1
|
Ghadi R, Kuche K, Date T, Nallamothu B, Chaudhari D, Jain S. Unlocking apoptosis in triple negative breast cancer: Harnessing "glutamine trap" to amplify the efficacy of lapatinib-loaded mixed micelles. BIOMATERIALS ADVANCES 2024; 159:213822. [PMID: 38442461 DOI: 10.1016/j.bioadv.2024.213822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
Certain aggressive cancers, such as triple-negative breast cancer (TNBC), heavily bank on glutamine for their proliferation and survival. In this context, TNBC functions as a "glutamine trap," extracting circulating glutamine at a rate surpassing that of any other organ. Moreover, the overexpression of Alanine, Serine, Cysteine Transporter 2 (ASCT2), a key player in glutamine uptake, further underscores the significance of targeted therapy to enhance TNBC treatment. This led to the exploration of a novel approach involving hydrophobized Pluronic-based mixed micelles achieved through the use of docosahexaenoic acid and stapled with glutamine for displaying inherent ASCT2 targeting ability-a formulation termed LPT G-MM. LPT G-MM exhibited optimal characteristics, including a size of 163.66 ± 10.34 nm, a polydispersity index of 0.237 ± 0.083, and an enhanced drug loading capacity of approximately 15 %. Transmission electron microscopy validated the spherical shape of these micelles. In vitro release studies demonstrated drug release in a sustained manner without the risk of hemolysis. Importantly, LPT G-MM displayed heightened cellular uptake, increased cytotoxicity, a lower IC50 value, elevated reactive oxygen species, induced mitochondrial membrane depolarization, and a greater apoptosis index in TNBC cell lines compared to free LPT. The pharmacokinetic profile of LPT G-MM revealed a substantial rise in half-life (t1/2) by approximately 1.48-fold and an elevation in the area under the curve [AUC(0→∞)] by approximately 1.19-fold. Moreover, there was a significant reduction in the percentage of tumor volume by approximately 7.26-fold, along with decreased serum toxicity markers compared to free LPT. In summary, LPT G-MM demonstrated promising potential in boosting payload capacities and targeting specificity in the context of TNBC treatment.
Collapse
Affiliation(s)
- Rohan Ghadi
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Tushar Date
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Bhargavi Nallamothu
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Dasharath Chaudhari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
2
|
Alavijeh RK, Akhbari K. Improved Cytotoxicity and Induced Apoptosis in HeLa Cells by Co-loading Vitamin E Succinate and Curcumin in Nano-MIL-88B-NH 2. Chembiochem 2023; 24:e202300415. [PMID: 37553295 DOI: 10.1002/cbic.202300415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
One of the strategies for improved therapeutic effects in cancer therapy is combination chemotherapy. In this study, a flexible nano-MOF (Fe-MIL-88B-NH2 ) was synthesized in a sonochemical process, then co-loaded with α-tocopheryl succinate (TOS) and curcumin (CCM). The anticancer activity of co-loaded Fe-MIL-88B-NH2 (Fe-MIL-88B-NH2 /TOS@CCM) against the HeLa cells was compared with that of the single-loaded counterpart (Fe-MIL-88B-NH2 @CCM). MTT analysis indicates improved cytotoxicity of Fe-MIL-88B-NH2 /TOS@CCM. The data from the cell apoptosis assay indicated more apoptosis in the case of the co-loaded nano-MOF. This study indicates the positive effect of the presence of TOS on enhancing the anticancer effect of Fe-MIL-88B-NH2 @CCM to prepare a more efficient drug delivery nanosystem.
Collapse
Affiliation(s)
- Roya Karimi Alavijeh
- School of Chemistry, College of Science, University of Tehran, Tehran, 14155-6455, Iran
| | - Kamran Akhbari
- School of Chemistry, College of Science, University of Tehran, Tehran, 14155-6455, Iran
| |
Collapse
|
3
|
Domb AJ, Sharifzadeh G, Nahum V, Hosseinkhani H. Safety Evaluation of Nanotechnology Products. Pharmaceutics 2021; 13:pharmaceutics13101615. [PMID: 34683908 PMCID: PMC8539492 DOI: 10.3390/pharmaceutics13101615] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/11/2023] Open
Abstract
Nanomaterials are now being used in a wide variety of biomedical applications. Medical and health-related issues, however, have raised major concerns, in view of the potential risks of these materials against tissue, cells, and/or organs and these are still poorly understood. These particles are able to interact with the body in countless ways, and they can cause unexpected and hazardous toxicities, especially at cellular levels. Therefore, undertaking in vitro and in vivo experiments is vital to establish their toxicity with natural tissues. In this review, we discuss the underlying mechanisms of nanotoxicity and provide an overview on in vitro characterizations and cytotoxicity assays, as well as in vivo studies that emphasize blood circulation and the in vivo fate of nanomaterials. Our focus is on understanding the role that the physicochemical properties of nanomaterials play in determining their toxicity.
Collapse
Affiliation(s)
- Abraham J. Domb
- The Centers for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
- Correspondence: (A.J.D.); (H.H.)
| | - Ghorbanali Sharifzadeh
- Department of Polymer Engineering, School of Chemical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - Victoria Nahum
- The Centers for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| | - Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10029, USA
- Correspondence: (A.J.D.); (H.H.)
| |
Collapse
|
4
|
Cortés H, Hernández-Parra H, Bernal-Chávez SA, Prado-Audelo MLD, Caballero-Florán IH, Borbolla-Jiménez FV, González-Torres M, Magaña JJ, Leyva-Gómez G. Non-Ionic Surfactants for Stabilization of Polymeric Nanoparticles for Biomedical Uses. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3197. [PMID: 34200640 PMCID: PMC8226872 DOI: 10.3390/ma14123197] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022]
Abstract
Surfactants are essential in the manufacture of polymeric nanoparticles by emulsion formation methods and to preserve the stability of carriers in liquid media. The deposition of non-ionic surfactants at the interface allows a considerable reduction of the globule of the emulsion with high biocompatibility and the possibility of oscillating the final sizes in a wide nanometric range. Therefore, this review presents an analysis of the three principal non-ionic surfactants utilized in the manufacture of polymeric nanoparticles; polysorbates, poly(vinyl alcohol), and poloxamers. We included a section on general properties and uses and a comprehensive compilation of formulations with each principal non-ionic surfactant. Then, we highlight a section on the interaction of non-ionic surfactants with biological barriers to emphasize that the function of surfactants is not limited to stabilizing the dispersion of nanoparticles and has a broad impact on pharmacokinetics. Finally, the last section corresponds to a recommendation in the experimental approach for choosing a surfactant applying the systematic methodology of Quality by Design.
Collapse
Affiliation(s)
- Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (H.C.); (F.V.B.-J.)
| | - Héctor Hernández-Parra
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (H.H.-P.); (I.H.C.-F.)
| | - Sergio A. Bernal-Chávez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - María L. Del Prado-Audelo
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Tecnológico de Monterrey Campus Ciudad de México, CDMX, Ciudad de México 14380, Mexico;
| | - Isaac H. Caballero-Florán
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (H.H.-P.); (I.H.C.-F.)
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Fabiola V. Borbolla-Jiménez
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (H.C.); (F.V.B.-J.)
| | - Maykel González-Torres
- CONACyT-Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico;
| | - Jonathan J. Magaña
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (H.C.); (F.V.B.-J.)
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Tecnológico de Monterrey Campus Ciudad de México, CDMX, Ciudad de México 14380, Mexico;
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| |
Collapse
|
5
|
Niu J, Wang L, Yuan M, Zhang J, Chen H, Zhang Y. Dual-targeting nanocarrier based on glucose and folic acid functionalized pluronic P105 polymeric micelles for enhanced brain distribution. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Cheng X, Zeng X, Zheng Y, Fang Q, Wang X, Wang J, Tang R. pH-sensitive pluronic micelles combined with oxidative stress amplification for enhancing multidrug resistance breast cancer therapy. J Colloid Interface Sci 2020; 565:254-269. [PMID: 31978788 DOI: 10.1016/j.jcis.2020.01.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/11/2020] [Accepted: 01/11/2020] [Indexed: 11/25/2022]
Abstract
Multidrug resistance (MDR) is one of the major obstacles to clinical cancer chemotherapy. Herein, we designed new pH-sensitive pluronic micelles with the synergistic effects of oxidative therapy and MDR reversal. Pluronic (P123) was modified with α-tocopheryl succinate (α-TOS) via an acid-labile ortho ester (OE) linkage to give a pH-sensitive copolymer (POT). Self-assembled POT micelles exhibited desirable size (~80 nm), excellent anti-dilution ability, high drug loading (~85%), acid-triggered degradation and drug release behaviours. In vitro cell experiments verified that POT micelles could significantly reverse MDR through suppressing the function of drug effluxs mediated by P123 and induce more reactive oxygen species (ROS) generation mediated by α-TOS, resulting in enhanced cytotoxicity and apoptosis in MDR cells. In vivo studies further revealed that DOX-loaded POT micelles (POT-DOX) possessed the highest drug accumulation (3.03% ID/g at 24 h) and the strongest tumour growth inhibition (TGI 83.48%). Pathological analysis also indicated that POT-DOX could induce more apoptosis or necrosis at the site of tumour without distinct damage to normal tissues. Overall, these smart POT micelles have great potential as promising nano-carriers for MDR reversal and cancer treatment.
Collapse
Affiliation(s)
- Xu Cheng
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Xiaoli Zeng
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Yan Zheng
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Qin Fang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Xin Wang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Jun Wang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China.
| |
Collapse
|
7
|
Hydrophobic drug self-delivery systems as a versatile nanoplatform for cancer therapy: A review. Colloids Surf B Biointerfaces 2019; 180:202-211. [DOI: 10.1016/j.colsurfb.2019.04.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/24/2022]
|
8
|
Liu S, Wang Z, Ban M, Song P, Song X, Khan B. Chelation–assisted in situ self-assembly route to prepare the loose PAN–based nanocomposite membrane for dye desalination. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.09.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Mozhi A, Ahmad I, Kaleem QM, Tuguntaev RG, Eltahan AS, Wang C, Yang R, Li C, Liang XJ. Nrp-1 receptor targeting peptide-functionalized TPGS micellar nanosystems to deliver 10-hydroxycampothecin for enhanced cancer chemotherapy. Int J Pharm 2018; 547:582-592. [DOI: 10.1016/j.ijpharm.2018.05.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 01/31/2023]
|
10
|
Song Y, Cai H, Yin T, Huo M, Ma P, Zhou J, Lai W. Paclitaxel-loaded redox-sensitive nanoparticles based on hyaluronic acid-vitamin E succinate conjugates for improved lung cancer treatment. Int J Nanomedicine 2018; 13:1585-1600. [PMID: 29588586 PMCID: PMC5858821 DOI: 10.2147/ijn.s155383] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background Lung cancer is the primary cause of cancer-related death worldwide. A redox-sensitive nanocarrier system was developed for tumor-targeted drug delivery and sufficient drug release of the chemotherapeutic agent paclitaxel (PTX) for improved lung cancer treatment. Methods The redox-sensitive nanocarrier system constructed from a hyaluronic acid-disulfide-vitamin E succinate (HA-SS-VES, HSV) conjugate was synthesized and PTX was loaded in the delivery system. The physicochemical properties of the HSV nanoparticles were characterized. The redox-sensitivity, tumor-targeting and intracellular drug release capability of the HSV nanoparticles were evaluated. Furthermore, in vitro and in vivo antitumor activity of the PTX-loaded HSV nanoparticles was investigated in a CD44 over-expressed A549 tumor model. Results This HSV conjugate was successfully synthesized and self-assembled to form nanoparticles in aqueous condition with a low critical micelle concentration of 36.3 μg mL−1. Free PTX was successfully entrapped into the HSV nanoparticles with a high drug loading of 33.5% (w/w) and an entrapment efficiency of 90.6%. Moreover, the redox-sensitivity of the HSV nanoparticles was confirmed by particle size change of the nanoparticles along with in vitro release profiles in different reducing environment. In addition, the HA-receptor mediated endocytosis and the potency of redox-sensitivity for intracellular drug delivery were further verified by flow cytometry and confocal laser scanning microscopic analysis. The antitumor activity results showed that compared to redox-insensitive nanoparticles and Taxol®, PTX-loaded redox-sensitive nanoparticles exhibited much greater in vitro cytotoxicity and apoptosis-inducing ability against CD44 over-expressed A549 tumor cells. In vivo, the PTX-loaded HSV nanoparticles possessed much higher antitumor efficacy in an A549 mouse xenograft model and demonstrated improved safety profile. In summary, our PTX-loaded redox-sensitive HSV nanoparticles demonstrated enhanced antitumor efficacy and improved safety of PTX. Conclusion The results of our study indicated the redox-sensitive HSV nanoparticle was a promising nanocarrier for lung cancer therapy.
Collapse
Affiliation(s)
- Yu Song
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People's Republic of China.,College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China
| | - Han Cai
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Tingjie Yin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Meirong Huo
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Ping Ma
- Formulation Development, Tolmar Inc, Fort Collins, CO, USA
| | - Jianping Zhou
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Wenfang Lai
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China
| |
Collapse
|
11
|
Jiang M, Zhang R, Wang Y, Jing W, Liu Y, Ma Y, Sun B, Wang M, Chen P, Liu H, He Z. Reduction-sensitive Paclitaxel Prodrug Self-assembled Nanoparticles with Tetrandrine Effectively Promote Synergistic Therapy Against Drug-sensitive and Multidrug-resistant Breast Cancer. Mol Pharm 2017; 14:3628-3635. [DOI: 10.1021/acs.molpharmaceut.7b00381] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Mengjuan Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Ruoshi Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yingli Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Wenna Jing
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Ying Liu
- National Institute for Food and Drug Control, No. 2 Tiantanxili, Beijing 100050, China
| | - Yan Ma
- School of Chinese
Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Bingjun Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Menglin Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Peizhuo Chen
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Hongzhuo Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
12
|
Tuguntaev RG, Chen S, Eltahan AS, Mozhi A, Jin S, Zhang J, Li C, Wang PC, Liang XJ. P-gp Inhibition and Mitochondrial Impairment by Dual-Functional Nanostructure Based on Vitamin E Derivatives To Overcome Multidrug Resistance. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16900-16912. [PMID: 28463476 PMCID: PMC5545886 DOI: 10.1021/acsami.7b03877] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Vitamin E derivatives possess many essential features for drug-delivery applications, such as biocompatibility, stability, improvement of water solubility of hydrophobic compounds, anticancer activity, and the ability to overcome multidrug resistance (MDR). Herein, vitamin E derivatives are used to overcome MDR through a combined P-glycoprotein (P-gp) inhibition and mitochondrial impairment strategy. A novel nanomicellar drug-delivery system as a carrier for doxorubicin (DOX) was developed, in which d-α-tocopheryl polyethylene glycol 1000 succinate was used as a P-gp inhibitor, α-tocopheryl succinate was introduced as a mitochondrial disrupting agent, and d-α-tocopheryl polyethylene glycol 2000 succinate was used as the main building block of micelles. The optimal ratio between the components of the nanocarrier was determined. The resultant DOX-loaded mixed micelles exhibited a suitable size of 52.08 nm, high drug-loading encapsulation efficiency (>98%), high stability, and pH-dependent drug release. In vitro experiments demonstrated a significantly increased cytotoxic activity of DOX-loaded mixed micelles against resistant MCF-7/Adr cells (45-fold higher than DOX after 48 h of treatment). In vivo studies revealed superior antitumor efficiency with less cardio- and hepatotoxicities of DOX-loaded micelles compared with that of free DOX. These results highlight that the developed DOX-loaded mixed micelles have a promising potential to overcome MDR in chemotherapy for clinical usage.
Collapse
Affiliation(s)
- Ruslan G. Tuguntaev
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11, First North Road, Zhongguancun, Beijing 100190, P. R. China
- Laboratory of Controllable Nanopharmaceuticals, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11, First North Road, Zhongguancun, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shizhu Chen
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11, First North Road, Zhongguancun, Beijing 100190, P. R. China
- Laboratory of Controllable Nanopharmaceuticals, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11, First North Road, Zhongguancun, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Ahmed Shaker Eltahan
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11, First North Road, Zhongguancun, Beijing 100190, P. R. China
- Laboratory of Controllable Nanopharmaceuticals, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11, First North Road, Zhongguancun, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Anbu Mozhi
- Laboratory of Controllable Nanopharmaceuticals, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11, First North Road, Zhongguancun, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shubin Jin
- Beijing Municipal Institute of Labour Protection, No. 55 Taoranting Road, Xicheng District, Beijing 100054, P. R. China
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Chan Li
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11, First North Road, Zhongguancun, Beijing 100190, P. R. China
- Laboratory of Controllable Nanopharmaceuticals, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11, First North Road, Zhongguancun, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Corresponding Authors: . Phone: +86-010-82545569. Fax: +86-010-62656765 (C.L.). (X.-J.L.)
| | - Paul C. Wang
- Fu Jen Catholic University, Taipei, 24205, Taiwan
- Laboratory of Molecular Imaging, Department of Radiology, Howard University, Washington, D.C. 20060, United States
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11, First North Road, Zhongguancun, Beijing 100190, P. R. China
- Laboratory of Controllable Nanopharmaceuticals, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11, First North Road, Zhongguancun, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Corresponding Authors: . Phone: +86-010-82545569. Fax: +86-010-62656765 (C.L.). (X.-J.L.)
| |
Collapse
|
13
|
Hou Y, Yao C, Ling L, Du Y, He R, Ismail M, Zhang Y, Fu Z, Li X. Novel dual VES phospholipid self-assembled liposomes with an extremely high drug loading efficiency. Colloids Surf B Biointerfaces 2017; 156:29-37. [PMID: 28499202 DOI: 10.1016/j.colsurfb.2017.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 03/30/2017] [Accepted: 05/01/2017] [Indexed: 01/16/2023]
Abstract
Vitamin E succinate (VES), a unique selective anti-cancer drug, has attracted much attention for its ability to induce apoptosis in various cancer cells. Importantly, it has been reported that VES is largely non-toxic to normal cells. However, poor aqueous solubility and bioavailability extensively restricted its clinical utility. In this report, dual VES phospholipid conjugate (di-VES-GPC) prodrug based liposomes were prepared in order to develop an efficient delivery system for VES. Di-VES-GPC was first synthesized by conjugating VES with l-α-glycerophosphorylcholine (GPC) using N,N'-dicyclohexylcarbodiimide (DCC) as a coupling agent. The di-VES-GPC prodrug was able to self-assemble into liposomes by reverse-phase evaporation method. The structure of the liposomes was characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM) and cryo-TEM. The results showed that di-VES-GPC assembled liposomes were spherical with an average diameter approximately 183nm. Cryo-TEM data confirmed the formation of multilamellar liposomes with the bilayer thickness about 5nm by the assembly of the conjugate without any excipient. The VES drug loading highly reaches up to 82.8wt% in the liposomes after a simple calculation. Furthermore, the in vitro release behavior of di-VES-GPC liposomes was evaluated in different media. It was found that the liposomes could release free VES at a weakly acidic microenvironment but exhibited good stability under a simulated biological condition. The cellular uptake and intracellular drug release tests demonstrated that di-VES-GPC liposomes could be internalized effectively and converted into parent drug VES in cancer cells. Furthermore, in vitro antitumor activities of the di-VES-GPC liposomes were evaluated by MTT assay and flow cytometry. It was revealed that the liposomes presented comparable cytotoxicities to free VES. Taken together, the di-VES-GPC liposomes might provide an excellent formulation of VES which have potential in the treatment of cancers.
Collapse
Affiliation(s)
- Yongpeng Hou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chen Yao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Longbing Ling
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yawei Du
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ruiyu He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Muhammad Ismail
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ying Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zhenglin Fu
- National Center for Protein Science, Shanghai 200000, China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
14
|
Yang X, Cai X, Yu A, Xi Y, Zhai G. Redox-sensitive self-assembled nanoparticles based on alpha-tocopherol succinate-modified heparin for intracellular delivery of paclitaxel. J Colloid Interface Sci 2017; 496:311-326. [PMID: 28237749 DOI: 10.1016/j.jcis.2017.02.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/12/2017] [Accepted: 02/13/2017] [Indexed: 01/17/2023]
Abstract
To remedy the problems riddled in cancer chemotherapy, such as poor solubility, low selectivity, and insufficient intra-cellular release of drugs, novel heparin-based redox-sensitive polymeric nanoparticles were developed. The amphiphilic polymer, heparin-alpha-tocopherol succinate (Hep-cys-TOS) was synthesized by grafting hydrophobic TOS to heparin using cystamine as the redox-sensitive linker, which could self-assemble into nanoparticles in phosphate buffer saline (PBS) with low critical aggregation concentration (CAC) values ranging from 0.026 to 0.093mg/mL. Paclitaxel (PTX)-loaded Hep-cys-TOS nanoparticles were prepared via a dialysis method, exhibiting a high drug-loading efficiency of 18.99%. Physicochemical properties of the optimized formulation were characterized by dynamic light scattering (DLS), transmission electron microscope (TEM) and differential scanning calorimetry (DSC). Subsequently, the redox-sensitivity of Hep-cys-TOS nanoparticles was confirmed by the changes in size distribution, morphology and appearance after dithiothreitol (DTT) treatment. Besides, the in vitro release of PTX from Hep-cys-TOS nanoparticles also exhibited a redox-triggered profile. Also, the uptake behavior and pathways of coumarin 6-loaded Hep-cys-TOS nanoparticles were investigated, suggesting the nanoparticles could be taken into MCF-7 cells in energy-dependent, caveolae-mediated and cholesterol-dependent endocytosis manners. Later, MTT assays of different PTX-free and PTX-loaded formulations revealed the desirable safety of PTX-free nanoparticles and the enhanced anti-cancer activity of PTX-loaded Hep-cys-TOS nanoparticles (IC50=0.79μg/mL). Apoptosis study indicated the redox-sensitive formulation could induce more apoptosis of MCF-7 cells than insensitive one (55.2% vs. 41.7%), showing the importance of intracellular burst release of PTX. Subsequently, the hemolytic toxicity confirmed the safety of the nanoparticles for intravenous administration. The results indicated the developed redox-sensitive nanoparticles were promising as intracellular drug delivery vehicles for cancer treatment.
Collapse
Affiliation(s)
- Xiaoye Yang
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Xiaoqing Cai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Aihua Yu
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Yanwei Xi
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China.
| |
Collapse
|
15
|
Dehvari K, Lin KS, Hammouda B. Small-angle neutron scattering studies of microenvironmental and structural changes of Pluronic micelles upon encapsulation of paclitaxel. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2016.11.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Tao J, Zhang J, Hu Y, Yang Y, Gou Z, Du T, Mao J, Gou M. A conformal hydrogel nanocomposite for local delivery of paclitaxel. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 28:107-118. [PMID: 27765001 DOI: 10.1080/09205063.2016.1250344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jie Tao
- School of Materials Science and Engineering, Sichuan University, Chengdu, China
| | - Jiumeng Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yu Hu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyuan Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ting Du
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jian Mao
- School of Materials Science and Engineering, Sichuan University, Chengdu, China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Xu HL, Mao KL, Lu CT, Fan ZL, Yang JJ, Xu J, Chen PP, ZhuGe DL, Shen BX, Jin BH, Xiao J, Zhao YZ. An injectable acellular matrix scaffold with absorbable permeable nanoparticles improves the therapeutic effects of docetaxel on glioblastoma. Biomaterials 2016; 107:44-60. [PMID: 27614158 DOI: 10.1016/j.biomaterials.2016.08.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/13/2016] [Accepted: 08/16/2016] [Indexed: 10/21/2022]
Abstract
Intratumoral drug delivery (IT) is an inherently appealing approach for concentrating toxic chemotherapies at the site of action. However, for most chemotherapies, poor tumor penetration and short retention at the administration site limit their anti-tumor effects. In this work, we describe permeable nanoparticles (NPs) prepared with a novel amphiphilic polymer, RRR-α-tocopheryl succinate-grafted-ε-polylysine conjugate (VES-g-ε-PLL). The nanoparticles (NPs) of VES-g-ε-PLL exhibited an ultra-small hydrodynamic diameter (20.8 nm) and positive zeta potential (20.6 mV), which facilitate strong glioma spheroid penetration ability in vitro. Additionally, the hydrophobic model drug docetaxel (DTX) could be effectively encapsulated in the nanoparticles with 3.99% drug loading and 73.37% encapsulation efficiency. To prolong the retention time of DTX-loaded nanoparticles (DTX-NPs) in the tumor, intact decellularized brain extracellular matrix (dBECM) derived from healthy rats was used as a drug depot to adsorb the ultra-small DTX-NPs. The intact DTX-NPs-adsorbing dBECM scaffold was further homogenized into an injectable DTX-NPs-dBECM suspension for intratumoral administration. The DTX-NPs-dBECM suspension exhibited slower DTX release than naked DTX-NPs without compromising the tumor penetration ability of DTX-NPs. An antitumor study showed that the DTX-NPs-dBECM suspension exhibited more powerful in vitro inhibition of tumor spheroid growth than free DTX solution or DTX-NPs. Due to strong tumor penetration ability and prolonged retention, DTX-NPs-dBECM led to complete suppression of glioma growth in vivo at 28 days after treatment. The therapeutic mechanism was due to enhanced proliferation inhibition and apoptosis of tumor cells and angiogenesis inhibition of glioma after treatment with DTX-NPs-dBECM. Finally, the safety of DTX-NPs-dBECM at the therapeutic dose was demonstrated via pathological HE assay from heart, liver, spleen, lung and kidney tissues. In conclusion, permeable nanoparticle-absorbing dBECM is a potential carrier for intratumoral delivery of common chemotherapeutics.
Collapse
Affiliation(s)
- He-Lin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Kai-Li Mao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Cui-Tao Lu
- The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China.
| | - Zi-Liang Fan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Jing-Jing Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Jie Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Pian-Pian Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - De-Li ZhuGe
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Bi-Xin Shen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Bing-Hui Jin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China.
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China; The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China.
| |
Collapse
|
18
|
Liu Y, Xu Y, Wu M, Fan L, He C, Wan JB, Li P, Chen M, Li H. Vitamin E succinate-conjugated F68 micelles for mitoxantrone delivery in enhancing anticancer activity. Int J Nanomedicine 2016; 11:3167-78. [PMID: 27471384 PMCID: PMC4948723 DOI: 10.2147/ijn.s103556] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mitoxantrone (MIT) is a chemotherapeutic agent with promising anticancer efficacy. In this study, Pluronic F68-vitamine E succinate (F68-VES) amphiphilic polymer micelles were developed for delivering MIT and enhancing its anticancer activity. MIT-loaded F68–VES (F68–VES/MIT) micelles were prepared via the solvent evaporation method with self-assembly under aqueous conditions. F68–VES/MIT micelles were found to be of optimal particle size with the narrow size distribution. Transmission electron microscopy images of F68–VES/MIT micelles showed homogeneous spherical shapes and smooth surfaces. F68–VES micelles had a low critical micelle concentration value of 3.311 mg/L, as well as high encapsulation efficiency and drug loading. Moreover, F68–VES/MIT micelles were stable in the presence of fetal bovine serum for 24 hours and maintained sustained drug release in vitro. Remarkably, the half maximal inhibitory concentration (IC50) value of F68–VES/MIT micelles was lower than that of free MIT in both MDA-MB-231 and MCF-7 cells (two human breast cancer cell lines). In addition, compared with free MIT, there was an increased trend of apoptosis and cellular uptake of F68–VES/MIT micelles in MDA-MB-231 cells. Taken together, these results indicated that F68–VES polymer micelles were able to effectively deliver MIT and largely improve its potency in cancer therapy.
Collapse
Affiliation(s)
- Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Yingqi Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Minghui Wu
- Department of Cell Biology and Anatomy, School of Medicine, University of Florida, Gainesville, FL, USA
| | - Lijiao Fan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
19
|
|
20
|
Huang Y, Liu W, Gao F, Fang X, Chen Y. c(RGDyK)-decorated Pluronic micelles for enhanced doxorubicin and paclitaxel delivery to brain glioma. Int J Nanomedicine 2016; 11:1629-41. [PMID: 27143884 PMCID: PMC4844271 DOI: 10.2147/ijn.s104162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Brain glioma therapy is an important challenge in oncology. Here, doxorubicin (DOX) and paclitaxel (PTX)-loaded cyclic arginine-glycine-aspartic acid peptide (c(RGDyK))-decorated Pluronic micelles (cyclic arginine-glycine-aspartic acid peptide-decorated Pluronic micelles loaded with doxorubicin and paclitaxel [RGD-PF-DP]) were designed as a potential targeted delivery system to enhance blood–brain barrier penetration and improve drug accumulation via integrin-mediated transcytosis/endocytosis and based on integrin overexpression in blood–brain barrier and glioma cells. The physicochemical characterization of RGD-PF-DP revealed a satisfactory size of 28.5±0.12 nm with uniform distribution and core-shell structure. The transport rates across the in vitro blood–brain barrier model, cellular uptake, cytotoxicity, and apoptosis of U87 malignant glioblastoma cells of RGD-PF-DP were significantly greater than those of non-c(RGDyK)-decorated Pluronic micelles. In vivo fluorescence imaging demonstrated the specificity and efficacy of intracranial tumor accumulation of RGD-PF-DP. RGD-PF-DP displayed an extended median survival time of 39 days, with no serious body weight loss during the regimen. No acute toxicity to major organs was observed in mice receiving treatment doses via intravenous administration. In conclusion, RGD-PF-DP could be a promising vehicle for enhanced doxorubicin and paclitaxel delivery in patients with brain glioma.
Collapse
Affiliation(s)
- YuKun Huang
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Wenchao Liu
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Feng Gao
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xiaoling Fang
- Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Yanzuo Chen
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
21
|
Wang G, Wang JJ, Tang XJ, Du L, Li F. In vitro and in vivo evaluation of functionalized chitosan-Pluronic micelles loaded with myricetin on glioblastoma cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1263-78. [PMID: 26970027 DOI: 10.1016/j.nano.2016.02.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/13/2016] [Accepted: 02/01/2016] [Indexed: 11/18/2022]
Abstract
This study aimed to develop a novel polymeric carrier based on chitosan-functionalized Pluronic P123/F68 micelles loaded with myricetin (MYR) to improve the therapeutic index of chemotherapy for glioblastoma cancer. Following characterization and assessment of the cellular uptake and antitumor effects of MYR-loaded micelles (MYR-MCs) in vitro, the acute toxicity, blood-brain barrier (BBB) translocation, brain uptake and biodistribution in vivo were assessed. The results demonstrated that MYR-MCs exhibited improved cellular uptake and antitumor activity compared to free MYR in vitro, with a significantly enhanced anticancer effect in vivo following efficient transport across the BBB. However, MYR-MCs did not affect the brain endothelial, barrier function, the liver, heart or kidneys. Furthermore, MYR-MCs altered the expression of apoptotic proteins, such as Bcl-2, BAD and BAX, in mice. In conclusion, MYR-MCs may be considered an effective and promising drug delivery system for glioblastoma treatment.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China; Hubei University of Medicine, Shiyan City, Hubei Province, China.
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Xiang-Jun Tang
- Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Li Du
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Fei Li
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| |
Collapse
|
22
|
Jiang M, Han X, Guo W, Li W, Chen J, Ren G, Sun B, Wang Y, He Z. Star-shape paclitaxel prodrug self-assembled nanomedicine: combining high drug loading and enhanced cytotoxicity. RSC Adv 2016. [DOI: 10.1039/c6ra23169a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Star-shape paclitaxel prodrugs self-assembled nanoparticles combining high drug loading and enhanced cytotoxicity.
Collapse
Affiliation(s)
- Mengjuan Jiang
- Department of Biopharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Xiangfei Han
- Department of Biopharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Weiling Guo
- Department of Biopharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Wei Li
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- China
| | - Jinling Chen
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- China
| | - Guolian Ren
- School of Pharmacy
- Shanxi Medical University
- China
| | - Bingjun Sun
- Department of Biopharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Yongjun Wang
- Department of Biopharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Zhonggui He
- Department of Biopharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| |
Collapse
|
23
|
Yin T, Dong L, Cui B, Wang L, Yin L, Zhou J, Huo M. A toxic organic solvent-free technology for the preparation of PEGylated paclitaxel nanosuspension based on human serum albumin for effective cancer therapy. Int J Nanomedicine 2015; 10:7397-412. [PMID: 26715846 PMCID: PMC4686322 DOI: 10.2147/ijn.s92697] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Clinically, paclitaxel (PTX) is one of most commonly prescribed therapies against a wide range of solid neoplasms. Despite its success, the clinical applicability of PTX (Taxol®) is severely hampered by systemic toxicities induced by Cremophor EL. While attempts to bypass the need for Cremophor EL have been developed through platforms such as Abraxane™, nab™ relies heavily on the use of organic solvents, namely, chloroform. The toxicity introduced by residual chloroform poses a potential risk to patient health. To mitigate the toxicities of toxic organic solvent-based manufacture methods, we have designed a method for the formulation of PTX nanosuspensions (PTX-PEG [polyethylene glycol]-HSA [human serum albumin]) that eliminates the dependence on toxic organic solvents. Coined the solid-dispersion technology, this technique permits the dispersion of PTX into PEG skeleton without the use of organic solvents or Cremophor EL as a solubilizer. Once the PTX-PEG dispersion is complete, the dispersion can be formulated with HSA into nanosuspensions suitable for intravenous administration. Additionally, the incorporation of PEG permits the prolonged circulation through the steric stabilization effect. Finally, HSA-mediated targeting permits active receptor-mediated endocytosis for enhanced tumor uptake and reduced side effects. By eliminating the need for both Cremophor EL and organic solvents while simultaneously increasing antitumor efficacy, this method provides a superior alternative to currently accepted methods for PTX delivery.
Collapse
Affiliation(s)
- Tingjie Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Lihui Dong
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Bei Cui
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Lei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Lifang Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Meirong Huo
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
24
|
Tumor-specific penetrating peptides-functionalized hyaluronic acid- d -α-tocopheryl succinate based nanoparticles for multi-task delivery to invasive cancers. Biomaterials 2015; 71:11-23. [DOI: 10.1016/j.biomaterials.2015.08.035] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 08/15/2015] [Accepted: 08/18/2015] [Indexed: 12/12/2022]
|
25
|
WITHDRAWN: Polymer assembly: Promising carriers as co-delivery systems for cancer therapy. Prog Polym Sci 2015. [DOI: 10.1016/j.progpolymsci.2015.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Self-assembly and paclitaxel loading capacity of α-tocopherol succinate-conjugated hydroxyethyl cellulose nanomicelle. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3736-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Chen Y, Li T. Cellular Uptake Mechanism of Paclitaxel Nanocrystals Determined by Confocal Imaging and Kinetic Measurement. AAPS JOURNAL 2015; 17:1126-34. [PMID: 26104805 DOI: 10.1208/s12248-015-9774-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/20/2015] [Indexed: 01/28/2023]
Abstract
Nanocrystal formulation has become a viable solution for delivering poorly soluble drugs including chemotherapeutic agents. The purpose of this study was to examine cellular uptake of paclitaxel nanocrystals by confocal imaging and concentration measurement. It was found that drug nanocrystals could be internalized by KB cells at much higher concentrations than a conventional, solubilized formulation. The imaging and quantitative results suggest that nanocrystals could be directly taken up by cells as solid particles, likely via endocytosis. Moreover, it was found that polymer treatment to drug nanocrystals, such as surface coating and lattice entrapment, significantly influenced the cellular uptake. While drug molecules are in the most stable physical state, nanocrystals of a poorly soluble drug are capable of achieving concentrated intracellular presence enabling needed therapeutic effects.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pharmaceutical Science, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | | |
Collapse
|
28
|
Palao-Suay R, Aguilar MR, Parra-Ruiz FJ, Fernández-Gutiérrez M, Parra J, Sánchez-Rodríguez C, Sanz-Fernández R, Rodrigáñez L, Román JS. Anticancer and antiangiogenic activity of surfactant-free nanoparticles based on self-assembled polymeric derivatives of vitamin E: structure-activity relationship. Biomacromolecules 2015; 16:1566-81. [PMID: 25848887 DOI: 10.1021/acs.biomac.5b00130] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
α-Tocopheryl succinate (α-TOS) is a well-known mitochondrially targeted anticancer compound, however, it is highly hydrophobic and toxic. In order to improve its activity and reduce its toxicity, new surfactant-free biologically active nanoparticles (NP) were synthesized. A methacrylic derivative of α-TOS (MTOS) was prepared and incorporated in amphiphilic pseudoblock copolymers when copolymerized with N-vinylpyrrolidone (VP) by free radical polymerization (poly(VP-co-MTOS)). The selected poly(VP-co-MTOS) copolymers formed surfactant-free NP by nanoprecipitation with sizes between 96 and 220 nm and narrow size distribution, and the in vitro biological activity was tested. In order to understand the structure-activity relationship three other methacrylic monomers were synthesized and characterized: MVE did not have the succinate group, SPHY did not have the chromanol ring, and MPHY did not have both the succinate group and the chromanol ring. The corresponding families of copolymers (poly(VP-co-MVE), poly(VP-co-SPHY), and poly(VP-co-MPHY)) were synthesized and characterized, and their biological activity was compared to poly(VP-co-MTOS). Both poly(VP-co-MTOS) and poly(VP-co-MVE) presented triple action: reduced cell viability of cancer cells with little or no harm to normal cells (anticancer), reduced viability of proliferating endothelial cells with little or no harm to quiescent endothelial cells (antiangiogenic), and efficiently encapsulated hydrophobic molecules (nanocarrier). The anticancer and antiangiogenic activity of the synthesized copolymers is demonstrated as the active compound (vitamin E or α-tocopheryl succinate) do not need to be cleaved to trigger the biological action targeting ubiquinone binding sites of complex II. Poly(VP-co-SPHY) and poly(VP-co-MPHY) also formed surfactant-free NP that were also endocyted by the assayed cells; however, these NP did not selectively reduce cell viability of cancer cells. Therefore, the chromanol ring of the vitamin E analogues has an important role in the biological activity of the copolymers. Moreover, when succinate moiety is substituted and vitamin E is directly linked to the macromolecular chain through an ester bond, the biological activity is maintained.
Collapse
Affiliation(s)
- Raquel Palao-Suay
- †Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, C/Juan de la Cierva, 3, 28006 Madrid, Spain.,‡Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Zaragoza, Spain
| | - María Rosa Aguilar
- †Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, C/Juan de la Cierva, 3, 28006 Madrid, Spain.,‡Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Zaragoza, Spain
| | - Francisco J Parra-Ruiz
- †Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, C/Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Mar Fernández-Gutiérrez
- †Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, C/Juan de la Cierva, 3, 28006 Madrid, Spain.,‡Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Zaragoza, Spain
| | - Juan Parra
- ‡Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Zaragoza, Spain.,§Clinical Research and Experimental Biopathology Unit, Healthcare Complex of Ávila, SACYL, C/Jesús del Gran Poder 42, 05003 Ávila, Spain
| | - Carolina Sánchez-Rodríguez
- ∥Foundation for Biomedical Research, University Hospital of Getafe, Carretera de Toledo, km 12,500, 28905, Getafe, Madrid, Spain.,#European University of Madrid, C/ Tajo s/n. 28670, Villaviciosa de Odón (Madrid), Spain
| | - Ricardo Sanz-Fernández
- ∥Foundation for Biomedical Research, University Hospital of Getafe, Carretera de Toledo, km 12,500, 28905, Getafe, Madrid, Spain.,#European University of Madrid, C/ Tajo s/n. 28670, Villaviciosa de Odón (Madrid), Spain
| | - Laura Rodrigáñez
- ∥Foundation for Biomedical Research, University Hospital of Getafe, Carretera de Toledo, km 12,500, 28905, Getafe, Madrid, Spain
| | - Julio San Román
- †Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, C/Juan de la Cierva, 3, 28006 Madrid, Spain.,‡Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Zaragoza, Spain
| |
Collapse
|
29
|
He W, Lv Y, Zhao Y, Xu C, Jin Z, Qin C, Yin L. Core-shell structured gel-nanocarriers for sustained drug release and enhanced antitumor effect. Int J Pharm 2015; 484:163-71. [PMID: 25724136 DOI: 10.1016/j.ijpharm.2015.02.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/13/2015] [Accepted: 02/23/2015] [Indexed: 12/18/2022]
Abstract
The present paper attempted to develop temperature-sensitive and core-shell structured gel-nanocarriers (gel-NCs) for paclitaxel (PTX) with 12-hydroxystearic acid (12-HSA) as an organic gelator, which aims at sustaining drug release over time and thus improves the therapeutic effect. The gel-NCs were prepared by a mechanical mixing and high-pressure homogenization method. The gelation transition temperature (Tgel) of the organic phase contained in the cores of the gel-NCs was optimized by a stirring method. The gel-NCs were characterized in terms of the particle size, morphology and in vitro drug release. The in vivo studies, including the antitumor effects on H22 tumor-bearing mice, biocompatibility and toxicity in mice, were performed. Gel-NCs with approximately 170 nm were prepared successfully, and the gelation of the liquid cores at 37°C was achieved, while the amount of gelator was 3.75% (w/w). Due to the gelation of the cores, sustained drug release over time was obtained. Moreover, the PTX-loaded gel-NCs suppressed tumor growth more efficiently than the conventional nanocarriers with better in vivo biocompatibility and no toxicity to other healthy organs. In conclusion, the 12-HSA organogel-based NCs appear to be promising systems for the sustained release of active compounds for a long time and thus improve the therapeutic outcome.
Collapse
Affiliation(s)
- Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yaqi Lv
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yaping Zhao
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chaoran Xu
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhu Jin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chao Qin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lifang Yin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
30
|
Duhem N, Danhier F, Préat V. Vitamin E-based nanomedicines for anti-cancer drug delivery. J Control Release 2014; 182:33-44. [PMID: 24631865 DOI: 10.1016/j.jconrel.2014.03.009] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 12/22/2022]
Abstract
This review aims to highlight the development of novel vitamin E conjugates for the vectorization of active pharmaceutical ingredients through nanotechnologies. The physico-chemical and biological properties of vitamin E derivatives offer multiple advantages in drug delivery like biocompatibility, improvement of drug solubility and anticancer activity. Nanomedicines have shown high potential in drug delivery since (i) they may offer better drug biopharmaceutical properties such as longer half-life or better bioavailability and (ii) they have shown benefits in cancer therapy by improving anticancer drug therapeutic index. Vitamin E-based nanomedicines were developed to combine the pharmaceutical properties of both vitamin E and nanomedicines for two purposes: (i) to improve water solubility of hydrophobic drugs and (ii) to enhance the therapeutic efficiency of anticancer agents. This review is divided into three parts: the first one describes the biology and the metabolic functions of vitamin E, the second one focuses on the anticancer activity of two vitamin E derivatives: vitamin E succinate (TOS) and vitamin E polyethylene glycol-succinate (TPGS). Finally, in the third part, we discuss vitamin E derivatives based-nanomedicines.
Collapse
Affiliation(s)
- Nicolas Duhem
- Université Catholique de Louvain, Louvain Drug Research Institute, Pharmaceutics and Drug Delivery, Avenue E. Mounier 73, B1.73.12., 1200 Brussels, Belgium
| | - Fabienne Danhier
- Université Catholique de Louvain, Louvain Drug Research Institute, Pharmaceutics and Drug Delivery, Avenue E. Mounier 73, B1.73.12., 1200 Brussels, Belgium
| | - Véronique Préat
- Université Catholique de Louvain, Louvain Drug Research Institute, Pharmaceutics and Drug Delivery, Avenue E. Mounier 73, B1.73.12., 1200 Brussels, Belgium.
| |
Collapse
|
31
|
Xie M, Shi H, Li Z, Shen H, Ma K, Li B, Shen S, Jin Y. A multifunctional mesoporous silica nanocomposite for targeted delivery, controlled release of doxorubicin and bioimaging. Colloids Surf B Biointerfaces 2013; 110:138-47. [DOI: 10.1016/j.colsurfb.2013.04.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/25/2013] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
|
32
|
Mastrotto F, Salmaso S, Alexander C, Mantovani G, Caliceti P. Novel pH-responsive nanovectors for controlled release of ionisable drugs. J Mater Chem B 2013; 1:5335-5346. [DOI: 10.1039/c3tb20360c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|