1
|
Wang P, Gong Y, Zhou G, Ren W, Wang X. Biodegradable Implants for Internal Fixation of Fractures and Accelerated Bone Regeneration. ACS OMEGA 2023; 8:27920-27931. [PMID: 37576626 PMCID: PMC10413843 DOI: 10.1021/acsomega.3c02727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023]
Abstract
Bone fractures have always been a burden to patients due to their common occurrence and severe complications. Traditionally, operative treatments have been widely used in the clinic for implanting, despite the fact that they can only achieve bone fixation with limited stability and pose no effect on promoting tissue growth. In addition, the nondegradable implants usually need a secondary surgery for implant removal, otherwise they may block the regeneration of bones resulting in bone nonunion. To overcome the low degradability of implants and avoid multiple surgeries, tissue engineers have investigated various biodegradable materials for bone regeneration, whereas the significance of stability of long-term bone fixation tends to be neglected during this process. Combining the traditional orthopedic implantation surgeries and emerging tissue engineering, we believe that both bone fixation and bone regeneration are indispensable factors for a successful bone repair. Herein, we define such a novel idea as bone regenerative fixation (BRF), which should be the main future development trend of biodegradable materials.
Collapse
Affiliation(s)
- Pei Wang
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yan Gong
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guangdong Zhou
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Institute
of Regenerative Medicine and Orthopedics, Institutes of Health Central
Plain, Xinxiang Medical University, Henan 453003, China
| | - Wenjie Ren
- Institute
of Regenerative Medicine and Orthopedics, Institutes of Health Central
Plain, Xinxiang Medical University, Henan 453003, China
| | - Xiansong Wang
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Institute
of Regenerative Medicine and Orthopedics, Institutes of Health Central
Plain, Xinxiang Medical University, Henan 453003, China
| |
Collapse
|
2
|
Oh S, Hahm DH, Choi YB. Antimicrobial Activity and Cytotoxicity of Prepolymer Allyl 2-cyanoacrylate and 2-Octyl Cyanoacrylate Mixture Adhesives for Topical Wound Closure. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093427. [PMID: 37176306 PMCID: PMC10179742 DOI: 10.3390/ma16093427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
The development of a new skin adhesive that can be used inside and outside the body, which prevents infection and has fewer scars and less side effects, is currently attracting attention from the scientific community. To improve biocompatibility, prepolymer allyl 2-cyanoacrylate (PAC) and 2-octyl cyanoacrylate (OC) were mixed in various proportions and tested for their therapeutic potential as skin adhesives. A series of skin adhesive samples prepared by mixing PAC, OC, and additives with % (w/w) ratios of 100:0:0, 0:100:0, 70:0:30, 40:30:30, and 30:40:30 were tested to determine their antimicrobial activity, cell cytotoxicity, and formaldehyde release. The additives include myristic acid and dibutyl sebacate as plasticizers and butylated hydroxyanisole as an antioxidant. It was observed that the samples containing 70% PAC (PAC7) or 40% PAC (PAC4) with 30% additives had the highest antimicrobial activities against various microbial cells and no cytotoxicity regarding in vitro fibroblast cell growth. In addition, these formulations of adhesive samples released formaldehyde within the levels permitted for medical devices. Taken together, the mixture of PAC and OC as a topical skin adhesive for wound closure was found to be biocompatible, mechanically stable and safe, as well as effective for wound healing.
Collapse
Affiliation(s)
- Soyeon Oh
- Theramx Inc., Starwood, Jungwon-gu, Seongnam-si 13229, Republic of Korea
| | - Dae-Hyun Hahm
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yong-Bok Choi
- Theramx Inc., Starwood, Jungwon-gu, Seongnam-si 13229, Republic of Korea
| |
Collapse
|
3
|
Bu Y, Pandit A. Cohesion mechanisms for bioadhesives. Bioact Mater 2022; 13:105-118. [PMID: 35224295 PMCID: PMC8843969 DOI: 10.1016/j.bioactmat.2021.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023] Open
Abstract
Due to the nature of non-invasive wound closure, the ability to close different forms of leaks, and the potential to immobilize various devices, bioadhesives are altering clinical practices. As one of the vital factors, bioadhesives' strength is determined by adhesion and cohesion mechanisms. As well as being essential for adhesion strength, the cohesion mechanism also influences their bulk functions and the way the adhesives can be applied. Although there are many published reports on various adhesion mechanisms, cohesion mechanisms have rarely been addressed. In this review, we have summarized the most used cohesion mechanisms. Furthermore, the relationship of cohesion strategies and adhesion strategies has been discussed, including employing the same functional groups harnessed for adhesion, using combinational approaches, and exploiting different strategies for cohesion mechanism. By providing a comprehensive insight into cohesion strategies, the paper has been integrated to offer a roadmap to facilitate the commercialization of bioadhesives.
Collapse
Affiliation(s)
- Yazhong Bu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
- CÚRAM, SFI Research Centre for Medical Devices National University of Ireland, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices National University of Ireland, Galway, Ireland
| |
Collapse
|
4
|
Shokri M, Dalili F, Kharaziha M, Baghaban Eslaminejad M, Ahmadi Tafti H. Strong and bioactive bioinspired biomaterials, next generation of bone adhesives. Adv Colloid Interface Sci 2022; 305:102706. [PMID: 35623113 DOI: 10.1016/j.cis.2022.102706] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/20/2022] [Accepted: 05/15/2022] [Indexed: 12/29/2022]
Abstract
The bone adhesive is a clinical requirement for complicated bone fractures always articulated by surgeons. Applying glue is a quick and easy way to fix broken bones. Adhesives, unlike conventional fixation methods such as wires and sutures, improve healing conditions and reduce postoperative pain by creating a complete connection at the fractured joint. Despite many efforts in the field of bone adhesives, the creation of a successful adhesive with robust adhesion and appropriate bioactivity for the treatment of bone fractures is still in its infancy. Because of the resemblance of the body's humid environment to the underwater environment, in the latest decades, researchers have pursued inspiration from nature to develop strong bioactive adhesives for bone tissue. The aim of this review article is to discuss the recent state of the art in bone adhesives with a specific focus on biomimetic adhesives, their action mechanisms, and upcoming perspective. Firstly, the adhesive biomaterials with specific affinity to bone tissue are introduced and their rational design is studied. Consequently, various types of synthetic and natural bioadhesives for bone tissue are comprehensively overviewed. Then, bioinspired-adhesives are described, highlighting relevant structures and examples of biomimetic adhesives mainly made of DOPA and the complex coacervates inspired by proteins secreted in mussel and sandcastle worms, respectively. Finally, this article overviews the challenges of the current bioadhesives and the future research for the improvement of the properties of biomimetic adhesives for use as bone adhesives.
Collapse
Affiliation(s)
- Mahshid Shokri
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Faezeh Dalili
- School of Metallurgy & Materials Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Hossein Ahmadi Tafti
- Tehran Heart Hospital Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Costa PM, Learmonth DA, Gomes DB, Cautela MP, Oliveira ACN, Andrade R, Espregueira-Mendes J, Veloso TR, Cunha CB, Sousa RA. Mussel-Inspired Catechol Functionalisation as a Strategy to Enhance Biomaterial Adhesion: A Systematic Review. Polymers (Basel) 2021; 13:polym13193317. [PMID: 34641133 PMCID: PMC8513061 DOI: 10.3390/polym13193317] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Biomaterials have long been explored in regenerative medicine strategies for the repair or replacement of damaged organs and tissues, due to their biocompatibility, versatile physicochemical properties and tuneable mechanical cues capable of matching those of native tissues. However, poor adhesion under wet conditions (such as those found in tissues) has thus far limited their wider application. Indeed, despite its favourable physicochemical properties, facile gelation and biocompatibility, gellan gum (GG)-based hydrogels lack the tissue adhesiveness required for effective clinical use. Aiming at assessing whether substitution of GG by dopamine (DA) could be a suitable approach to overcome this problem, database searches were conducted on PubMed® and Embase® up to 2 March 2021, for studies using biomaterials covalently modified with a catechol-containing substituent conferring improved adhesion properties. In this regard, a total of 47 reports (out of 700 manuscripts, ~6.7%) were found to comply with the search/selection criteria, the majority of which (34/47, ~72%) were describing the modification of natural polymers, such as chitosan (11/47, ~23%) and hyaluronic acid (6/47, ~13%); conjugation of dopamine (as catechol “donor”) via carbodiimide coupling chemistry was also predominant. Importantly, modification with DA did not impact the biocompatibility and mechanical properties of the biomaterials and resulting hydrogels. Overall, there is ample evidence in the literature that the bioinspired substitution of polymers of natural and synthetic origin by DA or other catechol moieties greatly improves adhesion to biological tissues (and other inorganic surfaces).
Collapse
Affiliation(s)
- Pedro M. Costa
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
- Correspondence: ; Tel.: +351–253–165–230
| | - David A. Learmonth
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
| | - David B. Gomes
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
| | - Mafalda P. Cautela
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
| | - Ana C. N. Oliveira
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
| | - Renato Andrade
- Clínica do Dragão, Espregueira-Mendes Sports Centre-FIFA Medical Centre of Excellence, 4350-415 Porto, Portugal; (R.A.); (J.E.-M.)
- Dom Henrique Research Centre, 4350-415 Porto, Portugal
- Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - João Espregueira-Mendes
- Clínica do Dragão, Espregueira-Mendes Sports Centre-FIFA Medical Centre of Excellence, 4350-415 Porto, Portugal; (R.A.); (J.E.-M.)
- Dom Henrique Research Centre, 4350-415 Porto, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
| | - Tiago R. Veloso
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
| | - Cristiana B. Cunha
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
| | - Rui A. Sousa
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
| |
Collapse
|
6
|
Ichimaru H, Mizuno Y, Chen X, Nishiguchi A, Taguchi T. Prevention of pulmonary air leaks using a biodegradable tissue-adhesive fiber sheet based on Alaska pollock gelatin modified with decanyl groups. Biomater Sci 2021; 9:861-873. [PMID: 33236729 DOI: 10.1039/d0bm01302a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tissue adhesives have been widely used in surgery to treat pulmonary air leaks. However, conventional adhesives have poor interfacial strength under wet conditions. To overcome this clinical problem, we modified Alaska pollock-derived gelatin to include decanyl (C10) groups (C10-ApGltn) and used electrospinning to create a tissue-adhesive fiber sheet (AdFS). C10-AdFS showed higher burst strength when adhering to porcine pleura compared with a sheet of original ApGltn (Org-ApGltn). Hematoxylin-eosin-stained sections after burst experiments reveal that a dense C10-AdFS layer remained on the surface of the porcine pleura. The effect of the degree of C10 modification of ApGltn on the burst strength was evaluated. ApGltn with a C10 modification ratio of 13 mol% amino groups (13C10-AdFS) exhibited the highest burst strength. Furthermore, from ex vivo experiments with extracted rat lung, 13C10-AdFS exhibited a higher burst strength (41 cm H2O) than Org-AdFS. The decanyl groups in 13C10-AdFS interacted with the hydrophobic proteins and the lipid bilayers of the cells, resulting in the high interfacial strength between 13C10-AdFS and the pleura. Moreover, 13C10-AdFS samples implanted subcutaneously in the backs of rats were completely degraded within 21 days without any severe inflammation. These results show that 13C10-AdFS is a promising adhesive material for the treatment of pulmonary air leaks.
Collapse
Affiliation(s)
- Hiroaki Ichimaru
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | | | | | | | | |
Collapse
|
7
|
Ichimaru H, Taguchi T. Improved tissue adhesion property of a hydrophobically modified Alaska pollock derived gelatin sheet by UV treatment. Int J Biol Macromol 2021; 172:580-588. [PMID: 33476616 DOI: 10.1016/j.ijbiomac.2021.01.085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 12/15/2022]
Abstract
Tissue adhesives have been developed for sealing tissue damaged in surgery. Among these, sheet-type adhesives require a relatively long time to adhere to biological tissue under wet conditions. To address this clinical problem, we fabricated a tissue-adhesive fiber sheet (AdFS) based on decanyl group (C10) modified Alaska pollock-derived gelatin (C10-ApGltn) using electrospinning. Ultraviolet (UV) irradiation of the AdFS was performed to increase the affinity between the AdFS and wet biological tissue by introducing hydrophilic functional groups. The UV irradiated AdFS (UV-C10-AdFS) strongly adhered to porcine pleura within 2 min under wet conditions and showed higher burst strength compared with the original ApGltn (Org-ApGltn) sheet. Hematoxylin-eosin stained sections revealed that a dense UV-C10-AdFS layer remained on the surface of the porcine pleura even after burst strength measurement. Moreover, UV-C10-AdFS has excellent cytocompatibility and efficiently supports the growth of L929 cells. UV-C10-AdFS is a promising adhesive material for sealing wet biological tissue.
Collapse
Affiliation(s)
- Hiroaki Ichimaru
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan; Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tetsushi Taguchi
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan; Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| |
Collapse
|
8
|
Bao Z, Gao M, Sun Y, Nian R, Xian M. The recent progress of tissue adhesives in design strategies, adhesive mechanism and applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110796. [PMID: 32279807 DOI: 10.1016/j.msec.2020.110796] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 04/15/2019] [Accepted: 02/29/2020] [Indexed: 02/07/2023]
Abstract
Tissue adhesives have emerged as an effective method for wound closure and hemostasis in recent decades, due to their ability to bond tissues together, preventing separation from one tissue to another. However, existing tissue adhesives still have several limitations. Tremendous efforts have been invested into developing new tissue adhesives by improving upon existing adhesives through different strategies. Therefore, highlighting and analyzing these design strategies are essential for developing the next generation of advanced adhesives. To this end, we reviewed the available strategies for modifying traditional adhesives (including cyanoacrylate glues, fibrin sealants and BioGlue), as well as design of emerging adhesives (including gelatin sealants, methacrylated sealants and bioinspired adhesives), focusing on their structures, adhesive mechanisms, advantages, limitations, and current applications. The bioinspired adhesives have numerous advantages over traditional adhesives, which will be a wise direction for achieving tissue adhesives with superior properties.
Collapse
Affiliation(s)
- Zixian Bao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| | - Minghong Gao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| | - Yue Sun
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| | - Rui Nian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China.
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China.
| |
Collapse
|
9
|
Lu X, Shi S, Li H, Gerhard E, Lu Z, Tan X, Li W, Rahn KM, Xie D, Xu G, Zou F, Bai X, Guo J, Yang J. Magnesium oxide-crosslinked low-swelling citrate-based mussel-inspired tissue adhesives. Biomaterials 2020; 232:119719. [DOI: 10.1016/j.biomaterials.2019.119719] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/26/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
|
10
|
Recent progresses in bioadhesive microspheres via transmucosal administration. Colloids Surf B Biointerfaces 2015; 140:361-372. [PMID: 26774569 DOI: 10.1016/j.colsurfb.2015.12.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 12/05/2015] [Accepted: 12/26/2015] [Indexed: 01/04/2023]
Abstract
Based on the advantages of adhesion preparations and the application status of microspheres (MSs) in mucous delivery, this paper primarily reviews the bioadhesive MSs via transmucosal administration routes, including the mucosa in alimentary tract and other lumens. Particularly, the detailed researches about of celladhesive MSs and some new-style bioadhesive MSs are mentioned. Furthermore, this review attempts to reveal the advances of bioadhesive MSs as cell-selective bioadhesion systems and the stimuli-responsive MSs as location-specific drug delivery systems. Although these MSs show powerful strength, some far-sighted ideas should be brought on agendas. In the future, mechanisms should be put under tight scrutiny and more attention should be focused on the excellent bioadhesive materials and the 'second generation mucoadhesives'. Meaningful clinical applications of these novel MSs are also of current concerns and need more detailed researches.
Collapse
|
11
|
Enhanced biocompatibility and adhesive properties of modified allyl 2-cyanoacrylate-based elastic bio-glues. Colloids Surf B Biointerfaces 2015; 133:19-23. [PMID: 26057376 DOI: 10.1016/j.colsurfb.2015.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 05/02/2015] [Accepted: 05/05/2015] [Indexed: 11/22/2022]
Abstract
Despite cyanoacrylate's numerous advantages such as good cosmetic results and fast application for first aid, drawbacks such as brittleness and local tissue toxicity have limited their applicability. In this study, to improve both the biocompatibility and mechanical properties of cyanoacrylate, allyl 2-cyanoacrylate (AC) was pre-polymerized and mixed with poly(L-lactide-co-ɛ-caprolactone) (PLCL, 50:50) as biodegradable elastomer. For various properties of pre-polymerized AC (PAC)/PLCL mixtures, bond strength, elasticity of flexure test as bending recovery, cell viability, and in vivo test using rat were conducted and enhanced mechanical properties and biocompatibility were confirmed. Especially, optimal condition for pre-polymerization of AC was determined to 150°C for 40min through cytotoxicity test. Bond strength of PAC/PLCL mixture was decreased (over 10 times) with increasing of PLCL. On the other hand, biocompatibility and flexibility were improved than commercial bio-glue. Optimal PAC/PLCL composition (4g/20mg) was determined through these tests. Furthermore, harmful side effects and infection were not observed by in vivo wound healing test. These results indicate that PAC/PLCL materials can be used widely as advanced bio-glues in various fields.
Collapse
|