1
|
Keshavarzi A, Asi Shirazi A, Korfanta R, Královič N, Klacsová M, Martínez JC, Teixeira J, Combet S, Uhríková D. Thermodynamic and Structural Study of Budesonide-Exogenous Lung Surfactant System. Int J Mol Sci 2024; 25:2990. [PMID: 38474237 PMCID: PMC10931555 DOI: 10.3390/ijms25052990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
The clinical benefits of using exogenous pulmonary surfactant (EPS) as a carrier of budesonide (BUD), a non-halogenated corticosteroid with a broad anti-inflammatory effect, have been established. Using various experimental techniques (differential scanning calorimetry DSC, small- and wide- angle X-ray scattering SAXS/WAXS, small- angle neutron scattering SANS, fluorescence spectroscopy, dynamic light scattering DLS, and zeta potential), we investigated the effect of BUD on the thermodynamics and structure of the clinically used EPS, Curosurf®. We show that BUD facilitates the Curosurf® phase transition from the gel to the fluid state, resulting in a decrease in the temperature of the main phase transition (Tm) and enthalpy (ΔH). The morphology of the Curosurf® dispersion is maintained for BUD < 10 wt% of the Curosurf® mass; BUD slightly increases the repeat distance d of the fluid lamellar phase in multilamellar vesicles (MLVs) resulting from the thickening of the lipid bilayer. The bilayer thickening (~0.23 nm) was derived from SANS data. The presence of ~2 mmol/L of Ca2+ maintains the effect and structure of the MLVs. The changes in the lateral pressure of the Curosurf® bilayer revealed that the intercalated BUD between the acyl chains of the surfactant's lipid molecules resides deeper in the hydrophobic region when its content exceeds ~6 wt%. Our studies support the concept of a combined therapy utilising budesonide-enriched Curosurf®.
Collapse
Affiliation(s)
- Atoosa Keshavarzi
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (A.K.); (A.A.S.); (R.K.); (N.K.); (M.K.)
| | - Ali Asi Shirazi
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (A.K.); (A.A.S.); (R.K.); (N.K.); (M.K.)
| | - Rastislav Korfanta
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (A.K.); (A.A.S.); (R.K.); (N.K.); (M.K.)
| | - Nina Královič
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (A.K.); (A.A.S.); (R.K.); (N.K.); (M.K.)
| | - Mária Klacsová
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (A.K.); (A.A.S.); (R.K.); (N.K.); (M.K.)
| | | | - José Teixeira
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette CEDEX, France; (J.T.); (S.C.)
| | - Sophie Combet
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette CEDEX, France; (J.T.); (S.C.)
| | - Daniela Uhríková
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (A.K.); (A.A.S.); (R.K.); (N.K.); (M.K.)
| |
Collapse
|
2
|
Iriondo MN, Etxaniz A, Antón Z, Montes LR, Alonso A. Molecular and mesoscopic geometries in autophagosome generation. A review. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183731. [PMID: 34419487 DOI: 10.1016/j.bbamem.2021.183731] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 01/18/2023]
Abstract
Autophagy is an essential process in cell self-repair and survival. The centre of the autophagic event is the generation of the so-called autophagosome (AP), a vesicle surrounded by a double membrane (two bilayers). The AP delivers its cargo to a lysosome, for degradation and re-use of the hydrolysis products as new building blocks. AP formation is a very complex event, requiring dozens of specific proteins, and involving numerous instances of membrane biogenesis and architecture, including membrane fusion and fission. Many stages of AP generation can be rationalised in terms of curvature, both the molecular geometry of lipids interpreted in terms of 'intrinsic curvature', and the overall mesoscopic curvature of the whole membrane, as observed with microscopy techniques. The present contribution intends to bring together the worlds of biophysics and cell biology of autophagy, in the hope that the resulting cross-pollination will generate abundant fruit.
Collapse
Affiliation(s)
- Marina N Iriondo
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, 48940 Leioa, Spain
| | - Asier Etxaniz
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, 48940 Leioa, Spain
| | - Zuriñe Antón
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, 48940 Leioa, Spain
| | - L Ruth Montes
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, 48940 Leioa, Spain
| | - Alicia Alonso
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, 48940 Leioa, Spain.
| |
Collapse
|
3
|
Shahane G, Ding W, Palaiokostas M, Orsi M. Physical properties of model biological lipid bilayers: insights from all-atom molecular dynamics simulations. J Mol Model 2019; 25:76. [PMID: 30806797 DOI: 10.1007/s00894-019-3964-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/07/2019] [Indexed: 02/04/2023]
Abstract
The physical properties of lipid bilayers are sensitive to the specific type and composition of the lipids that make up the many different types of cell membranes. Studying model bilayers of representative heterogeneous compositions can provide key insights into membrane functionality. In this work, we use atomistic molecular dynamics simulations to characterize key properties in a number of bilayer membranes of varying composition. We first examine basic properties, such as lipid area, volume, and bilayer thickness, of simple, homogeneous bilayers comprising several lipid types, which are prevalent in biological membranes. Such lipids are then used in simulations of heterogeneous systems representative of bacterial, mammalian, and cancer membranes. Our analysis is especially focused on depth-dependent, transmembrane profiles; in particular, we calculate lateral pressure and dipole potential profiles, two fundamental properties which play key roles in a large number of biological functions.
Collapse
Affiliation(s)
- Ganesh Shahane
- Institute of Bioengineering, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Wei Ding
- School of Engineering & Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Michail Palaiokostas
- School of Engineering & Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Mario Orsi
- Department of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.
| |
Collapse
|
4
|
Furse S, Shearman GC. Do lipids shape the eukaryotic cell cycle? Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:9-19. [PMID: 28964796 DOI: 10.1016/j.bbalip.2017.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/07/2017] [Accepted: 09/24/2017] [Indexed: 10/18/2022]
Abstract
Successful passage through the cell cycle presents a number of structural challenges to the cell. Inceptive studies carried out in the last five years have produced clear evidence of modulations in the lipid profile (sometimes referred to as the lipidome) of eukaryotes as a function of the cell cycle. This mounting body of evidence indicates that lipids play key roles in the structural transformations seen across the cycle. The accumulation of this evidence coincides with a revolution in our understanding of how lipid composition regulates a plethora of biological processes ranging from protein activity through to cellular signalling and membrane compartmentalisation. In this review, we discuss evidence from biological, chemical and physical studies of the lipid fraction across the cell cycle that demonstrate that lipids are well-developed cellular components at the heart of the biological machinery responsible for managing progress through the cell cycle. Furthermore, we discuss the mechanisms by which this careful control is exercised.
Collapse
Affiliation(s)
- Samuel Furse
- NucReg Research Programme, Molekylærbiologisk institutt, Unversitetet i Bergen, Thormøhlens gate 55, 5008, Bergen, Norway; Core Metabolomics and Lipidomics Laboratory, Department of Biochemistry, University of Cambridge, c/o Level 4, Pathology Building, Addenbrookes Hospital, Cambridge, CB2 0QQ, United Kingdom..
| | - Gemma C Shearman
- Faculty of Science, Engineering and Computing, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, United Kingdom
| |
Collapse
|
5
|
Matsuzaki N, Handa T, Nakano M. Kinetic and Thermodynamic Analysis of Cholesterol Transfer between Phospholipid Vesicles and Nanodiscs. J Phys Chem B 2015; 119:9764-71. [DOI: 10.1021/acs.jpcb.5b03682] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Naoya Matsuzaki
- Graduate
School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tetsurou Handa
- Faculty
of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3
Minami-Tamagaki-cho, Suzuka, Mie 513-8670, Japan
| | - Minoru Nakano
- Graduate
School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
6
|
Dékány Fraňová M, Vattulainen I, Samuli Ollila O. Can pyrene probes be used to measure lateral pressure profiles of lipid membranes? Perspective through atomistic simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1406-11. [DOI: 10.1016/j.bbamem.2014.01.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/07/2014] [Accepted: 01/30/2014] [Indexed: 10/25/2022]
|