| | - M Koffa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Xanthi, Greece
| | - S Chaitidou
- Pharmathen S.A, Pharmaceutical Industry, Dervenakion Str6, 153 51, Attiki, Greece
| | - E Karavas
- Pharmathen S.A, Pharmaceutical Industry, Dervenakion Str6, 153 51, Attiki, Greece
| | - K Avgoustakis
- Department of Pharmacy, University of Patras, 26500, Patras, Greece
| | - D Bikiaris
- Department of Chemistry, Aristotle University of Thessaloniki, 54 124, Thessaloniki, Macedonia, Greece.
| |
Collapse
|
11
|
Xiong XY, Qin X, Li ZL, Gong YC, Li YP. Synthesis, drug release and targeting behaviors of Novel Folated Pluronic F87/poly(lactic acid) block copolymer. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Liu B, Han SM, Tang XY, Han L, Li CZ. Cervical Cancer Gene Therapy by Gene Loaded PEG-PLA Nanomedicine. Asian Pac J Cancer Prev 2014; 15:4915-8. [DOI: 10.7314/apjcp.2014.15.12.4915] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
13
|
Lv Y, Yang B, Jiang T, Li YM, He F, Zhuo RX. Folate-conjugated amphiphilic block copolymers for targeted and efficient delivery of doxorubicin. Colloids Surf B Biointerfaces 2013; 115:253-9. [PMID: 24370849 DOI: 10.1016/j.colsurfb.2013.11.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/22/2013] [Accepted: 11/29/2013] [Indexed: 11/17/2022]
Abstract
In this paper, novel biodegradable amphiphilic block copolymers based on folate-conjugated poly(ethylene glycol)-b-copolycarbonates (FA-PEG-b-P(MAC-co-DTC)) and methoxy poly(ethylene glycol)-b-copolycarbonates (mPEG-b-P(MAC-co-DTC)) were successfully synthesized for targeted and efficient delivery of doxorubicin (DOX) to cancer cells. Immobilized porcine pancreas lipase (IPPL) was employed as the catalyst to perform the ring-opening copolymerization in bulk, while the folate-conjugated poly(ethylene glycol) (FA-PEG) or methoxy poly(ethylene glycol) (mPEG) was used as the initiator. The resulting copolymers, characterized by (1)H NMR and GPC, could self-assemble to form nano-sized micelles in aqueous solution by dialysis method. P(MAC-co-DTC) acted as the hydrophobic core, thereby aggregating hydrophilic PEG chains as the outer shell with FA as targeting ligand located at the surface of the polymeric micelles. Transmission electron microscopy (TEM) observation showed that the micelles dispersed in spherical shape with nano-size before and after DOX loading. Both the FA-conjugated and non-conjugated block copolymers showed low cellular cytotoxicity. Furthermore, as compared to the non-conjugated copolymers, much more efficient cellular uptake of the FA-conjugated copolymers via FA-receptor-mediated endocytosis could be observed by confocal laser scanning microscopy (CLSM), while MTT assays also demonstrated highly potent cytotoxic activity against HeLa cells.
Collapse
Affiliation(s)
- Yin Lv
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Yang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Tao Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - You-Mei Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Feng He
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
14
|
Moral-Vico J, Carretero N, Pérez E, Suñol C, Lichtenstein M, Casañ-Pastor N. Dynamic electrodeposition of aminoacid-polypyrrole on aminoacid-PEDOT substrates: Conducting polymer bilayers as electrodes in neural systems. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.08.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Abstract
Receptor-based targeting of therapeutics may be a fascinating proposition to improve the therapeutic efficacy of encapsulated drugs. The development of safe and effective nanomedicines is a prerequisite in the current nanotechnological scenario. Currently, the surface engineering of nanocarriers has attracted great attention for targeted therapeutic delivery by selective binding of targeting ligand to the specific receptors present on the surface of cells. In this review, we have discussed the current status of various receptors such as transferrin, lectoferrin, lectin, folate, human EGF receptor, scavenger, nuclear and integrin, which are over-expressed on the surface of cancer cells; along with the relevance of targeted delivery systems such as nanoparticles, polymersomes, dendrimers, liposomes and carbon nanotubes. The review also focuses on the effective utilization of receptor-based targeted delivery systems for the management of cancer in effective ways by minimizing the drug-associated side effects and improving the therapeutic efficacy of developed nano-architectures.
Collapse
|
16
|
Sah H, Thoma LA, Desu HR, Sah E, Wood GC. Concepts and practices used to develop functional PLGA-based nanoparticulate systems. Int J Nanomedicine 2013; 8:747-65. [PMID: 23459088 PMCID: PMC3582541 DOI: 10.2147/ijn.s40579] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The functionality of bare polylactide-co-glycolide (PLGA) nanoparticles is limited to drug depot or drug solubilization in their hard cores. They have inherent weaknesses as a drug-delivery system. For instance, when administered intravenously, the nanoparticles undergo rapid clearance from systemic circulation before reaching the site of action. Furthermore, plain PLGA nanoparticles cannot distinguish between different cell types. Recent research shows that surface functionalization of nanoparticles and development of new nanoparticulate dosage forms help overcome these delivery challenges and improve in vivo performance. Immense research efforts have propelled the development of diverse functional PLGA-based nanoparticulate delivery systems. Representative examples include PEGylated micelles/nanoparticles (PEG, polyethylene glycol), polyplexes, polymersomes, core-shell-type lipid-PLGA hybrids, cell-PLGA hybrids, receptor-specific ligand-PLGA conjugates, and theranostics. Each PLGA-based nanoparticulate dosage form has specific features that distinguish it from other nanoparticulate systems. This review focuses on fundamental concepts and practices that are used in the development of various functional nanoparticulate dosage forms. We describe how the attributes of these functional nanoparticulate forms might contribute to achievement of desired therapeutic effects that are not attainable using conventional therapies. Functional PLGA-based nanoparticulate systems are expected to deliver chemotherapeutic, diagnostic, and imaging agents in a highly selective and effective manner.
Collapse
Affiliation(s)
- Hongkee Sah
- College of Pharmacy, Ewha Womans University, Sedaemun-gu, Seoul, South Korea.
| | | | | | | | | |
Collapse
|