1
|
Diaz F, Forsyth N, Boccaccini AR. Aligned Ice Templated Biomaterial Strategies for the Musculoskeletal System. Adv Healthc Mater 2023; 12:e2203205. [PMID: 37058583 PMCID: PMC11468517 DOI: 10.1002/adhm.202203205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/21/2023] [Indexed: 04/16/2023]
Abstract
Aligned pore structures present many advantages when conceiving biomaterial strategies for treatment of musculoskeletal disorders. Aligned ice templating (AIT) is one of the many different techniques capable of producing anisotropic porous scaffolds; its high versatility allows for the formation of structures with tunable pore sizes, as well as the use of many different materials. AIT has been found to yield improved compressive properties for bone tissue engineering (BTE), as well as higher tensile strength and optimized cellular alignment and proliferation in tendon and muscle repair applications. This review evaluates the work that has been done in the last decade toward the production of aligned pore structures by AIT with an outlook on the musculoskeletal system. This work describes the fundamentals of the AIT technique and focuses on the research carried out to optimize the biomechanical properties of scaffolds by modifying the pore structure, categorizing by material type and application. Related topics including growth factor incorporation into AIT scaffolds, drug delivery applications, and studies about immune system response will be discussed.
Collapse
Affiliation(s)
- Florencia Diaz
- Department of Materials Science and EngineeringInstitute of BiomaterialsUniversity of Erlangen‐Nuremberg91058ErlangenGermany
| | - Nicholas Forsyth
- The Guy Hilton Research LaboratoriesSchool of Pharmacy and BioengineeringFaculty of Medicine and Health SciencesKeele UniversityStoke on TrentST4 7QBUK
| | - Aldo R. Boccaccini
- Department of Materials Science and EngineeringInstitute of BiomaterialsUniversity of Erlangen‐Nuremberg91058ErlangenGermany
| |
Collapse
|
2
|
In Vitro and In Vivo Analysis of the Effects of 3D-Printed Porous Titanium Alloy Scaffold Structure on Osteogenic Activity. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8494431. [PMID: 35996542 PMCID: PMC9392592 DOI: 10.1155/2022/8494431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/13/2022] [Accepted: 08/04/2022] [Indexed: 01/02/2023]
Abstract
The effect of titanium scaffold geometry on the bone regeneration ability of the scaffold remains unclear. Here, selective laser melting as a 3D printing technology was used to create porous titanium alloy scaffolds with two unit structures: a hollow hexagonal prism (group A) and a hollow triangular prism (group B). The structures and morphologies of the scaffolds were characterized before mechanical properties were simulated. Cell adhesion behaviors, osteoblast activity and proliferation, and alkaline phosphatase (ALP) activity were evaluated, in addition to in vivo testing in an animal model. The results showed that the two scaffolds made of Ti6Al4V had compression moduli similar to that of human cortical bone (116.91 ± 0.01 and 174.29 ± 2.21 MPa vs. 89–164 MPa). The two scaffolds were nontoxic to cells and had good biocompatibility, while group A scaffolds facilitated cell adhesion. The number of cells increased gradually in culture. The ALP activity of cells on group A scaffolds demonstrated higher osteogenic ability than that of group B scaffolds. The in vivo tests showed that all scaffolds retained their shape well after implantation, and no obvious inflammatory reaction or infection in surrounding tissues was found. Based on fluorescence staining, mature new bone formation was found at week 12. Group A scaffolds showed better bone integration ability compared with group B scaffolds. The percentage of new bone area in group A (7.5%) was higher than that in group B (6.5%). This research suggests that the hollow hexagonal prism structure of porous scaffolds can promote osteogenic differentiation and osseointegration better than the triangular prism structure.
Collapse
|
3
|
Engineered Membranes for Residual Cell Trapping on Microfluidic Blood Plasma Separation Systems: A Comparison between Porous and Nanofibrous Membranes. MEMBRANES 2021; 11:membranes11090680. [PMID: 34564497 PMCID: PMC8470088 DOI: 10.3390/membranes11090680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/24/2022]
Abstract
Blood-based clinical diagnostics require challenging limit-of-detection for low abundance, circulating molecules in plasma. Micro-scale blood plasma separation (BPS) has achieved remarkable results in terms of plasma yield or purity, but rarely achieving both at the same time. Here, we proposed the first use of electrospun polylactic-acid (PLA) membranes as filters to remove residual cell population from continuous hydrodynamic-BPS devices. The membranes hydrophilicity was improved by adopting a wet chemistry approach via surface aminolysis as demonstrated through Fourier Transform Infrared Spectroscopy and Water Contact Angle analysis. The usability of PLA-membranes was assessed through degradation measurements at extreme pH values. Plasma purity and hemolysis were evaluated on plasma samples with residual red blood cell content (1, 3, 5% hematocrit) corresponding to output from existing hydrodynamic BPS systems. Commercially available membranes for BPS were used as benchmark. Results highlighted that the electrospun membranes are suitable for downstream residual cell removal from blood, permitting the collection of up to 2 mL of pure and low-hemolyzed plasma. Fluorometric DNA quantification revealed that electrospun membranes did not significantly affect the concentration of circulating DNA. PLA-based electrospun membranes can be combined with hydrodynamic BPS in order to achieve high volume plasma separation at over 99% plasma purity.
Collapse
|
4
|
Marew T, Birhanu G. Three dimensional printed nanostructure biomaterials for bone tissue engineering. Regen Ther 2021; 18:102-111. [PMID: 34141834 PMCID: PMC8178073 DOI: 10.1016/j.reth.2021.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/29/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
The suffering from organ dysfunction due to damaged or diseased tissue/bone has been globally on the rise. Current treatment strategies for non-union bone defects include: the use of autografts, allografts, synthetic grafts and free vascularized fibular grafts. Bone tissue engineering has emerged as an alternative for fracture repair to satisfy the current unmet need of bone grafts and to alleviate the problems associated with autografts and allografts. The technology offers the possibility to induce new functional bone regeneration using synergistic combination of functional biomaterials (scaffolds), cells, and growth factors. Bone scaffolds are typically made of porous biodegradable materials that provide the mechanical support during repair and regeneration of damaged or diseased bone. Significant progress has been made towards scaffold materials for structural support, desired osteogenesis and angiogenesis abilities. Thanks for innovative scaffolds fabrication technologies, bioresorbable scaffolds with controlled porosity and tailored properties are possible today. Despite the presence of different bone scaffold fabrication methods, pore size, shape and interconnectivity have not yet been fully controlled in most of the methods. Moreover, scaffolds with tailored porosity for specific defects are still difficult to manufacture. Nevertheless, such scaffolds can be designed and fabricated using three dimensional (3D) printing approaches. 3D printing technology, as an advanced tissue scaffold fabrication method, offers the opportunity to produce complex geometries with distinct advantages. The technology has been used for the production of various types of bodily constructs such as blood vessels, vascular networks, bones, cartilages, exoskeletons, eyeglasses, cell cultures, tissues, organs and novel drug delivery devices. This review focuses on 3D printed scaffolds and their application in bone repair and regeneration. In addition, different classes of biomaterials commonly employed for the fabrication of 3D nano scaffolds for bone tissue engineering application so far are briefly discussed.
Collapse
Affiliation(s)
- Tesfa Marew
- Department of Pharmaceutics & Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gebremariam Birhanu
- Department of Pharmaceutics & Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Yang Y, Abdalla S. Scaffolds of Macroporous Tannin Spray With Human-Induced Pluripotent Stem Cells. Front Bioeng Biotechnol 2020; 8:951. [PMID: 33178667 PMCID: PMC7593690 DOI: 10.3389/fbioe.2020.00951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/23/2020] [Indexed: 12/04/2022] Open
Abstract
Skeletal defects resulting from trauma and disease represent a major clinical problem worldwide exacerbated further by global population growth and an increasing number of elderly people. As treatment options are limited, bone tissue engineering opens the doors to start an infinite amount of tissue/bone biomaterials having excellent therapeutic potential for the management of clinical cases characterized by severe bone loss. Bone engineering relies on the use of compliant biomaterial scaffolds, osteocompetent cells, and biologically active agents. In fact, we are interested to use a new natural material, tannin. Among other materials, porous tannin spray-dried powder (PTSDP) has been approved for human use. We use PTSDP as reconstructive materials with low cost, biocompatibility, and potential ability to be replaced by bone in vivo. In this study, macro PTSDP scaffolds with defined geometry, porosity, and mechanical properties are manufactured using a combination of casting technology and porogen leaching, by mixing PTSDP and hydroxyapatite Ca10(PO4)6(OH)2 with polyethylene glycol macroparticles. Our results show that the scaffolds developed in this work support attachment, long-term viability, and osteogenic differentiation of human-induced pluripotent stem cell-derived mesenchymal progenitors. The combination of select macroporous PTSDP scaffolds with patient-specific osteocompetent cells offers new opportunities to grow autologous bone grafts with enhanced clinical potential for complex skeletal reconstructions.
Collapse
Affiliation(s)
- Yongbo Yang
- Department of Orthopedics (Spine), Xinxiang Central Hospital, Xinxiang City, China
| | - Soliman Abdalla
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
El Khatib M, Mauro A, Wyrwa R, Di Mattia M, Turriani M, Di Giacinto O, Kretzschmar B, Seemann T, Valbonetti L, Berardinelli P, Schnabelrauch M, Barboni B, Russo V. Fabrication and Plasma Surface Activation of Aligned Electrospun PLGA Fiber Fleeces with Improved Adhesion and Infiltration of Amniotic Epithelial Stem Cells Maintaining their Teno-inductive Potential. Molecules 2020; 25:E3176. [PMID: 32664582 PMCID: PMC7396982 DOI: 10.3390/molecules25143176] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
Electrospun PLGA microfibers with adequate intrinsic physical features (fiber alignment and diameter) have been shown to boost teno-differentiation and may represent a promising solution for tendon tissue engineering. However, the hydrophobic properties of PLGA may be adjusted through specific treatments to improve cell biodisponibility. In this study, electrospun PLGA with highly aligned microfibers were cold atmospheric plasma (CAP)-treated by varying the treatment exposure time (30, 60, and 90 s) and the working distance (1.3 and 1.7 cm) and characterized by their physicochemical, mechanical and bioactive properties on ovine amniotic epithelial cells (oAECs). CAP improved the hydrophilic properties of the treated materials due to the incorporation of new oxygen polar functionalities on the microfibers' surface especially when increasing treatment exposure time and lowering working distance. The mechanical properties, though, were affected by the treatment exposure time where the optimum performance was obtained after 60 s. Furthermore, CAP treatment did not alter oAECs' biocompatibility and improved cell adhesion and infiltration onto the microfibers especially those treated from a distance of 1.3 cm. Moreover, teno-inductive potential of highly aligned PLGA electrospun microfibers was maintained. Indeed, cells cultured onto the untreated and CAP treated microfibers differentiated towards the tenogenic lineage expressing tenomodulin, a mature tendon marker, in their cytoplasm. In conclusion, CAP treatment on PLGA microfibers conducted at 1.3 cm working distance represent the optimum conditions to activate PLGA surface by improving their hydrophilicity and cell bio-responsiveness. Since for tendon tissue engineering purposes, both high cell adhesion and mechanical parameters are crucial, PLGA treated for 60 s at 1.3 cm was identified as the optimal construct.
Collapse
Affiliation(s)
- Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Ralf Wyrwa
- Department of Biomaterials, INNOVENT e. V., 07745 Jena, Germany; (R.W.); (M.S.)
| | - Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Maura Turriani
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Oriana Di Giacinto
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Björn Kretzschmar
- Department of Surface Engineering, INNOVENT e. V., 07745 Jena, Germany; (B.K.); (T.S.)
| | - Thomas Seemann
- Department of Surface Engineering, INNOVENT e. V., 07745 Jena, Germany; (B.K.); (T.S.)
| | - Luca Valbonetti
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | | | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| |
Collapse
|
7
|
Wang L, Zhang K, Hao Y, Liu M, Wu W. Osteoblast/bone-tissue responses to porous surface of polyetheretherketone-nanoporous lithium-doped magnesium silicate blends' integration with polyetheretherketone. Int J Nanomedicine 2019; 14:4975-4989. [PMID: 31371942 PMCID: PMC6626899 DOI: 10.2147/ijn.s197179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/14/2019] [Indexed: 01/12/2023] Open
Abstract
The porous surface of a polyetheretherketone (PK)-nanoporous lithium-doped magnesium silicate (NLS) blend (PKNLS) was fabricated on a PK surface by layer-by-layer pressuring, sintering, and salt-leaching. As controls, porous surfaces of a PK/lithium-doped magnesium silicate blend (PKLS) and PK were fabricated using the same method. The results revealed that porosity, water absorption, and protein absorption of the porous surface of PKNLS containing macropores and nanopores were obviously enhanced compared to PKLS and PK containing macropores without nanopores. In addition, PKNLS, with both macroporostiy and nanoporosity, displayed the highest ability of apatite mineralization in simulated body liquid, indicating excellent bioactivity. In vitro responses (including adhesion, proliferation, and differentiation) of MC3T3E1 cells to PKNLS were significantly enhanced compared to PKLS and PK. In vivo implantation results showed that new bone grew into the macroporous surface of PKNLS, and the amount of new bone for PKNLS was the highest. In short, PKNLS integration with PK significantly promoted cells/bone-tissue responses and exhibited excellent osteogenesis in vivo, which might have great potential for bone repair.
Collapse
Affiliation(s)
- Lei Wang
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai200011, People’s Republic of China
| | - Kai Zhang
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai200011, People’s Republic of China
| | - Yongqiang Hao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai200011, People’s Republic of China
| | - Ming Liu
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai200011, People’s Republic of China
| | - Wen Wu
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai200011, People’s Republic of China
| |
Collapse
|
8
|
Xia Y, Guo Y, Yang Z, Chen H, Ren K, Weir MD, Chow LC, Reynolds MA, Zhang F, Gu N, Xu HHK. Iron oxide nanoparticle-calcium phosphate cement enhanced the osteogenic activities of stem cells through WNT/β-catenin signaling. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109955. [PMID: 31500064 DOI: 10.1016/j.msec.2019.109955] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 06/15/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023]
Abstract
Calcium phosphate cement (CPC), functionalized with iron oxide nanoparticles (IONP), is of great promise to promote osteoinduction and new bone formation. In this work, the IONP powder was added into the CPC powder to fabricate CPC + IONP scaffolds and the effects of the novel composite on bone matrix formation and osteogenesis of human dental pulp stem cells (hDPSCs) were explored. A series of CPC + IONP magnetic scaffolds with different IONP contents (1%, 3% and 6%) were fabricated using 5% chitosan solution as the cement liquid. Western blotting and RT-PCR were used to analyze the signaling pathway. The IONP incorporation substantially enhanced the performance of CPC + IONP, with increases in both mechanical strength and cellular activities. The IONP addition greatly promoted the osteogenesis of hDPSCs, elevating the ALP activity, the expression of osteogenic marker genes and bone matrix formation with 1.5-2-fold increases. The 3% IONP incorporation showed the most enhancement among all groups. Activation of the extracellular signal-related kinases WNT/β-catenin in DPSCs was observed, and this activation was attenuated by the WNT inhibitor DKK1. The results indicated that the osteogenic behavior of hDPSCs was likely driven by CPC + IONP via the WNT signaling pathway. In conclusion, incorporate IONP into CPC scaffold remarkably enhanced the spreading, osteogenic differentiation and bone mineral synthesis of stem cell. Therefore, this method had great potential for bone tissue engineering. The novel CPC + IONP composite scaffolds with stem cells are promising to provide an innovative strategy to enhance bone regenerative therapies.
Collapse
Affiliation(s)
- Yang Xia
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore 21201, USA
| | - Yu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zukun Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Huimin Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ke Ren
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore 21201, USA
| | - Laurence C Chow
- Volpe Research Center, American Dental Association Foundation, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Mark A Reynolds
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore 21201, USA
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu 215123, China.
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu 215123, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore 21201, USA; Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greene Baum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
9
|
Qian G, Fan P, He F, Ye J. Novel Strategy to Accelerate Bone Regeneration of Calcium Phosphate Cement by Incorporating 3D Plotted Poly(lactic-co-glycolic acid) Network and Bioactive Wollastonite. Adv Healthc Mater 2019; 8:e1801325. [PMID: 30901163 DOI: 10.1002/adhm.201801325] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/26/2019] [Indexed: 11/08/2022]
Abstract
Inefficient bone regeneration of self-hardening calcium phosphate cement (CPC) increases the demand for interconnected macropores and osteogenesis-stimulated substances. It remains a challenge to fabricate porous CPC with interconnected macropores while maintaining its advantages, such as plasticity. Herein, pastes containing CPC and wollastonite (WS) are infiltrated into a 3D plotted poly(lactic-co-glycolic acid) (PLGA) network to fabricate plastic CPC-based composite cement (PLGA/WS/CPC). The PLGA/WS/CPC recovers the plasticity of CPC after being heated above the glass transition temperature of PLGA. The presence of the 3D PLGA network significantly increases the flexibility of CPC in prophase and generates 3D interconnected macropores in situ upon its degradation. The addition of WS is helpful to improve the attachment, proliferation, and osteogenic differentiation of mouse bone marrow stromal cells in vitro. The in vivo experimental results indicate that PLGA/WS/CPC promotes rapid angiogenesis and bone formation. Therefore, the plastic CPC-based composite cement with a 3D PLGA network and wollastonite shows an obviously improved efficiency for repairing bone defects and is expected to facilitate the wider application of CPC in the clinic.
Collapse
Affiliation(s)
- Guowen Qian
- School of Materials Science and EngineeringKey Laboratory of Biomedical Materials of Ministry of EducationSouth China University of Technology Guangzhou 510641 China
- National Engineering Research Center for Tissue Restoration and Reconstruction Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Province Guangzhou 510006 China
| | - Peirong Fan
- School of Materials Science and EngineeringKey Laboratory of Biomedical Materials of Ministry of EducationSouth China University of Technology Guangzhou 510641 China
- National Engineering Research Center for Tissue Restoration and Reconstruction Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Province Guangzhou 510006 China
| | - Fupo He
- School of Electromechanical EngineeringGuangdong University of Technology Guangzhou 510006 China
| | - Jiandong Ye
- School of Materials Science and EngineeringKey Laboratory of Biomedical Materials of Ministry of EducationSouth China University of Technology Guangzhou 510641 China
- National Engineering Research Center for Tissue Restoration and Reconstruction Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Province Guangzhou 510006 China
| |
Collapse
|
10
|
He F, Lu T, Fang X, Tian Y, Li Y, Zuo F, Ye J. Modification of honeycomb bioceramic scaffolds for bone regeneration under the condition of excessive bone resorption. J Biomed Mater Res A 2019; 107:1314-1323. [PMID: 30707498 DOI: 10.1002/jbm.a.36644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/02/2019] [Accepted: 01/28/2019] [Indexed: 01/07/2023]
Abstract
Gallium (Ga) ions have been clinically approved for treating the diseases caused by the excessive bone resorption through the systemic administration. Nevertheless, little attention has been given to the Ga-containing biomaterials for repairing bone defects under the pathological condition of excessive bone resorption. In the current study, for the first time the Ga-containing phosphate glasses (GPGs) were introduced to modify the honeycomb β-tricalcium phosphate (β-TCP) bioceramic scaffolds, which were prepared by an extrusion method. The results indicated that the scaffolds were characterized by uniform pore structure and channel-like macropores. The addition of GPGs promoted densification of strut of scaffolds by achieving liquid-sintering of β-TCP, thereby tremendously increasing the compressive strength. The ions released from scaffolds pronouncedly inhibited osteoclastogenesis-related gene expressions and multinuclearity of RAW264.7 murine monocyte cells, as well as expressions of early osteogenic makers of mouse bone mesenchymal stem cells (mBMSCs). However, the scaffolds with lower amount of Ga increased cell proliferation and upregulated expression of late osteogenic maker of mBMSCs. This study offers a novel approach to modify the bioceramic scaffolds for bone regeneration under the condition of accelerated bone resorption. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1314-1323, 2019.
Collapse
Affiliation(s)
- Fupo He
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Teliang Lu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, People's Republic of China
| | - Xibo Fang
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Ye Tian
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Yanhui Li
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Fei Zuo
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Jiandong Ye
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, People's Republic of China
| |
Collapse
|
11
|
Meng D, Dong L, Yuan Y, Jiang Q. In vitro and in vivo analysis of the biocompatibility of two novel and injectable calcium phosphate cements. Regen Biomater 2018; 6:13-19. [PMID: 30740238 PMCID: PMC6362821 DOI: 10.1093/rb/rby027] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/05/2018] [Accepted: 11/20/2018] [Indexed: 11/29/2022] Open
Abstract
Calcium phosphate cements (CPCs) have been widely used as bone graft substitutes for many years. The aim of this study was to evaluate the biocompatibility of two novel injectable, bioactive cements: β-tricalcium phosphate (β-TCP)/CPC and chitosan microsphere/CPC in vitro and in vivo. This was accomplished by culturing mouse pre-osteoblastic cells (MC3T3-E1) on discs and pastes of CPCs. Cell growth, adhesion, proliferation and differentiation were assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide and alkaline phosphatase assays as well as by scanning electron microscopy and fluorescence. The effect of CPC paste curing was also evaluated. Implantation of two materials into the muscle tissue of rabbits was also studied and evaluated by histological analysis. Cell analysis indicated good biocompatibility in vitro. The fluorescence assay suggested that the cured material discs had no obvious effect on cell growth, while the curing process did. Histological examination showed no inflammatory cell infiltration into soft tissue. These data suggest that β-TCP/CPC and chitosan microsphere/CPC composites may be promising injectable material for bone tissue engineering.
Collapse
Affiliation(s)
- Dan Meng
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Limin Dong
- Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Energy Science Building, Beijing, China
| | - Yafei Yuan
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Qingsong Jiang
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Xia Y, Chen H, Zhang F, Bao C, Weir MD, Reynolds MA, Ma J, Gu N, Xu HHK. Gold nanoparticles in injectable calcium phosphate cement enhance osteogenic differentiation of human dental pulp stem cells. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2018; 14:35-45. [PMID: 28887211 PMCID: PMC5803751 DOI: 10.1016/j.nano.2017.08.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/18/2017] [Accepted: 08/15/2017] [Indexed: 02/05/2023]
Abstract
In this study, a novel calcium phosphate cement containing gold nanoparticles (GNP-CPC) was developed. Its osteogenic induction ability on human dental pulp stem cells (hDPSCs) was investigated for the first time. The incorporation of GNPs improved hDPSCs behavior on CPC, including better cell adhesion (about 2-fold increase in cell spreading) and proliferation, and enhanced osteogenic differentiation (about 2-3-fold increase at 14 days). GNPs endow CPC with micro-nano-structure, thus improving surface properties for cell adhesion and subsequent behaviors. In addition, GNPs released from GNP-CPC were internalized by hDPSCs, as verified by transmission electron microscopy (TEM), thus enhancing cell functions. The culture media containing GNPs enhanced the cellular activities of hDPSCs. This result was consistent with and supported the osteogenic induction results of GNP-CPC. In conclusion, GNP-CPC significantly enhanced the osteogenic functions of hDPSCs. GNPs are promising to modify CPC with nanotopography and work as bioactive additives thus enhance bone regeneration.
Collapse
Affiliation(s)
- Yang Xia
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China; Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Huimin Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chongyun Bao
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Michael D Weir
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Mark A Reynolds
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA; Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
13
|
Surface biofunctionalization of three-dimensional porous poly(lactic acid) scaffold using chitosan/OGP coating for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:92-101. [DOI: 10.1016/j.msec.2017.03.220] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/09/2017] [Accepted: 03/24/2017] [Indexed: 11/24/2022]
|
14
|
Peng G, Li S, Peng Q, Li Y, Weng J, Jia Z, Kang J, Lei X, Zhang G, Gao Y. Immobilization of native type I collagen on polypropylene fabrics as a substrate for HepG2 cell culture. J Biomater Appl 2017; 32:93-103. [PMID: 28504559 DOI: 10.1177/0885328217709607] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background/aims The critical part of a bio-artificial liver device is establishment of a bioreactor filled with liver cells. However, it is still unclear how to maintain benign cell function while achieving the sufficient cell quantity. In the current study, we aim to establish a novel carrier for the culture of HepG2 cells, a liver cell line, by modifying polypropylene nonwoven fabrics with native type I collagen. Methods “Piranha” solution, KH-550 and glutaraldehyde subsequently were used to bridge native type I collagen and polypropylene nonwoven fabrics. The type I collagen-coupled polypropylene nonwoven fabric was characterized by XPS, SEM, ATR-FTIR and water contact angle measurement. Furthermore, the biocompatibility between HepG2 cells and fiber film is evaluated by the ability of cell proliferation, albumin secretion, as well as urea synthesis. Results The coating of collagen onto polypropylene fabrics was more efficient using the chemical covalent binding method than direct immersion, which was validated by the presence of collagen-related elements and chemical bond. The adding of collagen in polypropylene fabrics promoted hydrophilicity and HepG2 cell adherence. Additionally, enhanced cell proliferation, increased albumin secretion and urea synthesis were observed in HepG2 cells growing on collagen-coated polypropylene fabrics. Conclusions The collagen coated polypropylene nonwoven fabrics, acting as a feasible substrate for HepG2 cell culture, may be used as a promising liver cell carrier for artificial liver reactor.
Collapse
Affiliation(s)
- Gongze Peng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Saina Li
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, China
| | - Qing Peng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Li
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Weng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhidong Jia
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiyao Kang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, China
| | - Xiongxin Lei
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, China
| | - Guifeng Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Zhu Q, Teng J, Liu X, Lan Y, Guo R. Preparation and characterization of gentamycin sulfate-impregnated gelatin microspheres/collagen–cellulose/nanocrystal scaffolds. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2020-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
16
|
Minipig-BMSCs Combined with a Self-Setting Calcium Phosphate Paste for Bone Tissue Engineering. Mol Biotechnol 2017; 58:748-756. [PMID: 27683256 DOI: 10.1007/s12033-016-9974-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Calcium phosphate cements (CPCs) are a new generation of bone repair materials with good biocompatibility for various stem cells. The minipig is a recommended large animal model for bone engineering research. This study aimed to evaluate the feasibility of utilizing CPC scaffolds for the adhesion, proliferation, and osteogenic differentiation of minipig's bone marrow mesenchymal stem cells (pBMSCs). Passage 3 pBMSCs were seeded on the CPC scaffold and cultured with osteogenic culture medium (osteogenic group) or normal medium (control group). The density of viable cells increased in both groups, and pBMSCs firmly attached and spread well on the CPC scaffold. The alkaline phosphatase (ALP) activity in the osteogenic group had significantly increased on day 7 (D7) and peaked on D14. qRT-PCR revealed that mRNA levels of ALP and three osteogenic marker genes were significantly higher on D4, D7, and D14 in the osteogenic group. Alizarin Red S staining showed a significantly higher degree of bone mineralization from D7, D14 to D21 in the osteogenic group. These results indicated that pBMSCs can attach, proliferate well on CPC scaffold, and be successfully induced to differentiate into osteogenic cells. Our findings may be helpful for bone tissue engineering and the studies of bone regeneration.
Collapse
|
17
|
Cui Z, Lin L, Si J, Luo Y, Wang Q, Lin Y, Wang X, Chen W. Fabrication and characterization of chitosan/OGP coated porous poly(ε-caprolactone) scaffold for bone tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:826-845. [PMID: 28278041 DOI: 10.1080/09205063.2017.1303867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
As one of the stimulators on bone formation, osteogenic growth peptide (OGP) improves both proliferation and differentiation of the bone cells in vitro and in vivo. The aim of this work was the preparation of three dimensional porous poly(ε-caprolactone) (PCL) scaffold with high porosity, well interpore connectivity, and then its surface was modified by using chitosan (CS)/OGP coating for application in bone regeneration. In present study, the properties of porous PCL and CS/OGP coated PCL scaffold, including the microstructure, water absorption, porosity, hydrophilicity, mechanical properties, and biocompatibility in vitro were investigated. Results showed that the PCL and CS/OGP-PCL scaffold with an interconnected network structure have a porosity of more than 91.5, 80.8%, respectively. The CS/OGP-PCL scaffold exhibited better hydrophilicity and mechanical properties than that of uncoated PCL scaffold. Moreover, the results of cell culture test showed that CS/OGP coating could stimulate the proliferation and growth of osteoblast cells on CS/OGP-PCL scaffold. These finding suggested that the surface modification could be a effective method on enhancing cell adhesion to synthetic polymer-based scaffolds in tissue engineering application and the developed porous CS/OGP-PCL scaffold should be considered as alternative biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Zhixiang Cui
- a School of Materials Science and Engineering, Fujian University of Technology , Fuzhou , China.,b Fujian Provincial Key Laboratory of Advanced Materials Processing and Application , Fuzhou , China.,c School of Materials Science and Engineering, Fuzhou University , Fuzhou , China.,d National Center for International Research of Micro-nano Molding Technology & Key Laboratory for Micro Molding Technology of Henan Province , Zhengzhou University , Zhengzhou , China
| | - Luyin Lin
- a School of Materials Science and Engineering, Fujian University of Technology , Fuzhou , China.,b Fujian Provincial Key Laboratory of Advanced Materials Processing and Application , Fuzhou , China
| | - Junhui Si
- a School of Materials Science and Engineering, Fujian University of Technology , Fuzhou , China.,b Fujian Provincial Key Laboratory of Advanced Materials Processing and Application , Fuzhou , China
| | - Yufei Luo
- e School of Pharmacy, Fujian Medical University , Fuzhou , China
| | - Qianting Wang
- a School of Materials Science and Engineering, Fujian University of Technology , Fuzhou , China.,b Fujian Provincial Key Laboratory of Advanced Materials Processing and Application , Fuzhou , China
| | - Yongnan Lin
- a School of Materials Science and Engineering, Fujian University of Technology , Fuzhou , China.,b Fujian Provincial Key Laboratory of Advanced Materials Processing and Application , Fuzhou , China
| | - Xiaofeng Wang
- d National Center for International Research of Micro-nano Molding Technology & Key Laboratory for Micro Molding Technology of Henan Province , Zhengzhou University , Zhengzhou , China
| | - Wenzhe Chen
- a School of Materials Science and Engineering, Fujian University of Technology , Fuzhou , China.,b Fujian Provincial Key Laboratory of Advanced Materials Processing and Application , Fuzhou , China.,c School of Materials Science and Engineering, Fuzhou University , Fuzhou , China
| |
Collapse
|
18
|
Tan X, Zhan J, Zhu Y, Cao J, Wang L, Liu S, Wang Y, Liu Z, Qin Y, Wu M, Liu Y, Ren L. Improvement of Uveal and Capsular Biocompatibility of Hydrophobic Acrylic Intraocular Lens by Surface Grafting with 2-Methacryloyloxyethyl Phosphorylcholine-Methacrylic Acid Copolymer. Sci Rep 2017; 7:40462. [PMID: 28084469 PMCID: PMC5234006 DOI: 10.1038/srep40462] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/06/2016] [Indexed: 11/17/2022] Open
Abstract
Biocompatibility of intraocular lens (IOL) is critical to vision reconstruction after cataract surgery. Foldable hydrophobic acrylic IOL is vulnerable to the adhesion of extracellular matrix proteins and cells, leading to increased incidence of postoperative inflammation and capsule opacification. To increase IOL biocompatibility, we synthesized a hydrophilic copolymer P(MPC-MAA) and grafted the copolymer onto the surface of IOL through air plasma treatment. X-ray photoelectron spectroscopy, atomic force microscopy and static water contact angle were used to characterize chemical changes, topography and hydrophilicity of the IOL surface, respectively. Quartz crystal microbalance with dissipation (QCM-D) showed that P(MPC-MAA) modified IOLs were resistant to protein adsorption. Moreover, P(MPC-MAA) modification inhibited adhesion and proliferation of lens epithelial cells (LECs) in vitro. To analyze uveal and capsular biocompatibility in vivo, we implanted the P(MPC-MAA) modified IOLs into rabbits after phacoemulsification. P(MPC-MAA) modification significantly reduced postoperative inflammation and anterior capsule opacification (ACO), and did not affect posterior capsule opacification (PCO). Collectively, our study suggests that surface modification by P(MPC-MAA) can significantly improve uveal and capsular biocompatibility of hydrophobic acrylic IOL, which could potentially benefit patients with blood-aqueous barrier damage.
Collapse
Affiliation(s)
- Xuhua Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Jiezhao Zhan
- National Engineering Research Center for Human Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Yi Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Ji Cao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China.,EYEGOOD Medicals Co., Ltd, Zhuhai, Guangdong, 519085, China
| | - Lin Wang
- National Engineering Research Center for Human Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Sa Liu
- National Engineering Research Center for Human Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Yingjun Wang
- National Engineering Research Center for Human Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Zhenzhen Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Yingyan Qin
- Zhongshan Ophthalmic Center, Sun Yat-sen University 54 South Xianlie Rd, Guangzhou, China
| | - Mingxing Wu
- Department of Cataract, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Li Ren
- National Engineering Research Center for Human Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China
| |
Collapse
|
19
|
Sadeghi-Avalshahr AR, Khorsand-Ghayeni M, Nokhasteh S, Molavi AM, Naderi-Meshkin H. Synthesis and characterization of PLGA/collagen composite scaffolds as skin substitute produced by electrospinning through two different approaches. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:14. [PMID: 27995492 DOI: 10.1007/s10856-016-5789-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
Skin damage can occur for many reasons, including burns and injuries, which in extreme cases can even lead to death. Different methods such as electrospinning are used to produce scaffolds used in skin tissue engineering. Natural and synthetic polymers were used in this method. It was observed that the use of both natural and synthetic polymers gives better results for cell culturing rather than using of each material solely. In this study, scaffolds of poly(lactic-co-glycolic acid) and collagen were prepared using coating and common solvent methods. The characteristics of samples were evaluated through scanning electron microscopy, porosimetry, mechanical testing, degradation behavior, and in vitro assays. The mechanical and biocompatibility test results of the scaffold prepared by coating method were better than the other one. However, the degradation rate of the common solvent was nearly five times more than coating sample that leads to cytotoxicity in contact with the skin cells.
Collapse
Affiliation(s)
- Ali Reza Sadeghi-Avalshahr
- Department of Materials Research, Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad Branch, Mashhad, Iran.
| | - Mohammad Khorsand-Ghayeni
- Department of Materials Research, Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad Branch, Mashhad, Iran
| | - Samira Nokhasteh
- Department of Materials Research, Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad Branch, Mashhad, Iran
| | - Amir Mahdi Molavi
- Department of Materials Research, Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad Branch, Mashhad, Iran
- Materials Engineering Department, Tarbiat Modares University, Tehran, Iran
| | - Hojjat Naderi-Meshkin
- Stem Cell and Regenerative Medicine Research Department, Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad Branch, Mashhad, Iran
| |
Collapse
|
20
|
Hou J, Zhang F, Cheng D, Shi X, Cao X. Mineralization of a superficially porous microsphere scaffold via plasma modification. RSC Adv 2017. [DOI: 10.1039/c6ra25256g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel porous mineralization layers were obtained on scaffolds. The plasma process could enhance the bonding force between apatite and the substrate surface.
Collapse
Affiliation(s)
- Jie Hou
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Centre for Tissue Restoration and Reconstruction
| | - Fen Zhang
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Centre for Tissue Restoration and Reconstruction
| | - Delin Cheng
- Centre for Human Tissue and Organ Degeneration
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
- China
| | - Xuetao Shi
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Centre for Tissue Restoration and Reconstruction
| | - Xiaodong Cao
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Centre for Tissue Restoration and Reconstruction
| |
Collapse
|
21
|
García-Gareta E, Coathup MJ, Blunn GW. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone 2015; 81:112-121. [PMID: 26163110 DOI: 10.1016/j.bone.2015.07.007] [Citation(s) in RCA: 363] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 01/01/2023]
Abstract
Regeneration of bone defects caused by trauma, infection, tumours or inherent genetic disorders is a clinical challenge that usually necessitates bone grafting materials. Autologous bone or autograft is still considered the clinical "gold standard" and the most effective method for bone regeneration. However, limited bone supply and donor site morbidity are the most important disadvantages of autografting. Improved biomaterials are needed to match the performance of autograft as this is still superior to that of synthetic bone grafts. Osteoinductive materials would be the perfect candidates for achieving this task. The aim of this article is to review the different groups of bone substitutes in terms of their most recently reported osteoinductive properties. The different factors influencing osteoinductivity by biomaterials as well as the mechanisms behind this phenomenon are also presented, showing that it is very limited compared to osteoinductivity shown by bone morphogenetic proteins (BMPs). Therefore, a new term to describe osteoinductivity by biomaterials is proposed. Different strategies for adding osteoinductivity (BMPs, stem cells) to bone substitutes are also discussed. The overall objective of this paper is to gather the current knowledge on osteoinductivity of bone grafting materials for the effective development of new graft substitutes that enhance bone regeneration.
Collapse
Affiliation(s)
- Elena García-Gareta
- RAFT Institute of Plastic Surgery, Mount Vernon Hospital, Northwood HA6 2RN, UK.
| | - Melanie J Coathup
- John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Gordon W Blunn
- John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| |
Collapse
|
22
|
Sun H, Yang HL. Calcium phosphate scaffolds combined with bone morphogenetic proteins or mesenchymal stem cells in bone tissue engineering. Chin Med J (Engl) 2015; 128:1121-7. [PMID: 25881610 PMCID: PMC4832956 DOI: 10.4103/0366-6999.155121] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective: The purpose of this study was to review the current status of calcium phosphate (CaP) scaffolds combined with bone morphogenetic proteins (BMPs) or mesenchymal stem cells (MSCs) in the field of bone tissue engineering (BTE). Date Sources: Data cited in this review were obtained primarily from PubMed and Medline in publications from 1979 to 2014, with highly regarded older publications also included. The terms BTE, CaP, BMPs, and MSC were used for the literature search. Study Selection: Reviews focused on relevant aspects and original articles reporting in vitro and/or in vivo results concerning the efficiency of CaP/BMPs or CaP/MSCs composites were retrieved, reviewed, analyzed, and summarized. Results: An ideal BTE product contains three elements: Scaffold, growth factors, and stem cells. CaP-based scaffolds are popular because of their outstanding biocompatibility, bioactivity, and osteoconductivity. However, they lack stiffness and osteoinductivity. To solve this problem, composite scaffolds of CaP with BMPs have been developed. New bone formation by CaP/BMP composites can reach levels similar to those of autografts. CaP scaffolds are compatible with MSCs and CaP/MSC composites exhibit excellent osteogenesis and stiffness. In addition, a CaP/MSC/BMP scaffold can repair bone defects more effectively than an autograft. Conclusions: Novel BTE products possess remarkable osteoconduction and osteoinduction capacities, and exhibit balanced degradation with osteogenesis. Further work should yield safe, viable, and efficient materials for the repair of bone lesions.
Collapse
Affiliation(s)
| | - Hui-Lin Yang
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Jiangsu 215006, China
| |
Collapse
|
23
|
Wang Y, Li ZW, Luo M, Li YJ, Zhang KQ. Biological conduits combining bone marrow mesenchymal stem cells and extracellular matrix to treat long-segment sciatic nerve defects. Neural Regen Res 2015. [PMID: 26199615 PMCID: PMC4498360 DOI: 10.4103/1673-5374.158362] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The transplantation of polylactic glycolic acid conduits combining bone marrow mesenchymal stem cells and extracellular matrix gel for the repair of sciatic nerve injury is effective in some respects, but few data comparing the biomechanical factors related to the sciatic nerve are available. In the present study, rabbit models of 10-mm sciatic nerve defects were prepared. The rabbit models were repaired with autologous nerve, a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells, or a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel. After 24 weeks, mechanical testing was performed to determine the stress relaxation and creep parameters. Following sciatic nerve injury, the magnitudes of the stress decrease and strain increase at 7,200 seconds were largest in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group, followed by the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group, and then the autologous nerve group. Hematoxylin-eosin staining demonstrated that compared with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group and the autologous nerve group, a more complete sciatic nerve regeneration was found, including good myelination, regularly arranged nerve fibers, and a completely degraded and resorbed conduit, in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group. These results indicate that bridging 10-mm sciatic nerve defects with a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel construct increases the stress relaxation under a constant strain, reducing anastomotic tension. Large elongations under a constant physiological load can limit the anastomotic opening and shift, which is beneficial for the regeneration and functional reconstruction of sciatic nerve. Better regeneration was found with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel grafts than with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells grafts and the autologous nerve grafts.
Collapse
Affiliation(s)
- Yang Wang
- Department of Orthopedics, China-Japan Friendship Hospital, Jilin University, Changchun, Jilin Province, China
| | - Zheng-Wei Li
- Department of Orthopedics, Second Hospital, Jilin University, Changchun, Jilin Province, China
| | - Min Luo
- Department of Orthopedics, China-Japan Friendship Hospital, Jilin University, Changchun, Jilin Province, China
| | - Ya-Jun Li
- Mathematics School, Jilin University, Changchun, Jilin Province, China
| | - Ke-Qiang Zhang
- Department of Orthopedics, Second Hospital, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
24
|
Jin H, Yang Q, Ji F, Zhang YJ, Zhao Y, Luo M. Human amniotic epithelial cell transplantation for the repair of injured brachial plexus nerve: evaluation of nerve viscoelastic properties. Neural Regen Res 2015; 10:260-5. [PMID: 25883625 PMCID: PMC4392674 DOI: 10.4103/1673-5374.152380] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2015] [Indexed: 12/11/2022] Open
Abstract
The transplantation of embryonic stem cells can effectively improve the creeping strength of nerves near an injury site in animals. Amniotic epithelial cells have similar biological properties as embryonic stem cells; therefore, we hypothesized that transplantation of amniotic epithelial cells can repair peripheral nerve injury and recover the creeping strength of the brachial plexus nerve. In the present study, a brachial plexus injury model was established in rabbits using the C6 root avulsion method. A suspension of human amniotic epithelial cells was repeatedly injected over an area 4.0 mm lateral to the cephal and caudal ends of the C6 brachial plexus injury site (1 × 106 cells/mL, 3 μL/injection, 25 injections) immediately after the injury. The results showed that the decrease in stress and increase in strain at 7,200 seconds in the injured rabbit C6 brachial plexus nerve were mitigated by the cell transplantation, restoring the viscoelastic stress relaxation and creep properties of the brachial plexus nerve. The forepaw functions were also significantly improved at 26 weeks after injury. These data indicate that transplantation of human amniotic epithelial cells can effectively restore the mechanical properties of the brachial plexus nerve after injury in rabbits and that viscoelasticity may be an important index for the evaluation of brachial plexus injury in animals.
Collapse
Affiliation(s)
- Hua Jin
- Jinan Maternity and Child Care Hospital, Jinan, Shandong Province, China
| | - Qi Yang
- China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Feng Ji
- Shandong Corps Hospital of Chinese People's Armed Police Forces, Jinan, Shandong Province, China
| | - Ya-Jie Zhang
- Jinan Maternity and Child Care Hospital, Jinan, Shandong Province, China
| | - Yan Zhao
- Jinan Maternity and Child Care Hospital, Jinan, Shandong Province, China
| | - Min Luo
- China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
25
|
Xu A, Liu X, Gao X, Deng F, Deng Y, Wei S. Enhancement of osteogenesis on micro/nano-topographical carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite biocomposite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 48:592-8. [PMID: 25579962 DOI: 10.1016/j.msec.2014.12.061] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/15/2014] [Accepted: 12/17/2014] [Indexed: 10/24/2022]
Abstract
As an FDA-approved implantable material, carbon fiber-reinforced polyetheretherketone (CFRPEEK) possesses excellent mechanical properties similar to those of human cortical bone and is a prime candidate to replace conventional metallic implants. The bioinertness and inferior osteogenic properties of CFRPEEK, however, limit its clinical application as orthopedic/dental implants. The present work aimed at developing a novel carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite (PEEK/CF/n-HA) ternary biocomposite with micro/nano-topographical surface for the enhancement of the osteogenesis as a potential bioactive material for bone grafting and bone tissue-engineering applications. The combined modification of oxygen plasma and sand-blasting could improve the hydrophily and generate micro/nano-topographical structures on the surface of the CFRPEEK-based ternary biocomposite. The results clearly showcased that the micro-/nano-topographical PEEK/n-HA/CF ternary biocomposite demonstrated the outstanding ability to promote the proliferation and differentiation of MG-63 cells in vitro as well as to boost the osseointegration between implant and bone in vivo, thereby boding well application to bone tissue engineering.
Collapse
Affiliation(s)
- Anxiu Xu
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147, China
| | - Xiaochen Liu
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiang Gao
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147, China
| | - Feng Deng
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147, China
| | - Yi Deng
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147, China.
| | - Shicheng Wei
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147, China.
| |
Collapse
|
26
|
Development and characterization of GRGDSPC-modified poly(lactide-co-glycolide acid) porous microspheres incorporated with protein-loaded chitosan microspheres for bone tissue engineering. Colloids Surf B Biointerfaces 2014; 122:439-446. [DOI: 10.1016/j.colsurfb.2014.04.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 04/23/2014] [Accepted: 04/25/2014] [Indexed: 01/09/2023]
|
27
|
Leszczak V, Popat KC. Improved in vitro blood compatibility of polycaprolactone nanowire surfaces. ACS APPLIED MATERIALS & INTERFACES 2014; 6:15913-24. [PMID: 25184556 PMCID: PMC4173746 DOI: 10.1021/am503508r] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/03/2014] [Indexed: 05/27/2023]
Abstract
There are a multitude of polymeric materials currently utilized to prepare a variety of blood-contacting implantable medical devices. These devices include tissue grafts, coronary artery and vascular stents, and orthopedic implants. The thrombogenic nature of such materials can cause serious complications in patients, and ultimately lead to functional failure. To date, there is no truly hemocompatible biomaterial surface. Nanostructured surfaces improve cellular interactions but there is a limited amount of information regarding their blood compatibility. In this study, the in vitro blood compatibility of four different surfaces (control, PCL; nanowire, NW; collagen immobilized control, cPCL; collagen immobilized nanowire, cNW) were investigated for their use as interfaces for blood-contacting implants. The results presented here indicate enhanced in vitro blood compatibility of nanowire surfaces compared control surfaces. Although there were no significant differences in leukocyte adhesion, there was a decrease in platelet adhesion on NW surfaces. Scanning electron microscopy images showed a decrease in platelet/leukocyte complexes on cNW surfaces and no apparent complexes were formed on NW surfaces compared to PCL and cPCL surfaces. The increase in these complexes likely contributed to a higher expression of specific markers for platelet and leukocyte activation on PCL and cPCL surfaces. No significant differences were found in contact and complement activation on any surface. Further, thrombin antithrombin complexes were significantly reduced on NW surfaces. A significant increase in hemolysis and fibrinogen adsorption was identified on PCL surfaces likely caused by its hydrophobic surface. This work shows the improved blood-compatibility of nanostructured surfaces, identifying this specific nanoarchitecture as a potential interface for promoting the long-term success of blood-contacting biomaterials.
Collapse
Affiliation(s)
- Victoria Leszczak
- Department
of Mechanical Engineering, School of Biomedical Engineering, Colorado State University, Fort
Collins, Colorado 80523, United States
| | - Ketul C. Popat
- Department
of Mechanical Engineering, School of Biomedical Engineering, Colorado State University, Fort
Collins, Colorado 80523, United States
| |
Collapse
|
28
|
Wang P, Zhao L, Chen W, Liu X, Weir MD, Xu HHK. Stem Cells and Calcium Phosphate Cement Scaffolds for Bone Regeneration. J Dent Res 2014; 93:618-25. [PMID: 24799422 PMCID: PMC4107550 DOI: 10.1177/0022034514534689] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 04/14/2014] [Accepted: 04/14/2014] [Indexed: 02/05/2023] Open
Abstract
Calcium phosphate cements (CPCs) have excellent biocompatibility and osteoconductivity for dental, craniofacial, and orthopedic applications. This article reviews recent developments in stem cell delivery via CPC for bone regeneration. This includes: (1) biofunctionalization of the CPC scaffold, (2) co-culturing of osteoblasts/endothelial cells and prevascularization of CPC, (3) seeding of CPC with different stem cell species, (4) human umbilical cord mesenchymal stem cell (hUCMSC) and bone marrow MSC (hBMSC) seeding on CPC for bone regeneration, and (5) human embryonic stem cell (hESC) and induced pluripotent stem cell (hiPSC) seeding with CPC for bone regeneration. Cells exhibited good attachment/proliferation in CPC scaffolds. Stem-cell-CPC constructs generated more new bone and blood vessels in vivo than did the CPC control without cells. hUCMSCs, hESC-MSCs, and hiPSC-MSCs in CPC generated new bone and blood vessels similar to those of hBMSCs; hence, they were viable cell sources for bone engineering. CPC with hESC-MSCs and hiPSC-MSCs generated new bone two- to three-fold that of the CPC control. Therefore, this article demonstrates that: (1) CPC scaffolds are suitable for delivering cells; (2) hUCMSCs, hESCs, and hiPSCs are promising alternatives to hBMSCs, which require invasive procedures to harvest with limited cell quantity; and (3) stem-cell-CPC constructs are highly promising for bone regeneration in dental, craniofacial, and orthopedic applications.
Collapse
Affiliation(s)
- P Wang
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - L Zhao
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - W Chen
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - X Liu
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - M D Weir
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - H H K Xu
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA Mechanical Engineering Department, University of Maryland Baltimore County, Baltimore, MD 21250, USA Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
29
|
Chen L, Hu J, Ran J, Shen X, Tong H. Preparation and evaluation of collagen-silk fibroin/hydroxyapatite nanocomposites for bone tissue engineering. Int J Biol Macromol 2014; 65:1-7. [PMID: 24412151 DOI: 10.1016/j.ijbiomac.2014.01.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/31/2013] [Accepted: 01/02/2014] [Indexed: 01/03/2023]
Abstract
A new in situ precipitation technique was developed to synthesize collagen-silk fibroin/hydroxyapatite nanocomposites. The componential properties and morphological of nanocomposites were investigated. It was revealed that the inorganic phase in the nanocomposite was carbonate-substituted hydroxyapatite with low crystallinity. Morphology studies showed that hydroxyapatite particles with size ranging from 30 to 100 nm were distributed uniformly in the polymer matrix. According to the TEM micrographs, inorganic particles were composed of more fine sub-particles whose diameters were between 2 and 5 nm in size without regular crystallographic orientation. The mechanical properties of the composites were evaluated by measuring their elastic modulus. The data indicated that the elastic modulus of nanocomposites was improved by the addition of silk fibroin. Finally, the cell biocompatibility of the composites was tested in vitro, which showed that they have good biocompatibility. These results suggest that the collagen-silk fibroin/hydroxyapatite nanocomposites are promising biomaterials for bone tissue engineering.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jingxiao Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jiabing Ran
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xinyu Shen
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Hua Tong
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
30
|
Neffe AT, von Ruesten-Lange M, Braune S, Luetzow K, Roch T, Richau K, Jung F, Lendlein A. Poly(ethylene glycol) Grafting to Poly(ether imide) Membranes: Influence on Protein Adsorption and Thrombocyte Adhesion. Macromol Biosci 2013; 13:1720-9. [DOI: 10.1002/mabi.201300309] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/13/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Axel T. Neffe
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies; Helmholtz-Zentrum Geesthacht Kantstr. 55, 14513 Teltow Germany
- Institute of Chemistry, University of Potsdam; Karl-Liebknecht-Straße 24-25 14476 Potsdam Germany
- Helmholtz Virtual Institute − Multifunctional Biomaterials for Medicine; Kantstr. 55 14513 Teltow Germany
| | - Maik von Ruesten-Lange
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies; Helmholtz-Zentrum Geesthacht Kantstr. 55, 14513 Teltow Germany
- Institute of Chemistry, University of Potsdam; Karl-Liebknecht-Straße 24-25 14476 Potsdam Germany
| | - Steffen Braune
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies; Helmholtz-Zentrum Geesthacht Kantstr. 55, 14513 Teltow Germany
- Institute of Chemistry, University of Potsdam; Karl-Liebknecht-Straße 24-25 14476 Potsdam Germany
| | - Karola Luetzow
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies; Helmholtz-Zentrum Geesthacht Kantstr. 55, 14513 Teltow Germany
- Helmholtz Virtual Institute − Multifunctional Biomaterials for Medicine; Kantstr. 55 14513 Teltow Germany
| | - Toralf Roch
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies; Helmholtz-Zentrum Geesthacht Kantstr. 55, 14513 Teltow Germany
- Helmholtz Virtual Institute − Multifunctional Biomaterials for Medicine; Kantstr. 55 14513 Teltow Germany
| | - Klaus Richau
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies; Helmholtz-Zentrum Geesthacht Kantstr. 55, 14513 Teltow Germany
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies; Helmholtz-Zentrum Geesthacht Kantstr. 55, 14513 Teltow Germany
- Helmholtz Virtual Institute − Multifunctional Biomaterials for Medicine; Kantstr. 55 14513 Teltow Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies; Helmholtz-Zentrum Geesthacht Kantstr. 55, 14513 Teltow Germany
- Institute of Chemistry, University of Potsdam; Karl-Liebknecht-Straße 24-25 14476 Potsdam Germany
- Helmholtz Virtual Institute − Multifunctional Biomaterials for Medicine; Kantstr. 55 14513 Teltow Germany
| |
Collapse
|
31
|
He F, Ye J. Bi-layered calcium phosphate cement-based composite scaffold mimicking natural bone structure. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2013; 14:045010. [PMID: 27877603 PMCID: PMC5090329 DOI: 10.1088/1468-6996/14/4/045010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/26/2013] [Indexed: 06/06/2023]
Abstract
In this study, a core/shell bi-layered calcium phosphate cement (CPC)-based composite scaffold with adjustable compressive strength, which mimicked the structure of natural cortical/cancellous bone, was fabricated. The dense tubular CPC shell was prepared by isostatic pressing CPC powder with a specially designed mould. A porous CPC core with unidirectional lamellar pore structure was fabricated inside the cavity of dense tubular CPC shell by unidirectional freeze casting, followed by infiltration of poly(lactic-co-glycolic acid) and immobilization of collagen. The compressive strength of bi-layered CPC-based composite scaffold can be controlled by varying thickness ratio of dense layer to porous layer. Compared to the scaffold without dense shell, the pore interconnection of bi-layered scaffold was not obviously compromised because of its high unidirectional interconnectivity but poor three dimensional interconnectivity. The in vitro results showed that the rat bone marrow stromal cells attached and proliferated well on the bi-layered CPC-based composite scaffold. This novel bi-layered CPC-based composite scaffold is promising for bone repair.
Collapse
Affiliation(s)
- Fupo He
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People’s Republic of China
| | - Jiandong Ye
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People’s Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, People’s Republic of China
| |
Collapse
|