1
|
Liang S, Fu K, Li X, Wang Z. Unveiling the spatiotemporal dynamics of membrane fouling: A focused review on dynamic fouling characterization techniques and future perspectives. Adv Colloid Interface Sci 2024; 328:103179. [PMID: 38754212 DOI: 10.1016/j.cis.2024.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/12/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Membrane technology has emerged as a crucial method for obtaining clean water from unconventional sources in the face of water scarcity. It finds wide applications in wastewater treatment, advanced treatment, and desalination of seawater and brackish water. However, membrane fouling poses a huge challenge that limits the development of membrane-based water treatment technologies. Characterizing the dynamics of membrane fouling is crucial for understanding its development, mechanisms, and effective mitigation. Instrumental techniques that enable in situ or real-time characterization of the dynamics of membrane fouling provide insights into the temporal and spatial evolution of fouling, which play a crucial role in understanding the fouling mechanism and the formulation of membrane control strategies. This review consolidates existing knowledge about the principal advanced instrumental analysis technologies employed to characterize the dynamics of membrane fouling, in terms of membrane structure, morphology, and intermolecular forces. Working principles, applications, and limitations of each technique are discussed, enabling researchers to select appropriate methods for their specific studies. Furthermore, prospects for the future development of dynamic characterization techniques for membrane fouling are discussed, underscoring the need for continued research and innovation in this field to overcome the challenges posed by membrane fouling.
Collapse
Affiliation(s)
- Shuling Liang
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Kunkun Fu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Xuesong Li
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China.
| | - Zhiwei Wang
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Beratto-Ramos A, Dagnino-Leone J, Martínez-Oyanedel J, Fernández M, Aranda M, Bórquez R. Optimization of detergents in solubilization and reconstitution of Aquaporin Z: A structural approach. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184101. [PMID: 36535340 DOI: 10.1016/j.bbamem.2022.184101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The exceptional capacities of aquaporins in terms of water permeation and selectivity have made them an interesting system for membrane applications. Despite the multiple attempts for immobilizing the aquaporins over a porous substrate, there is a lack of studies related to the purification and reconstitution steps, principally associated with the use of detergents in solubilization and destabilization steps. This study analyzed the effect of detergents in Aquaporin Z solubilization, considering the purity and structural homogeneity of the protein. METHODS The extraction process was optimized by the addition of detergent at the sonication step, which enabled the omission of the ultracentrifugation and resuspension steps. Two detergents, Triton X-100, and octyl-glucoside were also evaluated. Destabilization mediated by detergents was used as reconstitution method. Saturation and solubilization points were defined by detergent concentration and both, liposomes and proteoliposomes, were analyzed by size distribution and permeability assays. Detergent removal with Bio-beads was also analyzed. RESULTS Octyl glucoside ensures structural stability and homogeneity of Aquaporin Z. However, high concentrations of detergents induce the presence of defects in proteoliposomes. While saturated liposomes create homogeneous and functional structures, solubilized liposomes get affected by a reassembly process, creating vesicle defects with anomalous permeability profiles. CONCLUSIONS Detergent concentration affects the structural conformation of proteoliposomes in the reconstitution process. GENERAL SIGNIFICANCE Since the destabilization process is dependent on vesicle, detergent, and buffer composition, optimization of this process should be mandatory for further studies. All these considerations will allow achieving the potential of Aquaporins and any other integral membrane protein in their applications for industrial purposes.
Collapse
Affiliation(s)
| | | | - José Martínez-Oyanedel
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Marcos Fernández
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Chile
| | - Mario Aranda
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile
| | - Rodrigo Bórquez
- Department of Chemical Engineering, Universidad de Concepción, Chile.
| |
Collapse
|
3
|
Wang J, Wang L, He M, Wang X, Lv Y, Huang D, Wang J, Miao R, Nie L, Hao J, Wang J. Recent advances in thin film nanocomposite membranes containing an interlayer (TFNi): fabrication, applications, characterization and perspectives. RSC Adv 2022; 12:34245-34267. [PMID: 36545600 PMCID: PMC9706687 DOI: 10.1039/d2ra06304b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Polyamide (PA) reverse osmosis and nanofiltration membranes have been applied widely for desalination and wastewater reuse in the last 5-10 years. A novel thin-film nanocomposite (TFN) membrane featuring a nanomaterial interlayer (TFNi) has emerged in recent years and attracted the attention of researchers. The novel TFNi membranes are prepared from different nanomaterials and with different loading methods. The choices of intercalated nanomaterials, substrate layers and loading methods are based on the object to be treated. The introduction of nanostructured interlayers improves the formation of the PA separation layer and provides ultrafast water molecule transport channels. In this manner, the TFNi membrane mitigates the trade-off between permeability and selectivity reported for polyamide composite membranes. In addition, TFNi membranes enhance the removal of metal ions and organics and the recovery of organic solvents during nanofiltration and reverse osmosis, which is critical for environmental ecology and industrial applications. This review provides statistics and analyzes the developments in TFNi membranes over the last 5-10 years. The latest research results are reviewed, including the selection of the substrate and interlayer materials, preparation methods, specific application areas and more advanced characterization methods. Mechanistic aspects are analyzed to encourage future research, and potential mechanisms for industrialization are discussed.
Collapse
Affiliation(s)
- Jiaqi Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Lei Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Miaolu He
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Xudong Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Yongtao Lv
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Danxi Huang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Jin Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Rui Miao
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Lujie Nie
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Jiajin Hao
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Jianmin Wang
- Zhongfan International Engineering Design Co. Lian Hu Road, No. 6 Courtyard Xi'an 710082 China
| |
Collapse
|
4
|
Bonet NF, Cava DG, Vélez M. Quartz crystal microbalance and atomic force microscopy to characterize mimetic systems based on supported lipids bilayer. Front Mol Biosci 2022; 9:935376. [PMID: 35992275 PMCID: PMC9382308 DOI: 10.3389/fmolb.2022.935376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022] Open
Abstract
Quartz Crystal Microbalance (QCM) with dissipation and Atomic Force Microscopy (AFM) are two characterization techniques that allow describing processes taking place at solid-liquid interfaces. Both are label-free and, when used in combination, provide kinetic, thermodynamic and structural information at the nanometer scale of events taking place at surfaces. Here we describe the basic operation principles of both techniques, addressing a non-specialized audience, and provide some examples of their use for describing biological events taking place at supported lipid bilayers (SLBs). The aim is to illustrate current strengths and limitations of the techniques and to show their potential as biophysical characterization techniques.
Collapse
|
5
|
Immunospecific analysis of in vitro and ex vivo surface-immobilized protein complex. Biointerphases 2022; 17:021005. [PMID: 35477241 DOI: 10.1116/6.0001783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biomaterials used for blood contacting devices are inherently thrombogenic. Antithrombotic agents can be used as surface modifiers on biomaterials to reduce thrombus formation on the surface and to maintain device efficacy. For quality control and to assess the effectiveness of immobilization strategies, it is necessary to quantify the surface-immobilized antithrombotic agent directly. There are limited methods that allow direct quantification on device surfaces such as catheters. In this study, an enzyme immunoassay (EIA) has been developed to measure the density of a synthetic antithrombin-heparin (ATH) covalent complex immobilized on a catheter surface. The distribution of the immobilized ATH was further characterized by an immunohistochemical assay. This analyte-specific EIA is relatively simple and has high throughput, thus providing a tool for quantitative analysis of biomaterial surface modifications. These methods may be further modified to evaluate plasma proteins adsorbed and immobilized on various biomaterial surfaces of complex shapes, with a range of bioactive functionalities, as well as to assess conformational changes of proteins using specific antibodies.
Collapse
|
6
|
Zhou H, Li X, Li Y, Dai R, Wang Z. Tuning of nanofiltration membrane by multifunctionalized nanovesicles to enable an ultrahigh dye/salt separation at high salinity. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Optimization of Aquaporin Loading for Performance Enhancement of Aquaporin-Based Biomimetic Thin-Film Composite Membranes. MEMBRANES 2021; 12:membranes12010032. [PMID: 35054558 PMCID: PMC8777877 DOI: 10.3390/membranes12010032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022]
Abstract
The aquaporin-based biomimetic thin-film composite membrane (ABM-TFC) has demonstrated superior separation performance and achieved successful commercialization. The larger-scale production of the ABM membrane requires an appropriate balance between the performance and manufacturing cost. This study has systematically investigated the effects of proteoliposome concentration, protein-to-lipid ratio, as well as the additive on the separation performance of ABM for the purpose of finding the optimal preparation conditions for the ABM from the perspective of industrial production. Although increasing the proteoliposome concentration or protein-to-lipid ratio within a certain range could significantly enhance the water permeability of ABMs by increasing the loading of aquaporins in the selective layer, the enhancement effect was marginal or even compromised beyond an optimal point. Alternatively, adding cholesterol in the proteoliposome could further enhance the water flux of the ABM membrane, with minor effects on the salt rejection. The optimized ABM not only achieved a nearly doubled water flux with unchanged salt rejection compared to the control, but also demonstrated satisfactory filtration stability within a wide range of operation temperatures. This study provides a practical strategy for the optimization of ABM-TFC membranes to fit within the scheme of industrial-scale production.
Collapse
|
8
|
Porter CJ, Werber JR, Zhong M, Wilson CJ, Elimelech M. Pathways and Challenges for Biomimetic Desalination Membranes with Sub-Nanometer Channels. ACS NANO 2020; 14:10894-10916. [PMID: 32886487 DOI: 10.1021/acsnano.0c05753] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Transmembrane protein channels, including ion channels and aquaporins that are responsible for fast and selective transport of water, have inspired membrane scientists to exploit and mimic their performance in membrane technologies. These biomimetic membranes comprise discrete nanochannels aligned within amphiphilic matrices on a robust support. While biological components have been used directly, extensive work has also been conducted to produce stable synthetic mimics of protein channels and lipid bilayers. However, the experimental performance of biomimetic membranes remains far below that of biological membranes. In this review, we critically assess the status and potential of biomimetic desalination membranes. We first review channel chemistries and their transport behavior, identifying key characteristics to optimize water permeability and salt rejection. We compare various channel types within an industrial context, considering transport performance, processability, and stability. Through a re-examination of previous vesicular stopped-flow studies, we demonstrate that incorrect permeability equations result in an overestimation of the water permeability of nanochannels. We find in particular that the most optimized aquaporin-bearing bilayer had a pure water permeability of 2.1 L m-2 h-1 bar-1, which is comparable to that of current state-of-the-art polymeric desalination membranes. Through a quantitative assessment of biomimetic membrane formats, we analytically show that formats incorporating intact vesicles offer minimal benefit, whereas planar biomimetic selective layers could allow for dramatically improved salt rejections. We then show that the persistence of nanoscale defects explains observed subpar performance. We conclude with a discussion on optimal strategies for minimizing these defects, which could enable breakthrough performance.
Collapse
Affiliation(s)
- Cassandra J Porter
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Jay R Werber
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mingjiang Zhong
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Corey J Wilson
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
9
|
Janke U, Kulke M, Buchholz I, Geist N, Langel W, Delcea M. Drug-induced activation of integrin alpha IIb beta 3 leads to minor localized structural changes. PLoS One 2019; 14:e0214969. [PMID: 30978226 PMCID: PMC6461286 DOI: 10.1371/journal.pone.0214969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/22/2019] [Indexed: 12/20/2022] Open
Abstract
Integrins are transmembrane proteins involved in hemostasis, wound healing, immunity and cancer. In response to intracellular signals and ligand binding, integrins adopt different conformations: the bent (resting) form; the intermediate extended form; and the ligand-occupied active form. An integrin undergoing such conformational dynamics is the heterodimeric platelet receptor αIIbβ3. Although the dramatic rearrangement of the overall structure of αIIbβ3 during the activation process is potentially related to changes in the protein secondary structure, this has not been investigated so far in a membrane environment. Here we examine the Mn2+- and drug-induced activation of αIIbβ3 and the impact on the structure of this protein reconstituted into liposomes. By quartz crystal microbalance with dissipation monitoring and activation assays we show that Mn2+ induces binding of the conformation-specific antibody PAC-1, which only recognizes the extended, active integrin. Circular dichroism spectroscopy reveals, however, that Mn2+-treatment does not induce major secondary structural changes of αIIbβ3. Similarly, we found that treatment with clinically relevant drugs (e.g. quinine) led to the activation of αIIbβ3 without significant changes in protein secondary structure. Molecular dynamics simulation studies revealed minor local changes in the beta-sheet probability of several extracellular domains of the integrin. Our experimental setup represents a new approach to study transmembrane proteins, especially integrins, in a membrane environment and opens a new way for testing drug binding to integrins under clinically relevant conditions.
Collapse
Affiliation(s)
- Una Janke
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, Greifswald, Germany
- ZIK HIKE- Zentrum für Innovationskompetenz "Humorale Immunreaktionen bei kardiovaskulären Erkrankungen“, University of Greifswald, Fleischmannstraße 42,Greifswald, Germany
| | - Martin Kulke
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, Greifswald, Germany
| | - Ina Buchholz
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, Greifswald, Germany
- ZIK HIKE- Zentrum für Innovationskompetenz "Humorale Immunreaktionen bei kardiovaskulären Erkrankungen“, University of Greifswald, Fleischmannstraße 42,Greifswald, Germany
| | - Norman Geist
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, Greifswald, Germany
| | - Walter Langel
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, Greifswald, Germany
| | - Mihaela Delcea
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, Greifswald, Germany
- ZIK HIKE- Zentrum für Innovationskompetenz "Humorale Immunreaktionen bei kardiovaskulären Erkrankungen“, University of Greifswald, Fleischmannstraße 42,Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Germany
| |
Collapse
|
10
|
Liang Z, Yun Y, Wang M, Liu G, Lu P, Yang W, Li C. Performance evaluation of interfacial polymerisation-fabricated aquaporin-based biomimetic membranes in forward osmosis. RSC Adv 2019; 9:10715-10726. [PMID: 35515303 PMCID: PMC9062497 DOI: 10.1039/c9ra00787c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/18/2019] [Accepted: 03/22/2019] [Indexed: 12/24/2022] Open
Abstract
Aquaporins play a promising role in the fabrication of high-performance biomimetic membranes. Interfacial polymerisation is a promising strategy for synthesizing aquaporin-based membranes. In this study, robust and high-performance aquaporin-based biomimetic membranes were successfully fabricated by interfacial polymerisation, and the membrane separation performance and interfacial polymerisation method were systematically evaluated. The effects of modification methods on the performance of aquaporins-based biomimetic membranes, including sodium hypochlorite and thermal post-treatment, protein-to-lipid ratio, liposome concentration and the addition arrangement of aquaporins were also investigated. Morphological observation suggested that the introduced proteoliposomes were completely embedded in the polyamide layer and that their spherical shape was preserved. Sodium hypochlorite post-treatment and thermal treatment were beneficial in improving the water flux and salt rejection of the resultant membrane without sacrificing the aquaporin activity. The biomimetic membranes had a high water flux and salt rejection, which were almost twice that of the control membranes, after aquaporin-based proteoliposomes were incorporated with an appropriated protein-to-lipid ratio and liposome concentration. The addition arrangement of aquaporins during the interfacial polymerisation procedure significantly influence the obtained membrane's structure. Lastly, this article introduces valuable and systematic research on interfacial polymerisation fabricated aquaporin-based biomimetic membranes with outstanding separation performance. Aquaporins play a promising role in the fabrication of high-performance biomimetic membranes.![]()
Collapse
Affiliation(s)
- Zhixia Liang
- School of Environmental Science and Engineering
- Beijing Forestry University
- Beijing 100083
- China
| | - Yanbin Yun
- School of Environmental Science and Engineering
- Beijing Forestry University
- Beijing 100083
- China
| | - Manxiang Wang
- Center for Energy Storage Research
- Green City Research Institute
- Korea Institute of Science and Technology (KIST)
- Seoul 02792
- Republic of Korea
| | - Guicheng Liu
- Department of Physics
- Dongguk University
- Seoul 04620
- Republic of Korea
| | - Peng Lu
- College of Material Science and Chemical Engineering
- Ningbo University
- Zhejiang 315211
- China
| | - Woochul Yang
- Department of Physics
- Dongguk University
- Seoul 04620
- Republic of Korea
| | - Chunli Li
- College of Material Science and Chemical Engineering
- Ningbo University
- Zhejiang 315211
- China
| |
Collapse
|
11
|
Kılıç A, Fazeli Jadidi M, Özer HÖ, Kök FN. The effect of thiolated phospholipids on formation of supported lipid bilayers on gold substrates investigated by surface-sensitive methods. Colloids Surf B Biointerfaces 2017; 160:117-125. [DOI: 10.1016/j.colsurfb.2017.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/19/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
|
12
|
Song X, Qi S, Tang CY, Gao C. Ultra-thin, multi-layered polyamide membranes: Synthesis and characterization. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.06.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Li X, Loh CH, Wang R, Widjajanti W, Torres J. Fabrication of a robust high-performance FO membrane by optimizing substrate structure and incorporating aquaporin into selective layer. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.10.051] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Brown PS, Bhushan B. Bioinspired materials for water supply and management: water collection, water purification and separation of water from oil. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2016.0135. [PMID: 27354732 DOI: 10.1098/rsta.2016.0135] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/21/2016] [Indexed: 05/25/2023]
Abstract
Access to a safe supply of water is a human right. However, with growing populations, global warming and contamination due to human activity, it is one that is increasingly under threat. It is hoped that nature can inspire the creation of materials to aid in the supply and management of water, from water collection and purification to water source clean-up and rehabilitation from oil contamination. Many species thrive in even the driest places, with some surviving on water harvested from fog. By studying these species, new materials can be developed to provide a source of fresh water from fog for communities across the globe. The vast majority of water on the Earth is in the oceans. However, current desalination processes are energy-intensive. Systems in our own bodies have evolved to transport water efficiently while blocking other molecules and ions. Inspiration can be taken from such to improve the efficiency of desalination and help purify water containing other contaminants. Finally, oil contamination of water from spills or the fracking technique can be a devastating environmental disaster. By studying how natural surfaces interact with liquids, new techniques can be developed to clean up oil spills and further protect our most precious resource.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'.
Collapse
Affiliation(s)
- Philip S Brown
- Nanoprobe Laboratory for Bio- and Nanotechnology and Biomimetics (NLBB), The Ohio State University, 201 W. 19th Avenue, Columbus, OH 43210-1142, USA
| | - Bharat Bhushan
- Nanoprobe Laboratory for Bio- and Nanotechnology and Biomimetics (NLBB), The Ohio State University, 201 W. 19th Avenue, Columbus, OH 43210-1142, USA
| |
Collapse
|
15
|
Qi S, Wang R, Chaitra GKM, Torres J, Hu X, Fane AG. Aquaporin-based biomimetic reverse osmosis membranes: Stability and long term performance. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.02.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Li X, Chou S, Wang R, Shi L, Fang W, Chaitra G, Tang CY, Torres J, Hu X, Fane AG. Nature gives the best solution for desalination: Aquaporin-based hollow fiber composite membrane with superior performance. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.07.040] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Bio-Inspired Aquaporinz Containing Double-Skinned Forward Osmosis Membrane Synthesized through Layer-by-Layer Assembly. MEMBRANES 2015; 5:369-84. [PMID: 26266426 PMCID: PMC4584286 DOI: 10.3390/membranes5030369] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/03/2015] [Indexed: 11/17/2022]
Abstract
We demonstrated a novel AquaporinZ (AqpZ)-incorporated double-skinned forward osmosis (FO) membrane by layer-by-layer (LbL) assembly strategy. Positively charged poly(ethyleneimine) (PEI) and negatively charged poly(sodium 4-styrenesulfonate) (PSS) were alternately deposited on both the top and bottom surfaces of a hydrolyzed polyacrylonitrile (H-PAN) substrate. Subsequently, an AqpZ-embedded 1,2-dioleloyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dioleoyl-3-trimethylammonium- propane (chloride salt) (DOTAP) supported lipid bilayer (SLB) was formed on PSS-terminated (T-PSS) membrane via vesicle rupture method. The morphology and structure of the biomimetic membranes were characterized by in situ atomic force microscopy (AFM), scanning electron microscope (SEM), Fourier transform infrared spectrometer using the attenuated total reflection technique (ATR-FTIR), and contact angle. Moreover, the FO performance of the resultant membrane was measured by using 2 M MgCl2 solution as draw solution and deionized (DI) water as feed solution, respectively. The membrane with a protein-to-lipid weight ratio (P/L) of 1/50 exhibits 13.2 L/m2h water flux and 3.2 g/m2h reversed flux by using FO mode, as well as 15.6 L/m2h water flux and 3.4 L/m2h reversed flux for PRO mode (the draw solution is placed against the active layer). It was also shown that the SLB layer of the double-skinned FO membrane can increase the surface hydrophilicity and reduce the surface roughness, which leads to an improved anti-fouling performance against humic acid foulant. The current work introduced a new method of fabricating high performance biomimetic FO membrane by combining AqpZ and a double-skinned structure based on LbL assembly.
Collapse
|
18
|
Habel J, Hansen M, Kynde S, Larsen N, Midtgaard SR, Jensen GV, Bomholt J, Ogbonna A, Almdal K, Schulz A, Hélix-Nielsen C. Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges. MEMBRANES 2015; 5:307-51. [PMID: 26264033 PMCID: PMC4584284 DOI: 10.3390/membranes5030307] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 07/22/2015] [Indexed: 12/12/2022]
Abstract
In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs: aquaporin proteins (AQPs), block copolymers for AQP reconstitution, and polymer-based supporting structures. First, we briefly cover challenges and review recent developments in understanding the interplay between AQP and block copolymers. Second, we review some experimental characterization methods for investigating AQP incorporation including freeze-fracture transmission electron microscopy, fluorescence correlation spectroscopy, stopped-flow light scattering, and small-angle X-ray scattering. Third, we focus on recent efforts in embedding reconstituted AQPs in membrane designs that are based on conventional thin film interfacial polymerization techniques. Finally, we describe some new developments in interfacial polymerization using polyhedral oligomeric silsesquioxane cages for increasing the physical and chemical durability of thin film composite membranes.
Collapse
Affiliation(s)
- Joachim Habel
- Technical University of Denmark, Department of Environmental Engineering, Miljøvej, Building 113, 2800 Kgs. Lyngby, Denmark.
- Aquaporin A/S, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark.
| | - Michael Hansen
- University of Copenhagen, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark.
| | - Søren Kynde
- University of Copenhagen, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark.
| | - Nanna Larsen
- University of Copenhagen, Niels Bohr Institute, Hans Christian Ørsted building D, Universitetsparken, 5, 2100 Copenhagen, Denmark.
| | - Søren Roi Midtgaard
- University of Copenhagen, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark.
| | | | - Julie Bomholt
- Aquaporin A/S, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark.
| | - Anayo Ogbonna
- Aquaporin A/S, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark.
| | - Kristoffer Almdal
- Technical University of Denmark, Department of Micro- and Nanotechnology, Produktionstorvet, Building 423, 2800 Kgs. Lyngby.
| | - Alexander Schulz
- University of Copenhagen, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark.
| | - Claus Hélix-Nielsen
- Technical University of Denmark, Department of Environmental Engineering, Miljøvej, Building 113, 2800 Kgs. Lyngby, Denmark.
- Aquaporin A/S, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark.
- University of Maribor, Laboratory for Water Biophysics and Membrane Processes, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
19
|
Fane AG, Wang R, Hu MX. Synthetische Membranen für die Wasseraufbereitung: aktueller Stand und Perspektiven. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201409783] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Fane AG, Wang R, Hu MX. Synthetic Membranes for Water Purification: Status and Future. Angew Chem Int Ed Engl 2015; 54:3368-86. [DOI: 10.1002/anie.201409783] [Citation(s) in RCA: 465] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 11/08/2022]
|
21
|
Luan Y, Li D, Wang Y, Liu X, Brash JL, Chen H. 125I-radiolabeling, surface plasmon resonance, and quartz crystal microbalance with dissipation: three tools to compare protein adsorption on surfaces of different wettability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1029-1035. [PMID: 24393063 DOI: 10.1021/la403498w] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The extent of protein adsorption is an important consideration in the biocompatibility of biomaterials. Various experimental methods can be used to determine the quantity of protein adsorbed, but the results usually differ. In the present work, self-assembled monolayers (SAMs) were used to prepare a series of model gold surfaces varying systematically in water wettability, from hydrophilic to hydrophobic. Three commonly used methods, namely, surface plasmon resonance (SPR), quartz crystal microbalance with dissipation (QCM-D), and (125)I-radiolabeling, were employed to quantify fibrinogen (Fg) adsorption on these surfaces. This approach allows a direct comparison of the mass of Fg adsorbed using these three techniques. The results from all three methods showed that protein adsorption increases with increasing surface hydrophobicity. The increase in the mass of Fg adsorbed with increasing surface hydrophobicity in the SPR data was parallel to that from (125)I-radiolabeling, but the absolute values were different and there does not seem to be a "universally congruent" relationship between the two methods for surfaces with varying wettability. For QCM-D, the variation in protein adsorption with wettability was different from that for SPR and radiolabeling. On the more hydrophobic surfaces, QCM-D gave an adsorbed mass much higher than from the two other methods, possibly because QCM-D measures both the adsorbed Fg and its associated water. However, on the more hydrophilic surfaces, the adsorbed mass from QCM-D was slightly greater than that from SPR, and both were smaller than from (125)I-radiolabeling; this was true no matter whether the Sauerbrey equation or the Voigt model was used to convert QCM-D data to adsorbed mass.
Collapse
Affiliation(s)
- Yafei Luan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren-ai Road, Suzhou 215123, PR China
| | | | | | | | | | | |
Collapse
|
22
|
Li X, Wang R, Wicaksana F, Tang C, Torres J, Fane AG. Preparation of high performance nanofiltration (NF) membranes incorporated with aquaporin Z. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2013.09.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|