1
|
Lv Y, Wu W, Corpstein CD, Li T, Lu Y. Biological and Intracellular Fates of Drug Nanocrystals through Different Delivery Routes: Recent Development Enabled by Bioimaging and PK Modeling. Adv Drug Deliv Rev 2022; 188:114466. [PMID: 35905948 DOI: 10.1016/j.addr.2022.114466] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 07/22/2022] [Indexed: 12/25/2022]
Abstract
Nanocrystals have contributed to exciting improvements in the delivery of poorly water-soluble drugs. The biological and intracellular fates of nanocrystals are currently under debate. Due to the remarkable commercial success in enhancing oral bioavailability, nanocrystals have originally been regarded as a simple formulation approach to enhance dissolution. However, the latest findings from novel bioimaging tools lead to an expanded view. Intact nanocrystals may offer long-term durability in the body and offer drug delivery capabilities like those of other nano-carriers. This review renews the understanding of the biological fates of nanocrystals administered via oral, intravenous, and parenteral (e.g., dermal, ocular, and pulmonary) routes. The intracellular pathways and dissolution kinetics of nanocrystals are explored. Additionally, the future trends for in vitro and in vivo quantification of nanocrystals, as well as factors impacting the biological and intracellular fates of nanocrystals are discussed. In conclusion, nanocrystals present a promising and underexplored therapeutic opportunity with immense potential.
Collapse
Affiliation(s)
- Yongjiu Lv
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Clairissa D Corpstein
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| |
Collapse
|
2
|
Cheng M, Liu Q, Gan T, Fang Y, Yue P, Sun Y, Jin Y, Feng J, Tu L. Nanocrystal-Loaded Micelles for the Enhanced In Vivo Circulation of Docetaxel. Molecules 2021; 26:molecules26154481. [PMID: 34361634 PMCID: PMC8348076 DOI: 10.3390/molecules26154481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 11/24/2022] Open
Abstract
Prolonging in vivo circulation has proved to be an efficient route for enhancing the therapeutic effect of rapidly metabolized drugs. In this study, we aimed to construct a nanocrystal-loaded micelles delivery system to enhance the blood circulation of docetaxel (DOC). We employed high-pressure homogenization to prepare docetaxel nanocrystals (DOC(Nc)), and then produced docetaxel nanocrystal-loaded micelles (DOC(Nc)@mPEG-PLA) by a thin-film hydration method. The particle sizes of optimized DOC(Nc), docetaxel micelles (DOC@mPEG-PLA), and DOC(Nc)@mPEG-PLA were 168.4, 36.3, and 72.5 nm, respectively. The crystallinity of docetaxel was decreased after transforming it into nanocrystals, and the crystalline state of docetaxel in micelles was amorphous. The constructed DOC(Nc)@mPEG-PLA showed good stability as its particle size showed no significant change in 7 days. Despite their rapid dissolution, docetaxel nanocrystals exhibited higher bioavailability. The micelles prolonged the retention time of docetaxel in the circulation system of rats, and DOC(Nc)@mPEG-PLA exhibited the highest retention time and bioavailability. These results reveal that constructing nanocrystal-loaded micelles may be a promising way to enhance the in vivo circulation and bioavailability of rapidly metabolized drugs such as docetaxel.
Collapse
Affiliation(s)
- Meng Cheng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
| | - Qiaoming Liu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Tiantian Gan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
| | - Yuanying Fang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
| | - Pengfei Yue
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
| | - Yongbing Sun
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
| | - Jianfang Feng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
- Correspondence: (J.F.); (L.T.); Tel.: +86-188-1733-8957 (L.T.)
| | - Liangxing Tu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
- Correspondence: (J.F.); (L.T.); Tel.: +86-188-1733-8957 (L.T.)
| |
Collapse
|
3
|
Martin B, Seguin J, Annereau M, Fleury T, Lai-Kuen R, Neri G, Lam A, Bally M, Mignet N, Corvis Y. Preparation of parenteral nanocrystal suspensions of etoposide from the excipient free dry state of the drug to enhance in vivo antitumoral properties. Sci Rep 2020; 10:18059. [PMID: 33093456 PMCID: PMC7581827 DOI: 10.1038/s41598-020-74809-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
Nanoparticle technology in cancer chemotherapy is a promising approach to enhance active ingredient pharmacology and pharmacodynamics. Indeed, drug nanoparticles display various assets such as extended blood lifespan, high drug loading and reduced cytotoxicity leading to better drug compliance. In this context, organic nanocrystal suspensions for pharmaceutical use have been developed in the past ten years. Nanocrystals offer new possibilities by combining the nanoformulation features with the properties of solid dispersed therapeutic ingredients including (i) high loading of the active ingredient, (ii) its bioavailability improvement, and (iii) reduced drug systemic cytotoxicity. However, surprisingly, no antitumoral drug has been marketed as a nanocrystal suspension until now. Etoposide, which is largely used as an anti-cancerous agent against testicular, ovarian, small cell lung, colon and breast cancer in its liquid dosage form, has been selected to develop injectable nanocrystal suspensions designed to be transferred to the clinic. The aim of the present work is to provide optimized formulations for nanostructured etoposide solutions and validate by means of in vitro and in vivo evaluations the efficiency of this multiphase system. Indeed, the etoposide formulated as a nanosuspension by a bottom-up approach showed higher blood life span, reduced tumor growth and higher tolerance in a murine carcinoma cancer model. The results obtained are promising for future clinical evaluation of these etoposide nanosuspensions.
Collapse
Affiliation(s)
- Brice Martin
- Université de Paris, CNRS, Inserm, UTCBS, Chemical and Biological Technologies for Health Group (utcbs.cnrs.fr), Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75006, Paris, France.,Department of Neurological Surgery, Weill Medical College of Cornell University, New York, NY, USA
| | - Johanne Seguin
- Université de Paris, CNRS, Inserm, UTCBS, Chemical and Biological Technologies for Health Group (utcbs.cnrs.fr), Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75006, Paris, France
| | - Maxime Annereau
- Gustave Roussy, 114 rue Edouard Vaillant, 94800, PharmacyVillejuif, France
| | - Thomas Fleury
- Gustave Roussy, 114 rue Edouard Vaillant, 94800, PharmacyVillejuif, France
| | - René Lai-Kuen
- Université de Paris, CNRS, Inserm, Cellular and Molecular Imaging Technology Platform, Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75006, Paris, France
| | - Giovanni Neri
- Université de Paris, CNRS, Inserm, UTCBS, Chemical and Biological Technologies for Health Group (utcbs.cnrs.fr), Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75006, Paris, France
| | - Anita Lam
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Marcel Bally
- Department of Experimental Therapeutics, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
| | - Nathalie Mignet
- Université de Paris, CNRS, Inserm, UTCBS, Chemical and Biological Technologies for Health Group (utcbs.cnrs.fr), Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75006, Paris, France
| | - Yohann Corvis
- Université de Paris, CNRS, Inserm, UTCBS, Chemical and Biological Technologies for Health Group (utcbs.cnrs.fr), Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75006, Paris, France.
| |
Collapse
|
4
|
Lu Y, Lv Y, Li T. Hybrid drug nanocrystals. Adv Drug Deliv Rev 2019; 143:115-133. [PMID: 31254558 DOI: 10.1016/j.addr.2019.06.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/14/2019] [Accepted: 06/24/2019] [Indexed: 01/01/2023]
Abstract
Nanocrystals show promise to deliver poorly water-soluble drugs to yield systemic exposure. However, our knowledge regarding the in vivo fate of nanocrystals is in its infancy, as nanocrystallization is simply viewed as an approach to enhance the dissolution of drug crystals. The dying crystal phenomenon inspired the development of hybrid nanocrystals by physically embedding fluorophores into the crystal lattice. This approach achieved concurrent therapy and bioimaging and is well-established to study pharmacokinetics and nanocrystal dissolution in vivo. Nanocrystals also offer the advantage of long-term durability in the body for interacting with biological tissues and cells. This review introduces the hybrid nanocrystal technique, including the theoretical concepts, preparation, and applications. We also discuss the latest development in self-discriminative hybrid nanocrystals utilizing environment-responsive probes. This review will stimulate further development and application of nanocrystal-based drug delivery systems for theranostic strategies.
Collapse
Affiliation(s)
- Yi Lu
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yongjiu Lv
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tonglei Li
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
5
|
State of the Art of Pharmaceutical Solid Forms: from Crystal Property Issues to Nanocrystals Formulation. ChemMedChem 2018; 14:8-23. [DOI: 10.1002/cmdc.201800612] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/09/2018] [Indexed: 12/11/2022]
|
6
|
Ganesan P, Karthivashan G, Park SY, Kim J, Choi DK. Microfluidization trends in the development of nanodelivery systems and applications in chronic disease treatments. Int J Nanomedicine 2018; 13:6109-6121. [PMID: 30349240 PMCID: PMC6188155 DOI: 10.2147/ijn.s178077] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Plant bioactive compounds are known for their extensive health benefits and therefore have been used for generations in traditional and modern medicine to improve the health of humans. Processing and storage instabilities of the plant bioactive compounds, however, limit their bioavailability and bioaccessibility and thus lead researchers in search of novel encapsulation systems with enhanced stability, bioavailability, and bioaccessibility of encapsulated plant bioactive compounds. Recently many varieties of encapsulation methods have been used; among them, microfluidization has emerged as a novel method used for the development of delivery systems including solid lipid nanocarriers, nanoemulsions, liposomes, and so on with enhanced stability and bioavailability of encapsulated plant bioactive compounds. Therefore, the nanodelivery systems developed using microfluidization techniques have received much attention from the medical industry for their ability to facilitate controlled delivery with enhanced health benefits in the treatment of various chronic diseases. Many researchers have focused on plant bioactive compound-based delivery systems using microfluidization to enhance the bioavailability and bioaccessibility of encapsulated bioactive compounds in the treatment of various chronic diseases. This review focuses on various nanodelivery systems developed using microfluidization techniques and applications in various chronic disease treatments.
Collapse
Affiliation(s)
- Palanivel Ganesan
- Department of Integrated Bio Science and Biotechnology, College of Biomedical and Health Science, Nanotechnology Research Center, Konkuk University, Chungju 27478, Republic of Korea,
| | - Govindarajan Karthivashan
- Department of Applied Life Sciences, Graduate School of Konkuk University, Research Institute of Inflammatory Diseases, Chungju 27478, Republic of Korea,
| | - Shin Young Park
- Department of Applied Life Sciences, Graduate School of Konkuk University, Research Institute of Inflammatory Diseases, Chungju 27478, Republic of Korea,
| | - Joonsoo Kim
- Department of Applied Life Sciences, Graduate School of Konkuk University, Research Institute of Inflammatory Diseases, Chungju 27478, Republic of Korea,
| | - Dong-Kug Choi
- Department of Integrated Bio Science and Biotechnology, College of Biomedical and Health Science, Nanotechnology Research Center, Konkuk University, Chungju 27478, Republic of Korea,
- Department of Applied Life Sciences, Graduate School of Konkuk University, Research Institute of Inflammatory Diseases, Chungju 27478, Republic of Korea,
| |
Collapse
|
7
|
Zhang L, Wang Q, Liu W, Liu F, Ji A, Li Y. The Orphan Nuclear Receptor 4A1: A Potential New Therapeutic Target for Metabolic Diseases. J Diabetes Res 2018; 2018:9363461. [PMID: 30013988 PMCID: PMC6022324 DOI: 10.1155/2018/9363461] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
Orphan nuclear receptor 4A1 (NR4A1) is a transcriptional factor of the nuclear orphan receptor (NR4A) superfamily that has sparked interest across different research fields in recent years. Several studies have demonstrated that ligand-independent NR4A1 is an immediate-early response gene and the protein product is rapidly induced by a variety of stimuli. Hyperfunction or dysfunction of NR4A1 is implicated in various metabolic processes, including carbohydrate metabolism, lipid metabolism, and energy balance, in major metabolic tissues, such as liver, skeletal muscle, pancreatic tissues, and adipose tissues. No endogenous ligands for NR4A1 have been identified, but numerous compounds that bind and activate or inactivate nuclear NR4A1 or induce cytoplasmic localization of NR4A1 have been identified. This review summarizes recent advances in our understanding of the molecular biology and physiological functions of NR4A1. And we focus on the physiological functions of NR4A1 receptor to the development of the metabolic diseases, with a special focus on the impact on carbohydrate and lipid metabolism in skeletal muscle, liver, adipose tissue, and islet.
Collapse
Affiliation(s)
- Lei Zhang
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Qun Wang
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Wen Liu
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Fangyan Liu
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Ailing Ji
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Yanzhang Li
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| |
Collapse
|
8
|
von Delius M, Le CM, Ellinger B, Kuzikov M, Gul S, Dong VM. Synthesis and Biological Activity of Octaketides from the Cytosporone Family. Isr J Chem 2017. [DOI: 10.1002/ijch.201700023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Max von Delius
- Institute of Organic Chemistry and Advanced Materials; University of Ulm; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Christine M. Le
- Department of Chemistry; University of Toronto; 80 St. George Street Toronto, Ontario M5S 3H6 Canada
| | - Bernhard Ellinger
- Fraunhofer Institute for Molecular Biology and Applied Ecology - ScreeningPort (Fraunhofer-IME SP); Schnackenburgallee 114 D-22525 Hamburg Germany
| | - Maria Kuzikov
- Fraunhofer Institute for Molecular Biology and Applied Ecology - ScreeningPort (Fraunhofer-IME SP); Schnackenburgallee 114 D-22525 Hamburg Germany
| | - Sheraz Gul
- Fraunhofer Institute for Molecular Biology and Applied Ecology - ScreeningPort (Fraunhofer-IME SP); Schnackenburgallee 114 D-22525 Hamburg Germany
| | - Vy M. Dong
- Department of Chemistry; University of California Irvine; 4403 Natural Sciences 1 Irvine, California 92697 USA
| |
Collapse
|
9
|
Hu H, Lin C, Ao M, Ji Y, Tang B, Zhou X, Fang M, Zeng J, Wu Z. Synthesis and biological evaluation of 1-(2-(adamantane-1-yl)-1H-indol-5-yl)-3-substituted urea/thiourea derivatives as anticancer agents. RSC Adv 2017. [DOI: 10.1039/c7ra08149a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of novel 2,5-disubstituted indole derivatives were synthesized. Compounds 7n, 7s, and 7w induced Nur77-expression in a time- and dose- dependent manner in H460 cells. Furthermore, Nur77 served as a critical mediator for the anticancer action of 7s.
Collapse
Affiliation(s)
- Hongyu Hu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Chunrong Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Mingtao Ao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Yufen Ji
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Bowen Tang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Xiaoxiao Zhou
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Meijuan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Jinzhang Zeng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Zhen Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| |
Collapse
|
10
|
Lu Y, Li Y, Wu W. Injected nanocrystals for targeted drug delivery. Acta Pharm Sin B 2016; 6:106-13. [PMID: 27006893 PMCID: PMC4788714 DOI: 10.1016/j.apsb.2015.11.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/04/2015] [Accepted: 11/16/2015] [Indexed: 12/12/2022] Open
Abstract
Nanocrystals are pure drug crystals with sizes in the nanometer range. Due to the advantages of high drug loading, platform stability, and ease of scaling-up, nanocrystals have been widely used to deliver poorly water-soluble drugs. Nanocrystals in the blood stream can be recognized and sequestered as exogenous materials by mononuclear phagocytic system (MPS) cells, leading to passive accumulation in MPS-rich organs, such as liver, spleen and lung. Particle size, morphology and surface modification affect the biodistribution of nanocrystals. Ligand conjugation and stimuli-responsive polymers can also be used to target nanocrystals to specific pathogenic sites. In this review, the progress on injected nanocrystals for targeted drug delivery is discussed following a brief introduction to nanocrystal preparation methods, i.e., top-down and bottom-up technologies.
Collapse
|
11
|
Lu Y, Chen Y, Gemeinhart RA, Wu W, Li T. Developing nanocrystals for cancer treatment. Nanomedicine (Lond) 2015; 10:2537-52. [PMID: 26293310 DOI: 10.2217/nnm.15.73] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanocrystals are carrier-free solid drug particles that are sized in the nanometer range and have crystalline characteristics. Due to high drug loading (as high as 100%) - free of organic solvents or solubilizing chemicals - nanocrystals have become attractive in the field of drug delivery for cancer treatment. Top-down and bottom-up approaches have been developed for preparing anticancer nanocrystals. In this review, preparation methods and in vivo performance of anticancer nanocrystals are discussed first, followed by an introduction of hybrid nanocrystals in cancer theranostics.
Collapse
Affiliation(s)
- Yi Lu
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA.,Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yan Chen
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA.,Department of Pharmaceutics, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Richard A Gemeinhart
- Departments of Biopharmaceutical Sciences, Bioengineering & Ophthalmology & Visual Sciences, The University of Illinois, Chicago, IL 60612, USA
| | - Wei Wu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Tonglei Li
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
12
|
Rod shaped nanocrystals exhibit superior in vitro dissolution and in vivo bioavailability over spherical like nanocrystals: A case study of lovastatin. Colloids Surf B Biointerfaces 2015; 128:410-418. [DOI: 10.1016/j.colsurfb.2015.02.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 11/22/2022]
|
13
|
Niu G, Lu L, Gan J, Zhang D, Liu J, Huang G. Dual roles of orphan nuclear receptor TR3/Nur77/NGFI-B in mediating cell survival and apoptosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 313:219-58. [PMID: 25376494 DOI: 10.1016/b978-0-12-800177-6.00007-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As a transcriptional factor, Nur77 has sparked interests across different research fields in recent years. A number of studies have demonstrated the functional complexity of Nur77 in mediating survival/apoptosis in a variety of cells, including tumor cells. Conflicting observations also exist in clinical reports, in that TR3 behaves like an oncogene in tumors of the GI tract, lung, and breast, that is negatively associated with tumor stage and patient prognosis; while functions as a tumor suppressor gene in malignancies of the hematological and lymphatic system, skin, and ovary whose malfunction results in carcinogenesis. This chapter summarizes the apparent opposing effects of Nur77 on cells and explicates the mechanisms that determine the functional preference of Nur77. We conclude that in addition to cell type and agent context, other factors such as cellular localization, signaling pathway, and posttranslational modification also determine the final effects of Nur77 on cells.
Collapse
Affiliation(s)
- Gengming Niu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Lu
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Jun Gan
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Di Zhang
- Main Library, Shanghai Jiao Tong University, Shanghai, China
| | - Jingzheng Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guangjian Huang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|