1
|
Jamali N, Vahedi F, Soltani Fard E, Taheri-Anganeh M, Taghvimi S, Khatami SH, Ghasemi H, Movahedpour A. Nattokinase: Structure, applications and sources. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
2
|
Yang Y, Lan G, Tian X, He L, Li C, Zeng X, Wang X. Effect of Fermentation Parameters on Natto and Its Thrombolytic Property. Foods 2021; 10:foods10112547. [PMID: 34828828 PMCID: PMC8620952 DOI: 10.3390/foods10112547] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 01/13/2023] Open
Abstract
Natto is a popular food because it contains a variety of active compounds, including nattokinase. Previously, we discovered that fermenting natto with the combination of Bacillus subtilis GUTU09 and Bifidobacterium animalis subsp. lactis BZ25 resulted in a dramatically better sensory and functional quality of natto. The current study further explored the effects of different fermentation parameters on the quality of natto fermented with Bacillus subtilis GUTU09 and Bifidobacterium BZ25, using Plackett–Burman design and response surface methodology. Fermentation temperature, time, and inoculation amount significantly affected the sensory and functional qualities of natto fermented with mixed bacteria. The optimal conditions were obtained as follows: soybean 50 g/250 mL, triangle container, 1% sucrose, Bacillus subtilis GUTU09 to Bifidobacterium BZ25 ratio of 1:1, inoculation 7%, fermentation temperature 35.5 °C, and fermentation time 24 h. Under these conditions, nattokinase activity, free amino nitrogen content, and sensory score were increased compared to those before optimization. They were 144.83 ± 2.66 FU/g, 7.02 ± 0.69 mg/Kg and 82.43 ± 5.40, respectively. The plate thrombolytic area and nattokinase activity both increased significantly as fermentation time was increased, indicating that the natto exhibited strong thrombolytic action. Hence, mixed-bacteria fermentation improves the taste, flavor, nattokinase activity, and thrombolysis of natto. This research set the groundwork for the ultimate manufacturing of natto with high nattokinase activity and free amino nitrogen content, as well as good sensory and thrombolytic properties.
Collapse
Affiliation(s)
- Yun Yang
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China; (Y.Y.); (G.L.); (X.T.); (C.L.); (X.Z.); (X.W.)
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Guangqun Lan
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China; (Y.Y.); (G.L.); (X.T.); (C.L.); (X.Z.); (X.W.)
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xueyi Tian
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China; (Y.Y.); (G.L.); (X.T.); (C.L.); (X.Z.); (X.W.)
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China; (Y.Y.); (G.L.); (X.T.); (C.L.); (X.Z.); (X.W.)
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Correspondence: ; Tel./Fax: +86-0851-88236702
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China; (Y.Y.); (G.L.); (X.T.); (C.L.); (X.Z.); (X.W.)
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Xuefeng Zeng
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China; (Y.Y.); (G.L.); (X.T.); (C.L.); (X.Z.); (X.W.)
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xiao Wang
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China; (Y.Y.); (G.L.); (X.T.); (C.L.); (X.Z.); (X.W.)
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Yu Y, Cui R, Wang X, Yang H, Li H. Preparation of multifunctional poly(l-lactic acid) film using heparin-mimetic polysaccharide multilayers: Hemocompatibility, cytotoxicity, antibacterial and drug loading/releasing properties. Int J Biol Macromol 2020; 155:14-26. [PMID: 32220642 DOI: 10.1016/j.ijbiomac.2020.03.180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/18/2022]
Abstract
Poly(l-lactic acid) (PLLA) has been the most commonly used polymer for making bioresorbable vascular scaffolds (BVS). Despite owning remarkable properties, BVS made from PLLA are facing higher rates of early thrombosis compared with permanent metallic scaffolds. To solve this issue, we modified the PLLA film surface with heparin-mimetic polysaccharide multilayers consisting of sulfated Chinese yam polysaccharide (SCYP) and chitosan (CS) through layer-by-layer (LBL) assembly. The surface chemical compositions, morphologies and growth manner of SCYP/CS multilayers were investigated using X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy and UV-vis spectroscopy. The relevant hemocompatibility results showed that multilayer-modified PLLA could effectively resist protein adsorption, suppress the platelet adhesion, prolong clotting time, prevent contact and complement activation as well as reduce hemolysis rate. Moreover, the multilayer-modified PLLA exhibited non-cytotoxicity, good antibacterial ability against E. coli and S. aureus, and drug loading/sustained releasing behavior. Overall, the multifunctional PLLA film with integrated properties of hemocompatibility, non-cytotoxicity, antibacterial and drug loading/releasing behavior could be successfully achieved by deposition of SCYP/CS multilayers, which will have potential application in blood-contacting biomedical materials.
Collapse
Affiliation(s)
- Ying Yu
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Rongqi Cui
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Xin Wang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Hao Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Hui Li
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
4
|
Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase. Appl Environ Microbiol 2018; 84:AEM.02608-17. [PMID: 29330178 DOI: 10.1128/aem.02608-17] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/23/2017] [Indexed: 01/20/2023] Open
Abstract
Bacillus strains are important industrial bacteria that can produce various biochemical products. However, low transformation efficiencies and a lack of effective genome editing tools have hindered its widespread application. Recently, clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 techniques have been utilized in many organisms as genome editing tools because of their high efficiency and easy manipulation. In this study, an efficient genome editing method was developed for Bacillus licheniformis using a CRISPR-Cas9 nickase integrated into the genome of B. licheniformis DW2 with overexpression driven by the P43 promoter. The yvmC gene was deleted using the CRISPR-Cas9n technique with homology arms of 1.0 kb as a representative example, and an efficiency of 100% was achieved. In addition, two genes were simultaneously disrupted with an efficiency of 11.6%, and the large DNA fragment bacABC (42.7 kb) was deleted with an efficiency of 79.0%. Furthermore, the heterologous reporter gene aprN, which codes for nattokinase in Bacillus subtilis, was inserted into the chromosome of B. licheniformis with an efficiency of 76.5%. The activity of nattokinase in the DWc9nΔ7/pP43SNT-SsacC strain reached 59.7 fibrinolytic units (FU)/ml, which was 25.7% higher than that of DWc9n/pP43SNT-SsacC Finally, the engineered strain DWc9nΔ7 (Δepr ΔwprA Δmpr ΔaprE Δvpr ΔbprA ΔbacABC), with multiple disrupted genes, was constructed using the CRISPR-Cas9n technique. Taken together, we have developed an efficient genome editing tool based on CRISPR-Cas9n in B. licheniformis This tool could be applied to strain improvement for future research.IMPORTANCE As important industrial bacteria, Bacillus strains have attracted significant attention due to their production of biological products. However, genetic manipulation of these bacteria is difficult. The CRISPR-Cas9 system has been applied to genome editing in some bacteria, and CRISPR-Cas9n was proven to be an efficient and precise tool in previous reports. The significance of our research is the development of an efficient, more precise, and systematic genome editing method for single-gene deletion, multiple-gene disruption, large DNA fragment deletion, and single-gene integration in Bacillus licheniformis via Cas9 nickase. We also applied this method to the genetic engineering of the host strain for protein expression.
Collapse
|
5
|
Anjum S, Singh S, Benedicte L, Roger P, Panigrahi M, Gupta B. Biomodification Strategies for the Development of Antimicrobial Urinary Catheters: Overview and Advances. GLOBAL CHALLENGES (HOBOKEN, NJ) 2018; 2:1700068. [PMID: 31565299 PMCID: PMC6607219 DOI: 10.1002/gch2.201700068] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/05/2017] [Indexed: 05/27/2023]
Abstract
Microbial burden associated with medical devices poses serious health challenges and is accountable for an increased number of deaths leading to enormous medical costs. Catheter-associated urinary tract infections are the most common hospital-acquired infections with enhanced patient morbidity. Quite often, catheter-associated bacteriuria produces apparent adverse outcomes such as urosepsis and even death. Taking this into account, the methods to modify urinary catheters to control microbial infections with relevance to clinical drug resistance are systematically evaluated in this review. Technologies to restrict biofilm formation at initial stages by using functional nanomaterials are elucidated. The conventional methodology of using single therapeutic intervention for developing an antimicrobial catheter lacks clinically meaningful benefit. Therefore, catheter modification using naturally derived antimicrobials such as essential oils, curcumin, enzymes, and antimicrobial peptides in combination with synthetic antibiotics/nanoantibiotics is likely to exert sufficient inhibitory effect on uropathogens and is extensively discussed. Futuristic efforts in this area are projected here that demand clinical studies to address areas of uncertainty to avoid development of bacterial resistance to the new generation therapy with minimum discomfort to the patients.
Collapse
Affiliation(s)
- Sadiya Anjum
- Bioengineering LaboratoryDepartment of Textile TechnologyIndian Institute of TechnologyNew Delhi110016India
| | - Surabhi Singh
- Bioengineering LaboratoryDepartment of Textile TechnologyIndian Institute of TechnologyNew Delhi110016India
| | - Lepoittevin Benedicte
- ICMMO ‐ LG2M ‐ Bât 420Université Paris‐Sud XI, 15rue Georges Clémenceau91405Orsay CedexFrance
| | - Philippe Roger
- ICMMO ‐ LG2M ‐ Bât 420Université Paris‐Sud XI, 15rue Georges Clémenceau91405Orsay CedexFrance
| | - Manoj Panigrahi
- Department of Urology and PathologySikkim Manipal Institute of Medical SciencesGangtokSikkim737101India
| | - Bhuvanesh Gupta
- Bioengineering LaboratoryDepartment of Textile TechnologyIndian Institute of TechnologyNew Delhi110016India
| |
Collapse
|
6
|
|
7
|
Microbial production of nattokinase: current progress, challenge and prospect. World J Microbiol Biotechnol 2017; 33:84. [DOI: 10.1007/s11274-017-2253-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/28/2017] [Indexed: 12/19/2022]
|
8
|
Wang BL, Jin TW, Han YM, Shen CH, Li Q, Lin QK, Chen H. Bio-inspired terpolymers containing dopamine, cations and MPC: a versatile platform to construct a recycle antibacterial and antifouling surface. J Mater Chem B 2015; 3:5501-5510. [PMID: 32262521 DOI: 10.1039/c5tb00597c] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A new kind of bio-inspired terpolymer was synthesized by a conventional free radical terpolymerization of dopamine methacrylamide (DMA), 2-(dimethylamino)-ethyl methacrylate (DMAEMA) and 2-methacryloyloxyethyl phosphorylcholine (MPC) with azobisisobutyronitrile (AIBN) as an initiator. DMA consists of a biomimetic adhesive side chain covalently linked to a polymerizable methacrylate monomer. 1H NMR and gel permeation chromatography confirmed the successful synthesis of P(DMA-co-MPC-co-DMAEMA). The terpolymer could self-assemble on the macroscopic planar substrates with DMA as an anchor. After being quaternized by 1-bromo-heptane, terpolymers of P(DMA-co-MPC-co-DMAEMA+) with bactericidal function were obtained. The self-assembly terpolymer on the substrate was confirmed by X-ray photoelectron spectroscopy, water contact angle, spectroscopic ellipsometry and atomic force microscopy. The hydrophilicity and antifouling properties of the self-assembly coating increased greatly against bacteria, protein and cells with the increase of MPC content. As the existence of bactericidal cations for electrostatic targeting of bacteria as well as membrane lysis, the terpolymer coating showed excellent bactericidal function against E. coli and S. aureus. Biofilm inhibition assay showed that terpolymer coating was very efficient to resist bacterial adhesion and biofilm formation in a nutrient environment. Bacteria could be continuously "captured" and killed by the terpolymer coating, and then bacteria corpse was released into the solution. Importantly, this work provides a versatile strategy for the fabrication of a recycle antibacterial and antifouling surface to modify biomaterials.
Collapse
Affiliation(s)
- B L Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | | | | | | | | | | | | |
Collapse
|
9
|
Efficient expression of nattokinase in Bacillus licheniformis: host strain construction and signal peptide optimization. J Ind Microbiol Biotechnol 2014; 42:287-95. [PMID: 25475755 DOI: 10.1007/s10295-014-1559-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/24/2014] [Indexed: 01/09/2023]
Abstract
Nattokinase (NK) possesses the potential for prevention and treatment of thrombus-related diseases. In this study, high-level expression of nattokinase was achieved in Bacillus licheniformis WX-02 via host strain construction and signal peptides optimization. First, ten genes (mpr, vpr, aprX, epr, bpr, wprA, aprE, bprA, hag, amyl) encoding for eight extracellular proteases, a flagellin and an amylase were deleted to obtain B. licheniformis BL10, which showed no extracellular proteases activity in gelatin zymography. Second, the gene fragments of P43 promoter, Svpr, nattokinase and TamyL were combined into pHY300PLK to form the expression vector pP43SNT. In BL10 (pP43SNT), the fermentation activity and product activity per unit of biomass of nattokinase reached 14.33 FU/mL and 2,187.71 FU/g respectively, which increased by 39 and 156 % compared to WX-02 (pP43SNT). Last, Svpr was replaced with SsacC and SbprA, and the maximum fermentation activity (33.83 FU/mL) was achieved using SsacC, which was 229 % higher than that of WX-02 (pP43SNT). The maximum NK fermentation activity in this study reaches the commercial production level of solid state fermentation, and this study provides a promising engineered strain for industrial production of nattokinase, as well as a potential platform host for expression of other target proteins.
Collapse
|
10
|
Nattokinase: production and application. Appl Microbiol Biotechnol 2014; 98:9199-206. [DOI: 10.1007/s00253-014-6135-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 09/30/2014] [Accepted: 10/04/2014] [Indexed: 11/28/2022]
|