1
|
Rosado-Ramos R, Poças GM, Marques D, Foito A, M Sevillano D, Lopes-da-Silva M, Gonçalves LG, Menezes R, Ottens M, Stewart D, Ibáñez de Opakua A, Zweckstetter M, Seabra MC, Mendes CS, Outeiro TF, Domingos PM, Santos CN. Genipin prevents alpha-synuclein aggregation and toxicity by affecting endocytosis, metabolism and lipid storage. Nat Commun 2023; 14:1918. [PMID: 37024503 PMCID: PMC10079842 DOI: 10.1038/s41467-023-37561-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Parkinson's Disease (PD) is a common neurodegenerative disorder affecting millions of people worldwide for which there are only symptomatic therapies. Small molecules able to target key pathological processes in PD have emerged as interesting options for modifying disease progression. We have previously shown that a (poly)phenol-enriched fraction (PEF) of Corema album L. leaf extract modulates central events in PD pathogenesis, namely α-synuclein (αSyn) toxicity, aggregation and clearance. PEF was now subjected to a bio-guided fractionation with the aim of identifying the critical bioactive compound. We identified genipin, an iridoid, which relieves αSyn toxicity and aggregation. Furthermore, genipin promotes metabolic alterations and modulates lipid storage and endocytosis. Importantly, genipin was able to prevent the motor deficits caused by the overexpression of αSyn in a Drosophila melanogaster model of PD. These findings widens the possibility for the exploitation of genipin for PD therapeutics.
Collapse
Affiliation(s)
- Rita Rosado-Ramos
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
- iNOVA4Health, NOVA Medical School Faculdade de Ciências Médicas, NMS FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Gonçalo M Poças
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Daniela Marques
- iNOVA4Health, NOVA Medical School Faculdade de Ciências Médicas, NMS FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Alexandre Foito
- Environmental and Biochemical Sciences, The James Hutton Institute, DD2 5DA, Dundee, Scotland
| | - David M Sevillano
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Mafalda Lopes-da-Silva
- iNOVA4Health, NOVA Medical School Faculdade de Ciências Médicas, NMS FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Luís G Gonçalves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Regina Menezes
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- iNOVA4Health, NOVA Medical School Faculdade de Ciências Médicas, NMS FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- CBIOS - Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Marcel Ottens
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Derek Stewart
- Environmental and Biochemical Sciences, The James Hutton Institute, DD2 5DA, Dundee, Scotland
| | | | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Department of NMR-based Structural Biology, Am Fassberg 11, 37077, Göttingen, Germany
| | - Miguel C Seabra
- iNOVA4Health, NOVA Medical School Faculdade de Ciências Médicas, NMS FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - César S Mendes
- iNOVA4Health, NOVA Medical School Faculdade de Ciências Médicas, NMS FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Tiago Fleming Outeiro
- German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE2 4HH, UK
- Scientific employee with an honorary contract at German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany
| | - Pedro M Domingos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Cláudia N Santos
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal.
- iNOVA4Health, NOVA Medical School Faculdade de Ciências Médicas, NMS FCM, Universidade Nova de Lisboa, Lisboa, Portugal.
| |
Collapse
|
2
|
Irfan M, Shah LA, Khan A, Farooq M, Ullah M, Ismail M. Formulation of zwitter-ionic terpolymeric hydrogels and their comprehensive rheological investigation. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2021.2021090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Muhammad Irfan
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
| | - Luqman Ali Shah
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
| | - Abbas Khan
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Muhammad Farooq
- Department of Chemistry, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Mohib Ullah
- Department of Chemistry, Balochistan University of Information Technology Engineering and Management Sciences Takatu Campus, Quetta, Pakistan
| | - Muhammad Ismail
- Department of Chemistry, Women University Swabi, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
3
|
Barros NR, Chen Y, Hosseini V, Wang W, Nasiri R, Mahmoodi M, Yalcintas EP, Haghniaz R, Mecwan MM, Karamikamkar S, Dai W, Sarabi SA, Falcone N, Young P, Zhu Y, Sun W, Zhang S, Lee J, Lee K, Ahadian S, Dokmeci MR, Khademhosseini A, Kim HJ. Recent developments in mussel-inspired materials for biomedical applications. Biomater Sci 2021; 9:6653-6672. [PMID: 34550125 DOI: 10.1039/d1bm01126j] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over the decades, researchers have strived to synthesize and modify nature-inspired biomaterials, with the primary aim to address the challenges of designing functional biomaterials for regenerative medicine and tissue engineering. Among these challenges, biocompatibility and cellular interactions have been extensively investigated. Some of the most desirable characteristics for biomaterials in these applications are the loading of bioactive molecules, strong adhesion to moist areas, improvement of cellular adhesion, and self-healing properties. Mussel-inspired biomaterials have received growing interest mainly due to the changes in mechanical and biological functions of the scaffold due to catechol modification. Here, we summarize the chemical and biological principles and the latest advancements in production, as well as the use of mussel-inspired biomaterials. Our main focus is the polydopamine coating, the conjugation of catechol with other polymers, and the biomedical applications that polydopamine moieties are used for, such as matrices for drug delivery, tissue regeneration, and hemostatic control. We also present a critical conclusion and an inspired view on the prospects for the development and application of mussel-inspired materials.
Collapse
Affiliation(s)
| | - Yi Chen
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA. .,School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China.,Guangzhou Redsun Gas Appliance CO., Ltd, Guangzhou 510460, P. R. China
| | - Vahid Hosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Weiyue Wang
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Rohollah Nasiri
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Mahboobeh Mahmoodi
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | | | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | | | | | - Wei Dai
- Department of Research and Design, Beijing Biosis Healing Biological Technology Co., Ltd, Daxing District, Biomedical Base, Beijing 102600, P. R. China
| | - Shima A Sarabi
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Patric Young
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Wujin Sun
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Shiming Zhang
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA. .,Department of Electrical and Electronic Engineering, The University of Hong Kong, China
| | - Junmin Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Kangju Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA. .,Department of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, South Korea
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | | | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| |
Collapse
|
4
|
Venkatachalam D, Kaliappa S. Superabsorbent polymers: A state-of-art review on their classification, synthesis, physicochemical properties, and applications. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Superabsorbent polymers (SAP) and modified natural polymer hydrogels are widely and increasingly used in agriculture, health care textiles, effluent treatment, drug delivery, tissue engineering, civil concrete structure, etc. However, not many comprehensive reviews are available on this class of novel polymers. A review covering all the viable applications of SAP will be highly useful for researchers, industry persons, and medical, healthcare, and agricultural purposes. Hence, an attempt has been made to review SAPs with reference to their classifications, synthesis, modification by crosslinking, and physicochemical characterization such as morphology, swellability, thermal and mechanical properties, lifetime prediction, thermodynamics of swelling, absorption, release and transport kinetics, quantification of hydrophilic groups, etc. Besides, the possible methods of fine-tuning their structures for improving their absorption capacity, fast absorption kinetics, mechanical strength, controlled release features, etc. were also addressed to widen their uses. This review has also highlighted the biodegradability, commercial viability and market potential of SAPs, SAP composites, the feasibility of using biomass as raw materials for SAP production, etc. The challenges and future prospects of SAP, their safety, and environmental issues are also discussed.
Collapse
Affiliation(s)
- Dhanapal Venkatachalam
- Department of Chemistry , Bannari Amman Institute of Technology , Sathyamangalam , 638 401 , Erode Dt , Tamil Nadu , India
| | - Subramanian Kaliappa
- Biopolymer and Biomaterial Synthesis and Analytical Testing Lab, Department of Biotechnology , Bannari Amman Institute of Technology , Sathyamangalam , 638 401 , Erode Dt , Tamil Nadu , India
| |
Collapse
|
5
|
Zheng M, Pan M, Zhang W, Lin H, Wu S, Lu C, Tang S, Liu D, Cai J. Poly(α-l-lysine)-based nanomaterials for versatile biomedical applications: Current advances and perspectives. Bioact Mater 2021; 6:1878-1909. [PMID: 33364529 PMCID: PMC7744653 DOI: 10.1016/j.bioactmat.2020.12.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/05/2023] Open
Abstract
Poly(α-l-lysine) (PLL) is a class of water-soluble, cationic biopolymer composed of α-l-lysine structural units. The previous decade witnessed tremendous progress in the synthesis and biomedical applications of PLL and its composites. PLL-based polymers and copolymers, till date, have been extensively explored in the contexts such as antibacterial agents, gene/drug/protein delivery systems, bio-sensing, bio-imaging, and tissue engineering. This review aims to summarize the recent advances in PLL-based nanomaterials in these biomedical fields over the last decade. The review first describes the synthesis of PLL and its derivatives, followed by the main text of their recent biomedical applications and translational studies. Finally, the challenges and perspectives of PLL-based nanomaterials in biomedical fields are addressed.
Collapse
Affiliation(s)
- Maochao Zheng
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Miao Pan
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Wancong Zhang
- The Second Affiliated Hospital of Shantou University Medical College, 69 Dongxiabei Road, Shantou, 515041, China
| | - Huanchang Lin
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Shenlang Wu
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Shijie Tang
- The Second Affiliated Hospital of Shantou University Medical College, 69 Dongxiabei Road, Shantou, 515041, China
| | - Daojun Liu
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| |
Collapse
|
6
|
Giliomee J, du Toit LC, Kumar P, Klumperman B, Choonara YE. Evaluation of Composition Effects on the Physicochemical and Biological Properties of Polypeptide-Based Hydrogels for Potential Application in Wound Healing. Polymers (Basel) 2021; 13:polym13111828. [PMID: 34073003 PMCID: PMC8198873 DOI: 10.3390/polym13111828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022] Open
Abstract
In this study, the effect of crosslinking and concentration on the properties of a new library of low-concentration poly(Lys60-ran-Ala40)-based hydrogels for potential application in wound healing was investigated in order to correlate the hydrogel composition with the desired physicochemical and biofunctional properties to expand the assortment of poly-l-lysine (PLL)-based hydrogels suitable for wound healing. Controlled ring-opening polymerization (ROP) and precise hydrogel compositions were used to customize the physicochemical and biofunctional properties of a library of new hydrogels comprising poly(l-lysine-ran-l-alanine) and four-arm poly(ethylene glycol) (P(KA)/4-PEG). The chemical composition and degree of crosslinking via free amine quantification were analyzed for the P(KA)/4-PEG hydrogels. In addition, the rheological properties, pore morphology, swelling behavior and degradation time were characterized. Subsequently, in vitro cell studies for evaluation of the cytotoxicity and cell adhesion were performed. The 4 wt% 1:1 functional molar ratio hydrogel with P(KA) concentrations as low as 0.65 wt% demonstrated low cytotoxicity and desirable cell adhesion towards fibroblasts and thus displayed a desirable combination of properties for wound healing application.
Collapse
Affiliation(s)
- Johnel Giliomee
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (J.G.); (L.C.d.T.); (P.K.)
| | - Lisa C. du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (J.G.); (L.C.d.T.); (P.K.)
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (J.G.); (L.C.d.T.); (P.K.)
| | - Bert Klumperman
- Department of Chemistry and Polymer Science, Faculty of Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa;
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (J.G.); (L.C.d.T.); (P.K.)
- Correspondence: ; Tel.: +27-11-717-2052
| |
Collapse
|
7
|
Hsu FM, Hu MH, Jiang YS, Lin BY, Hu JJ, Jan JS. Antibacterial polypeptide/heparin composite hydrogels carrying growth factor for wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110923. [PMID: 32409073 DOI: 10.1016/j.msec.2020.110923] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 11/15/2022]
Abstract
We report an efficient growth factor delivering system based on polypeptide/heparin composite hydrogels for wound healing application. Linear and star-shaped poly(l-lysine) (l-PLL and s-PLL) were chosen due to not only their cationic characteristics, facilitating the efficient complexation of negatively charged heparin, but also the ease to tune the physical and mechanical properties of as-prepared hydrogels simply by varying polypeptide topology and chain length. The results showed that polymer topology can be an additional parameter to tune hydrogel properties. Our experimental data showed that these composite hydrogels exhibited low hemolytic activity and good cell compatibility as well as excellent antibacterial activity, making them ideal as wound dressing materials. Unlike other heparin-based hydrogels, these composite hydrogels with heparin densely deposited on the surface can increase the stabilization and concentration of growth factor, which can facilitate the healing process as confirmed by our in vivo animal model. We believe that these PLL/heparin composite hydrogels are promising wound dressing materials and may have potential applications in other biomedical fields.
Collapse
Affiliation(s)
- Fang-Ming Hsu
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ming-Hsien Hu
- Bachelor Program for Design and Materials for Medical Equipment and Devices, Da-Yeh University, Changhua, Taiwan; Orthopedic Department, Showchwan Memorial Hospital, Changhua, Taiwan
| | - Yi-Sheng Jiang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Bi-Yun Lin
- Instrument Center of National Cheng Kung University, Tainan 70101, Taiwan
| | - Jin-Jia Hu
- Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan.
| | - Jeng-Shiung Jan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
8
|
Wahid F, Wang FP, Xie YY, Chu LQ, Jia SR, Duan YX, Zhang L, Zhong C. Reusable ternary PVA films containing bacterial cellulose fibers and ε-polylysine with improved mechanical and antibacterial properties. Colloids Surf B Biointerfaces 2019; 183:110486. [DOI: 10.1016/j.colsurfb.2019.110486] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/18/2019] [Accepted: 09/01/2019] [Indexed: 12/15/2022]
|
9
|
Hou SS, Fan NS, Tseng YC, Jan JS. Self-Assembly and Hydrogelation of Coil–Sheet Poly(l-lysine)-block-poly(l-threonine) Block Copolypeptides. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01265] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sheng-Shu Hou
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan
| | - Nai-Shin Fan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Chao Tseng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jeng-Shiung Jan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
10
|
Synthesis and hydrogelation of star-shaped poly(l-lysine) polypeptides modified with different functional groups. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.07.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Liarou E, Varlas S, Skoulas D, Tsimblouli C, Sereti E, Dimas K, Iatrou H. Smart polymersomes and hydrogels from polypeptide-based polymer systems through α-amino acid N-carboxyanhydride ring-opening polymerization. From chemistry to biomedical applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Disulfide-cross-linked PEG-block-polypeptide nanoparticles with high drug loading content as glutathione-triggered anticancer drug nanocarriers. Colloids Surf B Biointerfaces 2018; 165:172-181. [DOI: 10.1016/j.colsurfb.2018.02.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/24/2018] [Accepted: 02/17/2018] [Indexed: 01/17/2023]
|
13
|
Xu HL, Xu J, Shen BX, Zhang SS, Jin BH, Zhu QY, ZhuGe DL, Wu XQ, Xiao J, Zhao YZ. Dual Regulations of Thermosensitive Heparin-Poloxamer Hydrogel Using ε-Polylysine: Bioadhesivity and Controlled KGF Release for Enhancing Wound Healing of Endometrial Injury. ACS APPLIED MATERIALS & INTERFACES 2017; 9:29580-29594. [PMID: 28809108 DOI: 10.1021/acsami.7b10211] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hydrogel was not only used as an effective support matrix to prevent intrauterine adhesion after endometrial injury but also served as scaffold to sustain release of some therapeutics, especially growth factor. However, because of the rapid turnover of the endometrial mucus, the poor retention and bad absorption of therapeutic agents in damaged endometrial cavity were two important factors hindering their pharmacologic effect. Herein, a mucoadhesive hydrogel was described by using heparin-modified poloxamer (HP) as the matrix material and ε-polylysine (EPL) as functional excipient. Various EPL-HP hydrogels formulations are screened by rheological evaluation and mucoadhesion studies. It was found that the rheological and mucoadhesive properties of EPL-HP hydrogels were easily controlled by changing the amount of EPL in formulation. The storage modulus of EPL-HP hydrogel with 90 μg/mL of EPL (EPL-HP-90) was elevated to be 1.9 × 105 Pa, in accordance with the adhesion force rising to 3.18 N (10-fold higher than HP hydrogels). Moreover, in vitro release of model drug keratinocyte growth factor (KGF) from EPL-HP hydrogel was significantly accelerated by adding EPL in comparison with HP hydrogel. Both strong mucoadhesive ability and the accelerated drug release behavior for EPL-HP-90 made more of the encapsulated KGF absorbed by the uterus basal layer and endometrial glands after 8 h of administration in uterus cavity. Meanwhile, the morphology of endometrium in the injured uterus was repaired well after 3 d of treatment with KGF-EPL-HP-90 hydrogels. Compared with KGF-HP group, not only proliferation of endometrial epithelial cell and glands but also angiogenesis in the regenerated endometrium was obviously enhanced after treatment with KGF-EPL-HP-90 hydrogels. Alternatively, the cellular apoptosis in the damaged endometrium was significantly inhibited after treatment with KGF-EPL-HP-90 hydrogels. Overall, the mucoadhesive EPL-HP hydrogel with a suitable KGF release profile may be a more promising approach than HP hydrogel alone to repair the injured endometrium.
Collapse
Affiliation(s)
- He-Lin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences and ‡First Affiliated Hospital, Wenzhou Medical University , Wenzhou City, Zhejiang Province 325035, China
| | - Jie Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences and ‡First Affiliated Hospital, Wenzhou Medical University , Wenzhou City, Zhejiang Province 325035, China
| | - Bi-Xin Shen
- Department of Pharmaceutics, School of Pharmaceutical Sciences and ‡First Affiliated Hospital, Wenzhou Medical University , Wenzhou City, Zhejiang Province 325035, China
| | - Si-Si Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences and ‡First Affiliated Hospital, Wenzhou Medical University , Wenzhou City, Zhejiang Province 325035, China
| | - Bing-Hui Jin
- Department of Pharmaceutics, School of Pharmaceutical Sciences and ‡First Affiliated Hospital, Wenzhou Medical University , Wenzhou City, Zhejiang Province 325035, China
| | - Qun-Yan Zhu
- Department of Pharmaceutics, School of Pharmaceutical Sciences and ‡First Affiliated Hospital, Wenzhou Medical University , Wenzhou City, Zhejiang Province 325035, China
| | - De-Li ZhuGe
- Department of Pharmaceutics, School of Pharmaceutical Sciences and ‡First Affiliated Hospital, Wenzhou Medical University , Wenzhou City, Zhejiang Province 325035, China
| | - Xue-Qing Wu
- Department of Pharmaceutics, School of Pharmaceutical Sciences and ‡First Affiliated Hospital, Wenzhou Medical University , Wenzhou City, Zhejiang Province 325035, China
| | - Jian Xiao
- Department of Pharmaceutics, School of Pharmaceutical Sciences and ‡First Affiliated Hospital, Wenzhou Medical University , Wenzhou City, Zhejiang Province 325035, China
| | - Ying-Zheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences and ‡First Affiliated Hospital, Wenzhou Medical University , Wenzhou City, Zhejiang Province 325035, China
| |
Collapse
|
14
|
Chronopoulou L, Toumia Y, Cerroni B, Pandolfi D, Paradossi G, Palocci C. Biofabrication of genipin-crosslinked peptide hydrogels and their use in the controlled delivery of naproxen. N Biotechnol 2017; 37:138-143. [DOI: 10.1016/j.nbt.2016.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/04/2016] [Accepted: 04/28/2016] [Indexed: 12/27/2022]
|
15
|
Cheng C, Zhang X, Meng Y, Zhang Z, Chen J, Zhang Q. Multiresponsive and biocompatible self-healing hydrogel: its facile synthesis in water, characterization and properties. SOFT MATTER 2017; 13:3003-3012. [PMID: 28367574 DOI: 10.1039/c7sm00350a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multiresponsive and biocompatible self-healing ε-PL/A-Pul/BPEI hydrogels were prepared in aqueous solution by Schiff base reaction with aldehyded pullulan (A-Pul), ε-poly-l-lysine (ε-PL) and branched polyethyleneimine (BPEI) as materials. The imine bonds were rapidly cross-linked into a hydrogel network within 80 s. Scanning electron microscopy images showed that the hydrogels exhibited a cross-linked structure with the average pore size from 58 to 82 μm. Rheology tests indicated that the hydrogels maintained good mechanical properties. Water contact angles and swelling studies suggested that the hydrogels could swell in water, with a max swell ratio of 1559%, and pH and temperature had an influence on the equilibrium swelling ratio. The hydrogels could be injected either before or after gelation, and they displayed a self-healing process in ddH2O at room temperature based on the dynamic uncoupling and recoupling of the imine bonds. The MTT assays implied that the hydrogels were non-cytotoxic on mice bone marrow mesenchymal stem cells. Therefore, the hydrogels showed potential application in biomedical fields, and consequently further work was performed using the self-healing hydrogels as drug carriers in in vitro/vivo antitumor studies.
Collapse
Affiliation(s)
- Cui Cheng
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350002, P. R. China.
| | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Heterocycles of Natural Origin as Non-Toxic Reagents for Cross-Linking of Proteins and Polysaccharides. Chem Heterocycl Compd (N Y) 2017. [DOI: 10.1007/s10593-017-2016-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Sharma K, Kumar V, Swart-Pistor C, Chaudhary B, Swart HC. Synthesis, characterization, and anti-microbial activity of superabsorbents based on agar–poly(methacrylic acid-glycine). J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911516653148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, poly(methacrylic acid-glycine)-grafted agar-based hydrogels with optimized process parameters were synthesized via a two-step green-radiation induced grafting process using microwave heating. Poly(methacrylic acid) chains were graft copolymerized onto an agar backbone using ammonium persulfate as a free radical initiator and N,N′-methylene-bis-acrylamide as a cross-linking means using microwave heating. The influence of different reaction parameters was investigated on the percentage swelling behavior of the cross-linked hydrogel networks. The prepared hydrogel networks with optimum percentage swelling were characterized by Fourier transform infrared spectroscopy, time-of-flight secondary ion mass spectrometry, scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis, using agar as a reference. The anti-bacterial activities of the prepared hydrogels against Gram-positive Staphylococcus aureus bacteria and Gram-negative Escherichia coli bacteria were investigated. Staphylococcus aureus was found to be more susceptible to the compounds compared to Escherichia coli. These results indicate that the prepared hydrogels have the potential to be applied as anti-bacterial agents.
Collapse
Affiliation(s)
- Kashma Sharma
- Department of Physics, University of the Free State, Bloemfontein, South Africa
| | - Vijay Kumar
- Department of Physics, University of the Free State, Bloemfontein, South Africa
- Department of Applied Physics, Chandigarh University, Gharuan, Mohali (Punjab), India
| | - Chantel Swart-Pistor
- Centre for Microscopy, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Babulal Chaudhary
- Science and Engineering Research Board, Department of Science & Technology, New Delhi, India
| | - Hendrik C Swart
- Department of Physics, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
19
|
Xu W, Qian J, Zhang Y, Suo A, Cui N, Wang J, Yao Y, Wang H. A photo-polymerized poly(N ε-acryloyl l-lysine) hydrogel for 3D culture of MCF-7 breast cancer cells. J Mater Chem B 2016; 4:3339-3350. [PMID: 32263269 DOI: 10.1039/c6tb00511j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The most common in vitro cell culture platform, standard two-dimensional (2D) monolayer cell culture, often fails to mimic the tumor microenvironment, while animal models complicate research on the effect of individual factors on cell behaviors. Both are unsatisfactory in the research of molecular mechanisms of tumor development and progression and the discovery and development of anticancer drugs. In vitro three-dimensional (3D) cell culture can partially simulate in vivo conditions and 3D-cultured cancer cells can recapture many essential features of native tumor tissues. In this study, to mimic the in vivo breast tumor microenvironment, novel reduction-responsive poly(Nε-acryloyl l-lysine) (pLysAAm) hydrogels were synthesized by rapid photo-polymerization of Nε-acryloyl l-lysine and using N,N'-bis(acryloyl)-(l)-cystine as a crosslinker, and their physicochemical properties were characterized systemically. The results showed that the pLysAAm hydrogels were formed within 93 s under UV irradiation and exhibited almost total elastic recovery from compressions as high as 75%. The lyophilized hydrogel samples displayed a highly porous structure with interconnected pores, had an equilibrium swelling ratio of about 20, and were degraded faster in a glutathione-containing solution than in PBS solution. The biological versatility of the pLysAAm hydrogels was demonstrated by both in vitro MCF-7 cell culture and in vivo tumor formation. Compared to cells cultured as 2D monolayers, the 3D-cultured cells presented 3D cell morphology, exhibited better cell viability, expressed higher levels of pro-angiogenic factors, and showed significantly greater migration and invasion abilities. The results from assay of tumorigenicity in nude mice and histologic analysis demonstrated the enhanced tumorigenic and angiogenic capabilities of the MCF-7 cells pre-cultured in pLysAAm hydrogels. These findings suggest that pLysAAm hydrogels may be used to bridge the gap between standard in vitro cell cultures and living tissues, aid breast cancer research, and help researchers to develop novel anticancer therapeutics.
Collapse
Affiliation(s)
- Weijun Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhang YX, Chen YF, Shen XY, Hu JJ, Jan JS. Reduction- and pH-Sensitive lipoic acid-modified Poly( l -lysine) and polypeptide/silica hybrid hydrogels/nanogels. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.01.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
21
|
Hua J, Li Z, Xia W, Yang N, Gong J, Zhang J, Qiao C. Preparation and properties of EDC/NHS mediated crosslinking poly (gamma-glutamic acid)/epsilon-polylysine hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:879-92. [PMID: 26838920 DOI: 10.1016/j.msec.2016.01.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 12/02/2015] [Accepted: 01/03/2016] [Indexed: 02/05/2023]
Abstract
In this paper, a novel pH-sensitive poly (amino acid) hydrogel based on poly γ-glutamic acid (γ-PGA) and ε-polylysine (ε-PL) was prepared by carbodiimide (EDC) and N-hydroxysuccinimide (NHS) mediated polymerization. The influence of PGA/PL molar ratio and EDC/NHS concentration on the structure and properties was studied. Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) proved that hydrogels were crosslinked through amide bond linkage, and the conversion rate of a carboxyl group could reach 96%. Scanning electron microscopy (SEM) results showed a regularly porous structure with 20 μm pore size in average. The gelation time in the crosslink process of PGA/PL hydrogels was within less than 5 min. PGA/PL hydrogels had excellent optical performance that was evaluated by a novel optotype method. Furthermore, PGA/PL hydrogels were found to be pH-sensitive, which could be adjusted to the pH of swelling media intelligently. The terminal pH of swelling medium could be controlled at 5 ± 1 after equilibrium when the initial pH was within 3-11. The swelling kinetics was found to follow a Voigt model in deionized water but a pseudo-second-order model in normal saline and phosphate buffer solution, respectively. The differential swelling degrees were attributed to the swelling theory based on the different ratio of -COOH/-NH2 and pore size in hydrogels. The results of mechanical property indicated that PGA/PL hydrogels were soft and elastic. Moreover, PGA/PL hydrogels exhibited excellent biocompatibility by cell proliferation experiment. PGA/PL hydrogels could be degraded in PBS solution and the degradation rate was decreased with the increase of the molar ratio of PL. Considering the simple preparation process and pH-sensitive property, these PGA/PL hydrogels might have high potential for use in medical and clinical fields.
Collapse
Affiliation(s)
- Jiachuan Hua
- Key Laboratory of Advanced Textile Composites, Tianjin Polytechnic University, Ministry of Education, Tianjin 300387, China; School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China
| | - Zheng Li
- Key Laboratory of Advanced Textile Composites, Tianjin Polytechnic University, Ministry of Education, Tianjin 300387, China; School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Wen Xia
- Key Laboratory of Advanced Textile Composites, Tianjin Polytechnic University, Ministry of Education, Tianjin 300387, China; School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China
| | - Ning Yang
- Key Laboratory of Advanced Textile Composites, Tianjin Polytechnic University, Ministry of Education, Tianjin 300387, China; School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China
| | - Jixian Gong
- Key Laboratory of Advanced Textile Composites, Tianjin Polytechnic University, Ministry of Education, Tianjin 300387, China; School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China
| | - Jianfei Zhang
- Key Laboratory of Advanced Textile Composites, Tianjin Polytechnic University, Ministry of Education, Tianjin 300387, China; School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Changsheng Qiao
- Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin 300457, China
| |
Collapse
|
22
|
Cui N, Qian J, Wang J, Ji C, Xu W, Wang H. Preparation and characterization of foamy poly(γ-benzyl-l-glutamate-co-l-phenylalanine)/bioglass composite scaffolds for bone tissue engineering. RSC Adv 2016. [DOI: 10.1039/c6ra04356a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Novel foamy scaffolds of poly(γ-benzyl-l-glutamate) and poly(γ-benzyl-l-glutamate-co-l-phenylalanine) were fabricated via a combination of a sintered NaCl templating method and ring-opening polymerization of α-amino acid N-carboxyanhydrides.
Collapse
Affiliation(s)
- Ning Cui
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Junmin Qian
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Jinlei Wang
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Chuanlei Ji
- The Orthopaedic Department
- Xi Jing Hospital Affiliated to the Fourth Military Medical University
- Xi'an 710032
- China
| | - Weijun Xu
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Hongjie Wang
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| |
Collapse
|
23
|
Zhou M, Ye X, Liu K, Hu J, Qian X. Tunable thermo-responsive supramolecular hydrogel: design, characterization, and drug release. JOURNAL OF POLYMER RESEARCH 2015. [DOI: 10.1007/s10965-015-0804-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Dimida S, Demitri C, De Benedictis VM, Scalera F, Gervaso F, Sannino A. Genipin-cross-linked chitosan-based hydrogels: Reaction kinetics and structure-related characteristics. J Appl Polym Sci 2015. [DOI: 10.1002/app.42256] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Simona Dimida
- Department of Engineering for Innovation; University of Salento; Via Monteroni km 1 73100 Lecce Italy
| | - Christian Demitri
- Department of Engineering for Innovation; University of Salento; Via Monteroni km 1 73100 Lecce Italy
| | - Vincenzo M. De Benedictis
- Department of Engineering for Innovation; University of Salento; Via Monteroni km 1 73100 Lecce Italy
| | - Francesca Scalera
- Department of Engineering for Innovation; University of Salento; Via Monteroni km 1 73100 Lecce Italy
| | - Francesca Gervaso
- Department of Engineering for Innovation; University of Salento; Via Monteroni km 1 73100 Lecce Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation; University of Salento; Via Monteroni km 1 73100 Lecce Italy
| |
Collapse
|
25
|
Yang C, Wu CJ, Ostafin AE, Thibaudeau G, Minerick AR. Size and medium conductivity dependence on dielectrophoretic behaviors of gas core poly-L-lysine shell nanoparticles. Electrophoresis 2015; 36:1002-10. [PMID: 25640705 DOI: 10.1002/elps.201400315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 12/28/2014] [Accepted: 01/07/2015] [Indexed: 12/11/2022]
Abstract
Dynamic (dis)assembly of biocompatible nanoparticles into 3D, packed structures would benefit drug delivery, films, and diagnostics. Dielectrophoretic (DEP) microdevices can rapidly assemble and manipulate polarizable particles within nonuniform electric fields. DEP has primarily discerned micrometer particles since nanoparticles experience smaller forces. This work examines conductivity and size DEP dependencies of previously unexplored spherical core-shell nanoparticle (CSnp) into 3D particle assemblies. Poly-L-lysine shell material was custom synthesized around a gas core to form CSnps. DEP frequencies from 1 kHz to 80 MHz at fixed 5 volts peak-to-peak and medium conductivities of 10(-5) and 10(-3) S/m were tested. DEP responses of ∼220 and ∼400 nm poly-L-lysine CSnps were quantified via video intensity densitometry at the microdevice's quadrapole electrode center for negative DEP (nDEP) and adjacent to electrodes for positive DEP. Intensity densitometry was then translated into a relative DEP response curve. An unusual nDEP peak occurred at ∼57 MHz with 25-80 times greater apparent nDEP force. All electrical circuit components were then impedance matched, which changed the observed response to weak positive DEP at low frequencies and consistently weak nDEP from ∼100 kHz to 80 MHz. This impedance-matched behavior agrees with conventional Clausius-Mossotti DEP signatures taking into account the gas core's contributions to the polarization mechanisms. This work describes a potential pitfall when conducting DEP at higher frequencies in microdevices and concurrently demonstrates nDEP behavior for a chemically and structurally distinct particle system. This work provides insight into organic shell material properties in nanostructures and strategies to facilitate dynamic nanoparticle assemblies.
Collapse
Affiliation(s)
- Chungja Yang
- Chemical Engineering Department, Michigan Technological University, Houghton, MI, USA
| | | | | | | | | |
Collapse
|
26
|
Hsieh YH, Hsiao YT, Jan JS. Shell and core cross-linked poly(L-lysine)/poly(acrylic acid) complex micelles. SOFT MATTER 2014; 10:9568-9576. [PMID: 25357089 DOI: 10.1039/c4sm02033b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report the versatility of polyion complex (PIC) micelles for the preparation of shell and core cross-linked (SCL and CCL) micelles with their surface properties determined by the constituent polymer composition and cross-linking agent. The negatively and positively charged PIC micelles with their molecular structure and properties depending on the mixing weight percentage and polymer molecular weight were first prepared by mixing the negatively and positively charged polyions, poly(acrylic acid) (PAA) and poly(L-lysine) (PLL). The feasibility of preparing SCL micelles was demonstrated by cross-linking the shell of the negatively and positively charged micelles using cystamine and genipin, respectively. The core of the micelles can be cross-linked by silica deposition to stabilize the assemblies. The shell and/or core cross-linked micelles exhibited excellent colloid stability upon changing solution pH. The drug release from the drug-loaded SCL micelles revealed that the controllable permeability of the SCL micelles can be achieved by tuning the cross-linking degree and the SCL micelles exhibited noticeable pH-responsive behavior with accelerated release under acidic conditions. With the versatility of cross-linking strategies, it is possible to prepare a variety of SCL and CCL micelles from PIC micelles.
Collapse
Affiliation(s)
- Yi-Hsuan Hsieh
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Rd, Tainan City, Taiwan 701.
| | | | | |
Collapse
|
27
|
|
28
|
Lee MJ, Oh NM, Oh KT, Youn YS, Lee ES. Functional poly(l-lysine) derivative nanogels with acidic pH-pulsed antitumor drug release properties. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2014. [DOI: 10.1007/s40005-014-0130-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|