1
|
Yuan YC, Bai XL, Liu YM, Tang XY, Yuan H, Liao X. Ligand fishing based on cell surface display of enzymes for inhibitor screening. Anal Chim Acta 2021; 1156:338359. [PMID: 33781459 DOI: 10.1016/j.aca.2021.338359] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 11/19/2022]
Abstract
Ligand fishing for screening of enzyme inhibitors from complex chemical systems using baits prepared by cell surface display of the enzyme is herein demonstrated for the first time. Tyrosine phosphatase 1B (PTP1B), used as a model enzyme in this work, is displayed on the surface of E. coli cells by using ice nucleation protein (INP) as the anchoring motif. Infusion of PTP1B is characterized by western blot, immunofluorescence, proteinase K accessibility, and enzyme activity assays. Surface displayed PTP1B exhibits a maximum of 5.62 ± 0.251 U/OD600 enzymatic activity and a better stability compared with free enzyme. PTP1B displayed cells are used as solid-phase extraction adsorbent in combination with HPLC-MS to screen the inhibitors from the extracts of Rhodiola rosea, a traditional Chinese medicinal plant. Among many well-known active ingredients only arbutin is fished out with an IC50 value of 20.5 ± 0.873 μM, showing the inhibitor screening is highly selective. Furthermore, the equilibrium dissociation constant (KD) of the complex of arbutin and PTP1B was determined to be 79.6 μM by localized surface plasma resonance (LSPR) assay. The proposed ligand fishing technique using recombinant cells as baits opens a new avenue for screening of active compounds from natural products with accuracy and specificity.
Collapse
Affiliation(s)
- Yun-Cong Yuan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Lin Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yi-Ming Liu
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS, 39217, USA.
| | - Xiao-Yue Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Yuan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
2
|
Elugoke SE, Adekunle AS, Fayemi OE, Akpan ED, Mamba BB, Sherif EM, Ebenso EE. Molecularly imprinted polymers (MIPs) based electrochemical sensors for the determination of catecholamine neurotransmitters – Review. ELECTROCHEMICAL SCIENCE ADVANCES 2020. [DOI: 10.1002/elsa.202000026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Saheed E. Elugoke
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
| | - Abolanle S. Adekunle
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry Obafemi Awolowo University Ile‐Ife Nigeria
| | - Omolola E. Fayemi
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
| | - Ekemini D. Akpan
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
| | - Bhekie B. Mamba
- Institute for Nanotechnology and Water Sustainability College of Science Engineering and Technology University of South Africa Johannesburg South Africa
| | - El‐Sayed M. Sherif
- Center of Excellence for Research in Engineering Materials (CEREM) King Saud University Al‐Riyadh Saudi Arabia
- Electrochemistry and Corrosion Laboratory Department of Physical Chemistry National Research Centre Dokki Cairo Egypt
| | - Eno E. Ebenso
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Institute for Nanotechnology and Water Sustainability College of Science Engineering and Technology University of South Africa Johannesburg South Africa
| |
Collapse
|
3
|
ALOthman ZA, Wabaidur SM. Application of carbon nanotubes in extraction and chromatographic analysis: A review. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2018.05.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
4
|
Zhang J, Guo XT, Zhou JP, Liu GZ, Zhang SY. Electrochemical preparation of surface molecularly imprinted poly(3-aminophenylboronic acid)/MWCNTs nanocomposite for sensitive sensing of epinephrine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:696-704. [PMID: 30033304 DOI: 10.1016/j.msec.2018.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 05/29/2018] [Accepted: 06/09/2018] [Indexed: 01/19/2023]
Abstract
A nanocomposite with multi-walled carbon nanotubes (MWCNTs) coated with surface molecularly imprinted polymers (MIPs) poly(3-aminophenylboronic acid) (PAPBA) was successfully prepared via potentiodynamic electropolymerization and tested as an effective electrochemical material for epinephrine (EP) detection. The morphology and properties of the sensing material were characterized with scanning electron microscopy and electrochemical impedance spectroscopy. Compared with MWCNTs or non-imprinted polymers PAPBA modified MWCNTs electrodes, the PAPBA(MIPs)/MWCNTs modified electrode showed a lower charge transfer resistance and enhanced electrochemical performance for EP detection. The improved performance can be attributed to the large amount of specific imprinted cavities with boric acid group which can selectively adsorb EP molecule and the synergistic effect between MWCNTs and PAPBA(MIPs). The effects of pH, the molar ratio between monomer and template molecule, the cycle number of electropolymerization, and the accumulation time of the modified electrode on the sensing performance were investigated. It was found that under the optimal conditions, the PAPBA(MIPs)/MWCNTs sensor could effectively recognize EP from many possible interferents of higher concentration within a wide linear range of 0.2-800 μmol·L-1, with low detection limit of 35 nmol·L-1, high sensitivity and good discrimination. The detection of EP in human serum and real injection samples using the PAPBA(MIPs)/MWCNTs sensor also gave satisfactory results.
Collapse
Affiliation(s)
- Juan Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China; Department of Chemistry, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xiao-Tong Guo
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jun-Ping Zhou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guang-Zhou Liu
- School of Marine Science, Shandong University, Jinan 250100, China
| | - Shu-Yong Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
5
|
|
6
|
David IG, Popa DE, Buleandra M. Pencil Graphite Electrodes: A Versatile Tool in Electroanalysis. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:1905968. [PMID: 28255500 PMCID: PMC5307002 DOI: 10.1155/2017/1905968] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/19/2016] [Accepted: 01/04/2017] [Indexed: 05/05/2023]
Abstract
Due to their electrochemical and economical characteristics, pencil graphite electrodes (PGEs) gained in recent years a large applicability to the analysis of various types of inorganic and organic compounds from very different matrices. The electrode material of this type of working electrodes is constituted by the well-known and easy commercially available graphite pencil leads. Thus, PGEs are cheap and user-friendly and can be employed as disposable electrodes avoiding the time-consuming step of solid electrodes surface cleaning between measurements. When compared to other working electrodes PGEs present lower background currents, higher sensitivity, good reproducibility, and an adjustable electroactive surface area, permitting the analysis of low concentrations and small sample volumes without any deposition/preconcentration step. Therefore, this paper presents a detailed overview of the PGEs characteristics, designs and applications of bare, and electrochemically pretreated and chemically modified PGEs along with the corresponding performance characteristics like linear range and detection limit. Techniques used for bare or modified PGEs surface characterization are also reviewed.
Collapse
Affiliation(s)
- Iulia Gabriela David
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90–92, District 5, 050663 Bucharest, Romania
| | - Dana-Elena Popa
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90–92, District 5, 050663 Bucharest, Romania
| | - Mihaela Buleandra
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90–92, District 5, 050663 Bucharest, Romania
| |
Collapse
|
7
|
Su LQ, Gao Y, Qin SL, Li JJ. Determination of Atrazine in Vegetables with Extraction by a Magnetite–Chitosan Molecularly Imprinted Polymer and Gas Chromatography. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1140771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Sarafraz-Yazdi A, Razavi N. Application of molecularly-imprinted polymers in solid-phase microextraction techniques. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.05.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Effect of silica coating and further silica surface decoration by phospholipid bilayer on quenching of Tb(III) complexes by adrenochrome. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Khezeli T, Daneshfar A. Dispersive micro-solid-phase extraction of dopamine, epinephrine and norepinephrine from biological samples based on green deep eutectic solvents and Fe3O4@MIL-100 (Fe) core–shell nanoparticles grafted with pyrocatechol. RSC Adv 2015. [DOI: 10.1039/c5ra08058d] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DA, EP and NE were determined without interference of ascorbic acid using grafted Fe3O4@MIL-100 (Fe) NPs and a green solvent.
Collapse
Affiliation(s)
- T. Khezeli
- Department of Chemistry
- Faculty of Science
- Ilam University
- Ilam
- Iran
| | - A. Daneshfar
- Department of Chemistry
- Faculty of Science
- Ilam University
- Ilam
- Iran
| |
Collapse
|
11
|
Recent applications of carbon nanotube sorbents in analytical chemistry. J Chromatogr A 2014; 1357:110-46. [DOI: 10.1016/j.chroma.2014.05.035] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 01/10/2023]
|
12
|
Azodi-Deilami S, Abdouss M, Asadi E, Hassani Najafabadi A, Sadeghi S, Farzaneh S, Asadi S. Magnetic molecularly imprinted polymer nanoparticles coupled with high performance liquid chromatography for solid-phase extraction of carvedilol in serum samples. J Appl Polym Sci 2014. [DOI: 10.1002/app.41209] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Majid Abdouss
- Department of Chemistry; Amirkabir University of Technology; Tehran Iran
| | - Ebadullah Asadi
- Department of Chemistry; Amirkabir University of Technology; Tehran Iran
| | | | - Sadegh Sadeghi
- Department of Chemistry; Tarbiat Modares University; Tehran Iran
| | - Sina Farzaneh
- Department of Polymer Engineering, South Tehran Branch; Islamic Azad University; Tehran Iran
| | - Somayeh Asadi
- Student Research Committee; Kermanshah University of Medical Sciences; Kermanshah Iran
| |
Collapse
|
13
|
Magnetic molecularly imprinted polymer nanoparticles for the solid-phase extraction of paracetamol from plasma samples, followed its determination by HPLC. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1230-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Tiwari MP, Prasad BB. An insulin monitoring device based on hyphenation between molecularly imprinted micro-solid phase extraction and complementary molecularly imprinted polymer-sensor. J Chromatogr A 2014; 1337:22-31. [DOI: 10.1016/j.chroma.2014.02.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 02/08/2014] [Accepted: 02/14/2014] [Indexed: 12/11/2022]
|