1
|
Zhao H, Sun S, Cui Y, Ullah MW, Alabbosh KF, Elboughdiri N, Zhou J. Sustainable production of bacterial flocculants by nylon-6,6 microplastics hydrolysate utilizing Brucella intermedia ZL-06. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133435. [PMID: 38224639 DOI: 10.1016/j.jhazmat.2024.133435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
Nylon-6,6 microplastics (NMPs) in aquatic systems have emerged as potential contaminants to the global environment and have garnered immense consideration over the years. Unfortunately, there is currently no efficient method available to eliminate NMPs from sewage. This study aims to address this issue by isolating Brucella intermedia ZL-06, a bacterium capable of producing a bacterial polysaccharide-based flocculant (PBF). The PBF generated from this bacterium shows promising efficacy in effectively flocculating NMPs. Subsequently, the precipitated flocs (NMPs + PBF) were utilized as sustainable feedstock for synthesizing PBF. The study yielded 6.91 g/L PBF under optimum conditions. Genome sequencing analysis was conducted to study the mechanisms of PBF synthesis and nylon-6,6 degradation. The PBF exhibited impressive flocculating capacity of 90.1 mg/g of PBF when applied to 0.01 mm NMPs, aided by the presence of Ca2+. FTIR and XPS analysis showed the presence of hydroxyl, carboxyl, and amine groups in PBF. The flocculation performance of PBF conformed to Langmuir isotherm and pseudo-first-order adsorption kinetics model. These findings present a promising approach for reducing the production costs of PBF by utilizing NMPs as sustainable nutrient sources.
Collapse
Affiliation(s)
- Haijuan Zhao
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430073, China; School of Mathematics and Statistics, Hubei University of Education, Wuhan 430205, China
| | - Su Sun
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yongming Cui
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430073, China.
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | | | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia; Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
| | - Jiangang Zhou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
2
|
Huang H, Li J, Tao W, Li S. A Functionalized Polysaccharide from Sphingomonas sp. HL-1 for High-Performance Flocculation. Polymers (Basel) 2022; 15:polym15010056. [PMID: 36616408 PMCID: PMC9853492 DOI: 10.3390/polym15010056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The characterization and flocculation mechanism of a biopolymer flocculant produced by Sphingomonas sp. HL-1, were investigated. The bio-flocculant HL1 was identified as an acidic polysaccharide, mainly composed of glucose, and also contained a small amount of mannose, galacturonic acid and guluronic acid. The flocculating activity of the purified HL1 polysaccharide could be activated by trivalent cations, and its flocculation mechanism was mainly charge neutralization and bridging. The working concentration of fermentation broth HL1 in a kaolin suspension was only 1/10,000 (v/v), in which the polysaccharide concentration was about 2 mg/L. The bio-flocculant HL1 maintained high efficiency at a wide range of pH (pH 3-10). It also exhibited good flocculating activity at a temperature range of 20-40 °C; it could even tolerate high salinity and kept activity at a mineralization degree of 50,000 mg/L. Therefore, the bio-flocculant HL1 has a good application prospect in the treatment of wastewater over a broad pH range and in high salinity.
Collapse
Affiliation(s)
- Haolin Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jingsong Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weiyi Tao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Shuang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
- Correspondence: ; Tel./Fax: +86-25-58139942
| |
Collapse
|
3
|
Bahniuk MS, Alidina F, Tan X, Unsworth LD. The last 25 years of research on bioflocculants for kaolin flocculation with recent trends and technical challenges for the future. Front Bioeng Biotechnol 2022; 10:1048755. [PMID: 36507274 PMCID: PMC9731118 DOI: 10.3389/fbioe.2022.1048755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
The generation of kaolin-containing wastewater is an inevitable consequence in a number of industries including mining, wastewater treatment, and bitumen processing. In some cases, the production of kaolin tailings waste during the production of bitumen or phosphate is as high as 3 times greater than the actual produced product. The existing inventory of nearly five billion barrels of oil sands tailings alone represents a massive storage and reclamation challenge, as well as a significant economic and environmental liability. Current reclamation options like inorganic coagulants and organic synthetic polymers may settle kaolin effectively, but may themselves pose an additional environmental hazard. Bioflocculants are an emerging alternative, given the inherent safety and biodegradability of their bio-based compositions. This review summarizes the different research attempts towards a better bioflocculant of kaolin, with a focus on the bioflocculant source, composition, and effective flocculating conditions. Bacillus bacteria were the most prevalent single species for bioflocculant production, with wastewater also hosting a large number of bioflocculant-producing microorganisms while serving as an inexpensive nutrient. Effective kaolin flocculation could be obtained over a broad range of pH values (1-12) and temperatures (5-95°C). Uronic acid and glutamic acid were predominant sugars and amino acids, respectively, in a number of effective bioflocculants, potentially due to their structural and charge similarities to effective synthetic polymers like polyacrylamide. Overall, these results demonstrate that bioflocculants can be produced from a wide range of microorganisms, can be composed of polysaccharides, protein or glycoproteins and can serve as effective treatment options for kaolin. In some cases, the next obstacle to their wide-spread application is scaling to industrially relevant volumes and their deployment strategies.
Collapse
|
4
|
Kaarmukhilnilavan RS, Selvam A, Wong JW, Murugesan K. Ca2+ dependent flocculation efficiency of avian egg protein revealed unique surface specific interaction with kaolin particles: A new perception in bioflocculant research. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Ma L, Liang J, Liu Y, Zhang Y, Ma P, Pan Z, Jiang W. Production of a bioflocculant from Enterobacter sp. P3 using brewery wastewater as substrate and its application in fracturing flowback water treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18242-18253. [PMID: 32180144 DOI: 10.1007/s11356-020-08245-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
A novel bioflocculant (BW-P3) was produced by a strain of Enterobacter sp. P3 using brewery wastewater as substrate and was further applied to remove the colored substance of fracturing flowback water. The optimum conditions for bioflocculant production were specified by the response surface methodology as COD of brewery wastewater 1487.77 mg/L, glucose 8.94 g/L and initial pH 7.09, under which a bioflocculant yield of 1.274 g/L could be reached. The BW-P3 consists of 79.12% polysaccharides and 15.63% protein. Results show that BW-P3 has a high molecular weight (921 kDa) and contains functional groups (hydroxyl, amino, carbonyl, and acylamino) that likely contribute to flocculation. When using the BW-P3 to flocculate fracturing flowback water, the optimal dosage was 1 g/L BW-P3 with addition of 100 mg/L polymeric aluminum chloride as coagulant aid, and treated under 50 °C at pH 7. Under the optimal condition, the removal rates of chroma and suspended solids (SS) of the fracturing flowback water could reach 85% and 52%, respectively.
Collapse
Affiliation(s)
- Lili Ma
- National postdoctoral research station, Haitian Water Group Co., Ltd., Chengdu, 610041, People's Republic of China
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, People's Republic of China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| | - Jingjing Liang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| | - Yucheng Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
- Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| | - Yirong Zhang
- China Petroloil Production Plant No.7, Changqing Oilfield Company, Changqing, Xi'an, 710200, People's Republic of China
| | - Pengchao Ma
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| | - Zhicheng Pan
- National postdoctoral research station, Haitian Water Group Co., Ltd., Chengdu, 610041, People's Republic of China.
| | - Wenju Jiang
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, People's Republic of China
| |
Collapse
|
6
|
Ma L, Liang J, Wang S, Yang B, Chen M, Liu Y. Production of a bioflocculant from Klebsiella sp. OS-1 using brewery wastewater as a source. ENVIRONMENTAL TECHNOLOGY 2019; 40:44-52. [PMID: 28877651 DOI: 10.1080/09593330.2017.1377770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
This study evaluated the potential of bioflocculant production from a Klebsiella strain using brewery wastewater as nutrients. The bioflocculant named OS-1B produced by Klebsiella sp. OS-1 exhibited a good flocculating activity to kaolin clay suspension (around 95%), when the diluted brewery wastewater with 7.2 mg/L total nitrogen and 1013 mg/L CODCr was used as a nitrogen source. Glucose (15 g/L) is the most favorable carbon source for Klebsiella sp. OS-1 in bioflocculant production from brewery wastewater. The yielded bioflocculant is pH tolerant and thermally stable, suggesting its good industrial potential. OS-1B mainly comprises polysaccharide (69.4%) and protein (24.5%). Fourier-transform infrared spectra indicate the presence of hydroxyl, carboxyl, esters and amino groups in the bioflocculant molecules. Combined with the results of zeta potential measurements, bridging is suggested as the main flocculation mechanism for OS-1B flocculation with kaolin. Overall, brewery wastewater can be used as a substrate to produce bioflocculants.
Collapse
Affiliation(s)
- Lili Ma
- a School of Chemistry and Chemical Engineering , Southwest Petroleum University , Chengdu , People's Republic of China
| | - Jingjing Liang
- a School of Chemistry and Chemical Engineering , Southwest Petroleum University , Chengdu , People's Republic of China
| | - Shanyi Wang
- a School of Chemistry and Chemical Engineering , Southwest Petroleum University , Chengdu , People's Republic of China
- b Hangxiang Nine-year Compulsory Education School , Ziyang , People's Republic of China
| | - Bing Yang
- a School of Chemistry and Chemical Engineering , Southwest Petroleum University , Chengdu , People's Republic of China
| | - Mingyan Chen
- a School of Chemistry and Chemical Engineering , Southwest Petroleum University , Chengdu , People's Republic of China
| | - Yucheng Liu
- a School of Chemistry and Chemical Engineering , Southwest Petroleum University , Chengdu , People's Republic of China
| |
Collapse
|
7
|
Salehizadeh H, Yan N, Farnood R. Recent advances in polysaccharide bio-based flocculants. Biotechnol Adv 2017; 36:92-119. [PMID: 28993221 DOI: 10.1016/j.biotechadv.2017.10.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/09/2017] [Accepted: 10/05/2017] [Indexed: 01/03/2023]
Abstract
Natural polysaccharides, derived from biomass feedstocks, marine resources, and microorganisms, have been attracting considerable attention as benign and environmentally friendly substitutes for synthetic polymeric products. Besides many other applications, these biopolymers are rapidly emerging as viable alternatives to harmful synthetic flocculating agents for the removal of contaminants from water and wastewater. In recent years, a great deal of effort has been devoted to improve the production and performance of polysaccharide bio-based flocculants. In this review, current trends in preparation and chemical modification of polysaccharide bio-based flocculants and their flocculation performance are discussed. Aspects including mechanisms of flocculation, biosynthesis, classification, purification and characterization, chemical modification, the effect of physicochemical factors on flocculating activity, and recent applications of polysaccharide bio-based flocculants are summarized and presented.
Collapse
Affiliation(s)
- Hossein Salehizadeh
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, Ontario M5S 3E5, Canada.
| | - Ning Yan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, Ontario M5S 3E5, Canada; Faculty of Forestry, University of Toronto, 33 Willcocks St., Toronto, Ontario M5S 3B3, Canada.
| | - Ramin Farnood
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, Ontario M5S 3E5, Canada.
| |
Collapse
|
8
|
Okaiyeto K, Nwodo UU, Okoli SA, Mabinya LV, Okoh AI. Implications for public health demands alternatives to inorganic and synthetic flocculants: bioflocculants as important candidates. Microbiologyopen 2016; 5:177-211. [PMID: 26914994 PMCID: PMC4831466 DOI: 10.1002/mbo3.334] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/05/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022] Open
Abstract
Chemical flocculants are generally used in drinking water and wastewater treatment due to their efficacy and cost effectiveness. However, the question of their toxicity to human health and environmental pollution has been a major concern. In this article, we review the application of some chemical flocculants utilized in water treatment, and bioflocculants as a potential alternative to these chemical flocculants. To the best of our knowledge, there is no report in the literature that provides an up‐to‐date review of the relevant literature on both chemical flocculants and bioflocculants in one paper. As a result, this review paper comprehensively discussed the various chemical flocculants used in water treatment, including their advantages and disadvantages. It also gave insights into bioflocculants production, challenges, various factors influencing their flocculating efficiency and their industrial applications, as well as future research directions including improvement of bioflocculants yields and flocculating activity, and production of cation‐independent bioflocculants. The molecular biology and synthesis of bioflocculants are also discussed.
Collapse
Affiliation(s)
- Kunle Okaiyeto
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Uchechukwu U Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Stanley A Okoli
- GenØK - Centre for Biosafety, Science Park, University of Tromsø, Tromsø, 9291, Norway
| | - Leonard V Mabinya
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| |
Collapse
|
9
|
Pathak M, Devi A, Bhattacharyya KG, Sarma HK, Subudhi S, Lal B. Production of a non-cytotoxic bioflocculant by a bacterium utilizing a petroleum hydrocarbon source and its application in heavy metal removal. RSC Adv 2015. [DOI: 10.1039/c5ra08636a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A bacterium isolated from the activated sludge of an oil refinery of Assam, India retained efficient bioflocculating activity through production of the bioflocculant when it was grown on a crude oil amended medium void of any other carbon source.
Collapse
Affiliation(s)
- M. Pathak
- Environmental Chemistry Laboratory
- Resource Management and Environment Section
- Life Science Division
- Institute of Advanced Study in Science and Technology
- Guwahati
| | - A. Devi
- Environmental Chemistry Laboratory
- Resource Management and Environment Section
- Life Science Division
- Institute of Advanced Study in Science and Technology
- Guwahati
| | | | - H. K. Sarma
- Department of Biotechnology
- Gauhati University
- Guwahati
- India
| | - S. Subudhi
- Environmental and Industrial Biotechnology Division
- The Energy and Resources Institute
- New Delhi
- India
| | - B. Lal
- Environmental and Industrial Biotechnology Division
- The Energy and Resources Institute
- New Delhi
- India
| |
Collapse
|