1
|
Liang H, Zhang Y, Chen D, Tan H, Zheng Y, Wang J, Chen J. Characterization of Single-Nucleus Electrical Properties by Microfluidic Constriction Channel. MICROMACHINES 2019; 10:mi10110740. [PMID: 31683555 PMCID: PMC6915630 DOI: 10.3390/mi10110740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023]
Abstract
As key bioelectrical markers, equivalent capacitance (Cne, i.e., capacitance per unit area) and resistance (Rne, i.e., resistivity multiply thickness) of nuclear envelopes have emerged as promising electrical indicators, which cannot be effectively measured by conventional approaches. In this study, single nuclei were isolated from whole cells and trapped at the entrances of microfluidic constriction channels, and then corresponding impedance profiles were sampled and translated into single-nucleus Cne and Rne based on a home-developed equivalent electrical model. Cne and Rne of A549 nuclei were first quantified as 3.43 ± 1.81 μF/cm2 and 2.03 ± 1.40 Ω·cm2 (Nn = 35), which were shown not to be affected by variations of key parameters in nuclear isolation and measurement. The developed approach in this study was also used to measure a second type of nuclei, producing Cne and Rne of 3.75 ± 3.17 μF/cm2 and 1.01 ± 0.70 Ω·cm2 for SW620 (Nn = 17). This study may provide a new perspective in single-cell electrical characterization, enabling cell type classification and cell status evaluation based on bioelectrical markers of nuclei.
Collapse
Affiliation(s)
- Hongyan Liang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China.
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Yi Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China.
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Deyong Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China.
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Huiwen Tan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China.
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Yu Zheng
- Shandong University, Jinan 250100, China.
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China.
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China.
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
2
|
Marzec E, Olszewski J, Kaczmarczyk J, Richter M, Trzeciak T, Nowocień K, Malak R, Samborski W. Dielectric study of interaction of water with normal and osteoarthritis femoral condyle cartilage. Bioelectrochemistry 2016; 110:32-40. [PMID: 27015448 DOI: 10.1016/j.bioelechem.2016.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 02/26/2016] [Accepted: 03/13/2016] [Indexed: 12/23/2022]
Abstract
The main goal of this paper is the in vitro study of healthy and osteoarthritis (OA) human cartilage using the dielectric spectroscopy in the alpha-dispersion region of the electric field and in the temperatures from 25 to 140°C. The activation energy of conductivity needed to break the bonds formed by water in the extracellular matrix takes the average values of 61kJ/mol and 44kJ/mol for the control and OA cartilages, respectively. At 28°C, the small difference appears in the permittivity decrement between the control and OA cartilages, while the conductivity increment is about 2 times higher for the control tissue than that for the OA tissue. At 75°C, the conductivity increment for both of these samples is 8 times higher than their respective permittivity decrement. In addition, at 140°C the values of these both parameters for the OA tissue decrease by 8 times as compared to those recorded for the control sample. The relaxation frequency of about 10kHz is similar for both of these samples. The knowledge on dielectric properties of healthy and OA cartilage may prove relevant to tissue engineering focused on the repair of cartilage lesions via the layered structure designing.
Collapse
Affiliation(s)
- E Marzec
- Department of Bionics and Bioimpedance, University of Medical Sciences, Parkowa 2, 60-775 Poznań, Poland.
| | - J Olszewski
- Department of Bionics and Bioimpedance, University of Medical Sciences, Parkowa 2, 60-775 Poznań, Poland
| | - J Kaczmarczyk
- Department of Orthopedics and Traumatology, University of Medical Sciences, 28 Czerwca 1956r., 135/147, 60-545 Poznań, Poland
| | - M Richter
- Department of Orthopedics and Traumatology, University of Medical Sciences, 28 Czerwca 1956r., 135/147, 60-545 Poznań, Poland
| | - T Trzeciak
- Department of Orthopedics and Traumatology, University of Medical Sciences, 28 Czerwca 1956r., 135/147, 60-545 Poznań, Poland
| | - K Nowocień
- Department of Orthopedics and Traumatology, University of Medical Sciences, 28 Czerwca 1956r., 135/147, 60-545 Poznań, Poland
| | - R Malak
- Department of Rheumatology and Rehabilitation, University of Medical Sciences, 28 Czerwca 1956r., 135/147, 60-545 Poznań, Poland
| | - W Samborski
- Department of Rheumatology and Rehabilitation, University of Medical Sciences, 28 Czerwca 1956r., 135/147, 60-545 Poznań, Poland
| |
Collapse
|
3
|
Zhou S, Bismarck A, Steinke JHG. Ion-responsive alginate based macroporous injectable hydrogel scaffolds prepared by emulsion templating. J Mater Chem B 2013; 1:4736-4745. [PMID: 32261157 DOI: 10.1039/c3tb20888e] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ion-responsive biocompatible macroporous hydrogels with a well-defined highly interconnected open porous structure were synthesised using oil-in-water (o/w) high internal phase emulsion (HIPE) templating. Methacrylate-modified alginate was crosslinked in the continuous minority water phase and the oil internal phase removed to produce macroporous hydrogel monoliths. The physical dimensions, pore and pore throat size as well as water uptake of the alginate polyHIPE hydrogel can be controllably tuned by ion-responsive behaviour towards Ca2+ ions. The ionic crosslinks formed are fully reversible and be dissolved using sodium citrate to remove Ca2+ ions through chelation. The polyHIPE hydrogels possess mechanical properties with storage moduli up to 20 kPa and are biocompatible as shown by cytotoxicity assays. The hydrogel can be extruded through a hypodermic needle causing it to break into small pieces (about 1 to 3 mm in diameter) while retaining the interconnected pore morphology after injection. Furthermore, these hydrogel fragments can be reformed into a coherent scaffold under mild conditions using an alginate solution containing Ca2+ ions.
Collapse
Affiliation(s)
- Shengzhong Zhou
- Department of Chemical Engineering, Polymer & Composite Engineering (PaCE) Group, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | | | | |
Collapse
|