1
|
Iversen A, Utterström J, Khare LP, Aili D. Influence of lipid vesicle properties on the function of conjugation dependent membrane active peptides. J Mater Chem B 2024; 12:10320-10331. [PMID: 39291919 PMCID: PMC11409839 DOI: 10.1039/d4tb01107d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
Membrane active peptides (MAPs) can provide novel means to trigger the release of liposome encapsulated drugs to improve the efficacy of liposomal drug delivery systems. Design of MAP-based release strategies requires possibilities to carefully tailor the interactions between the peptides and the lipid bilayer. Here we explore the influence of lipid vesicle properties on the function of conjugation-dependent MAPs, specifically focusing on two de novo designed peptides, JR2KC and CKV4. Utilizing liposomes with differences in size, lipid composition, and surface charge, we investigated the mechanisms and abilities of the peptides to induce controlled release of encapsulated cargo. Our findings indicate that liposome size modestly affects the structural changes and function of the peptides, with larger vesicles facilitating a minor increase in drug release efficiency due to higher peptide-to-liposome ratios. Notably, the introduction of negatively charged lipids significantly enhanced the release efficiency, predominantly through electrostatic interactions that favor peptide accumulation at the lipid bilayer interface and subsequent membrane disruption. The incorporation of cholesterol and a mix of saturated and unsaturated lipids was shown to alter the vesicle's phase behavior, thus modulating the membrane activity of the peptides. This was particularly evident in the cholesterol-enriched liposomes, where JR2KC induced lipid phase separation, markedly enhancing cargo release. Our results underscore the critical role of lipid vesicle composition in the design of MAP-based drug delivery systems, suggesting that precise tuning of lipid characteristics can significantly influence their performance.
Collapse
Affiliation(s)
- Alexandra Iversen
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry, and Biology, Linköping University, 581 83 Linköping, Sweden.
| | - Johanna Utterström
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry, and Biology, Linköping University, 581 83 Linköping, Sweden.
| | - Lalit Pramod Khare
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry, and Biology, Linköping University, 581 83 Linköping, Sweden.
| | - Daniel Aili
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry, and Biology, Linköping University, 581 83 Linköping, Sweden.
| |
Collapse
|
2
|
Miłogrodzka I, Le Brun AP, Banaszak Holl MM, van 't Hag L. HIV and influenza fusion peptide interactions with (dis)ordered lipid bilayers: Understanding mechanisms and implications for antimicrobial and antiviral approaches. J Colloid Interface Sci 2024; 670:563-575. [PMID: 38776691 DOI: 10.1016/j.jcis.2024.05.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
The interactions of viral fusion peptides from influenza (E4K and Ac-E4K) and human immunodeficiency virus (gp41 and Ac-gp41) with planar lipid bilayers and monolayers was investigated herein. A combination of surface-sensitive techniques, including quartz crystal microbalance with dissipation (QCM-D), Langmuir-Blodgett area-pressure isotherms with Micro-Brewster angle microscopy, and neutron reflectometry, was employed. Differences in the interactions of the viral fusion peptides with lipid bilayers featuring ordered and disordered phases, as well as lipid rafts, were revealed. The HIV fusion peptide (gp41) exhibited strong binding to the DOPC/DOPS bilayer, comprising a liquid disordered phase, with neutron reflectometry (NR) showing interaction with the bilayer's headgroup area. Conversely, negligible binding was observed with lipid bilayers in a liquid ordered phase. Notably, the influenza peptide (E4K) demonstrated slower binding kinetics with DOPC/DOPS bilayers and distinct interactions compared to gp41, as observed through QCM-D. This suggests different mechanisms of interaction with the lipid bilayers: one peptide interacts more within the headgroup region, while the other is more involved in transmembrane interactions. These findings hold implications for understanding viral fusion mechanisms and developing antimicrobials and antivirals targeting membrane interactions. The differential binding behaviours of the viral fusion peptides underscore the importance of considering membrane composition and properties in therapeutic strategy design.
Collapse
Affiliation(s)
- Izabela Miłogrodzka
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, Australia; Australian Synchrotron, Clayton, Victoria, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Mark M Banaszak Holl
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, Australia; Department of Mechanical and Materials Engineering, University of Alabama at Birmingham, Birmingham, AL, USA; Division of Pulmonology, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leonie van 't Hag
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
3
|
Koo DJ, Sut TN, Tan SW, Yoon BK, Jackman JA. Biophysical Characterization of LTX-315 Anticancer Peptide Interactions with Model Membrane Platforms: Effect of Membrane Surface Charge. Int J Mol Sci 2022; 23:10558. [PMID: 36142470 PMCID: PMC9501188 DOI: 10.3390/ijms231810558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
LTX-315 is a clinical-stage, anticancer peptide therapeutic that disrupts cancer cell membranes. Existing mechanistic knowledge about LTX-315 has been obtained from cell-based biological assays, and there is an outstanding need to directly characterize the corresponding membrane-peptide interactions from a biophysical perspective. Herein, we investigated the membrane-disruptive properties of the LTX-315 peptide using three cell-membrane-mimicking membrane platforms on solid supports, namely the supported lipid bilayer, intact vesicle adlayer, and tethered lipid bilayer, in combination with quartz crystal microbalance-dissipation (QCM-D) and electrochemical impedance spectroscopy (EIS) measurements. The results showed that the cationic LTX-315 peptide selectively disrupted negatively charged phospholipid membranes to a greater extent than zwitterionic or positively charged phospholipid membranes, whereby electrostatic interactions were the main factor to influence peptide attachment and membrane curvature was a secondary factor. Of note, the EIS measurements showed that the LTX-315 peptide extensively and irreversibly permeabilized negatively charged, tethered lipid bilayers that contained high phosphatidylserine lipid levels representative of the outer leaflet of cancer cell membranes, while circular dichroism (CD) spectroscopy experiments indicated that the LTX-315 peptide was structureless and the corresponding membrane-disruptive interactions did not involve peptide conformational changes. Dynamic light scattering (DLS) measurements further verified that the LTX-315 peptide selectively caused irreversible disruption of negatively charged lipid vesicles. Together, our findings demonstrate that the LTX-315 peptide preferentially disrupts negatively charged phospholipid membranes in an irreversible manner, which reinforces its potential as an emerging cancer immunotherapy and offers a biophysical framework to guide future peptide engineering efforts.
Collapse
Affiliation(s)
- Dong Jun Koo
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Tun Naw Sut
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Sue Woon Tan
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Bo Kyeong Yoon
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea
| | - Joshua A. Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
4
|
Canepa E, Relini A, Bochicchio D, Lavagna E, Mescola A. Amphiphilic Gold Nanoparticles: A Biomimetic Tool to Gain Mechanistic Insights into Peptide-Lipid Interactions. MEMBRANES 2022; 12:673. [PMID: 35877876 PMCID: PMC9324301 DOI: 10.3390/membranes12070673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023]
Abstract
Functional peptides are now widely used in a myriad of biomedical and clinical contexts, from cancer therapy and tumor targeting to the treatment of bacterial and viral infections. Underlying this diverse range of applications are the non-specific interactions that can occur between peptides and cell membranes, which, in many contexts, result in spontaneous internalization of the peptide within cells by avoiding energy-driven endocytosis. For this to occur, the amphipathicity and surface structural flexibility of the peptides play a crucial role and can be regulated by the presence of specific molecular residues that give rise to precise molecular events. Nevertheless, most of the mechanistic details regulating the encounter between peptides and the membranes of bacterial or animal cells are still poorly understood, thus greatly limiting the biomimetic potential of these therapeutic molecules. In this arena, finely engineered nanomaterials-such as small amphiphilic gold nanoparticles (AuNPs) protected by a mixed thiol monolayer-can provide a powerful tool for mimicking and investigating the physicochemical processes underlying peptide-lipid interactions. Within this perspective, we present here a critical review of membrane effects induced by both amphiphilic AuNPs and well-known amphiphilic peptide families, such as cell-penetrating peptides and antimicrobial peptides. Our discussion is focused particularly on the effects provoked on widely studied model cell membranes, such as supported lipid bilayers and lipid vesicles. Remarkable similarities in the peptide or nanoparticle membrane behavior are critically analyzed. Overall, our work provides an overview of the use of amphiphilic AuNPs as a highly promising tailor-made model to decipher the molecular events behind non-specific peptide-lipid interactions and highlights the main affinities observed both theoretically and experimentally. The knowledge resulting from this biomimetic approach could pave the way for the design of synthetic peptides with tailored functionalities for next-generation biomedical applications, such as highly efficient intracellular delivery systems.
Collapse
Affiliation(s)
- Ester Canepa
- Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy; (E.C.); (A.R.); (D.B.)
| | - Annalisa Relini
- Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy; (E.C.); (A.R.); (D.B.)
| | - Davide Bochicchio
- Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy; (E.C.); (A.R.); (D.B.)
| | - Enrico Lavagna
- Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy; (E.C.); (A.R.); (D.B.)
| | - Andrea Mescola
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy
| |
Collapse
|
5
|
Utterström J, Barriga HMG, Holme MN, Selegård R, Stevens MM, Aili D. Peptide-Folding Triggered Phase Separation and Lipid Membrane Destabilization in Cholesterol-Rich Lipid Vesicles. Bioconjug Chem 2022; 33:736-746. [PMID: 35362952 PMCID: PMC9026255 DOI: 10.1021/acs.bioconjchem.2c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Liposome-based drug
delivery systems are widely used to improve
drug pharmacokinetics but can suffer from slow and unspecific release
of encapsulated drugs. Membrane-active peptides, based on sequences
derived or inspired from antimicrobial peptides (AMPs), could offer
means to trigger and control the release. Cholesterol is used in most
liposomal drug delivery systems (DDS) to improve the stability of
the formulation, but the activity of AMPs on cholesterol-rich membranes
tends to be very low, complicating peptide-triggered release strategies.
Here, we show a de novo designed AMP-mimetic peptide that efficiently
triggers content release from cholesterol-containing lipid vesicles
when covalently conjugated to headgroup-functionalized lipids. Binding
to vesicles induces peptide folding and triggers a lipid phase separation,
which in the presence of cholesterol results in high local peptide
concentrations at the lipid bilayer surface and rapid content release.
We anticipate that these results will facilitate the development of
peptide-based strategies for controlling and triggering drug release
from liposomal drug delivery systems.
Collapse
Affiliation(s)
- Johanna Utterström
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, SE-581 83 Linköping, Sweden
| | - Hanna M G Barriga
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Margaret N Holme
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Robert Selegård
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, SE-581 83 Linköping, Sweden
| | - Molly M Stevens
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.,Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Daniel Aili
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, SE-581 83 Linköping, Sweden
| |
Collapse
|
6
|
Yoon BK, Jeon WY, Sut TN, Cho NJ, Jackman JA. Stopping Membrane-Enveloped Viruses with Nanotechnology Strategies: Toward Antiviral Drug Development and Pandemic Preparedness. ACS NANO 2021; 15:125-148. [PMID: 33306354 DOI: 10.1021/acsnano.0c07489] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Membrane-enveloped viruses are a leading cause of viral epidemics, and there is an outstanding need to develop broad-spectrum antiviral strategies to treat and prevent enveloped virus infections. In this review, we critically discuss why the lipid membrane surrounding enveloped virus particles is a promising antiviral target and cover the latest progress in nanotechnology research to design and evaluate membrane-targeting virus inhibition strategies. These efforts span diverse topics such as nanomaterials, self-assembly, biosensors, nanomedicine, drug delivery, and medical devices and have excellent potential to support the development of next-generation antiviral drug candidates and technologies. Application examples in the areas of human medicine and agricultural biosecurity are also presented. Looking forward, research in this direction is poised to strengthen capabilities for virus pandemic preparedness and demonstrates how nanotechnology strategies can help to solve global health challenges related to infectious diseases.
Collapse
Affiliation(s)
- Bo Kyeong Yoon
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Won-Yong Jeon
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Tun Naw Sut
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Joshua A Jackman
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
7
|
Bibissidis N, Betlem K, Cordoyiannis G, Bonhorst FPV, Goole J, Raval J, Daniel M, Góźdź W, Iglič A, Losada-Pérez P. Correlation between adhesion strength and phase behaviour in solid-supported lipid membranes. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Quantitative accounting of dye leakage and photobleaching in single lipid vesicle measurements: Implications for biomacromolecular interaction analysis. Colloids Surf B Biointerfaces 2019; 182:110338. [DOI: 10.1016/j.colsurfb.2019.06.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/08/2019] [Accepted: 06/28/2019] [Indexed: 02/05/2023]
|
9
|
Park S, Jackman JA, Cho NJ. Comparing the Membrane-Interaction Profiles of Two Antiviral Peptides: Insights into Structure-Function Relationship. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9934-9943. [PMID: 31291111 DOI: 10.1021/acs.langmuir.9b01052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In recent years, certain amphipathic, α-helical peptides have been discovered that inhibit medically important enveloped viruses by disrupting the lipid membrane surrounding individual virus particles. Interestingly, only a small subset of amphipathic, α-helical peptides demonstrate inhibitory activity, and there is broad interest in understanding how the structures of these peptides contribute to functional activity against lipid membranes. To address this question, herein, we employed multiple surface-sensitive measurement techniques along with computational simulations in order to investigate how AH and C5A peptides, two of the most biologically active peptides in this class, interact with model lipid membranes while gaining insight into membrane-induced peptide conformational changes. Circular dichroism spectroscopy experiments revealed that both AH and C5A peptides undergo pronounced coil-to-helix transitions in the presence of lipid membrane environments, and the C5A conformational change was the largest. Time-lapsed fluorescence microscopy measurements were conducted to monitor the interaction of peptides with arrays of tethered, individual lipid vesicles and showed that C5A potently lyses lipid vesicles indiscriminate of vesicle size at peptide concentrations as low as 10 nM whereas AH peptide preferentially lyses lipid vesicles with high membrane curvature and is less potent than C5A. These findings were complemented by electrochemical impedance spectroscopy measurements on a tethered lipid bilayer membrane platform, which indicated that C5A solubilizes lipid membranes in a manner that is distinct from how AH disrupts lipid membranes via pore formation. Computational simulations supported that the distinct membrane-interaction profiles arise from different helical folding patterns, whereby AH monomers predominantly exist as two shorter helices with a hinge in-between and C5A monomers form a single helix. Taken together, our findings demonstrate that membrane-active antiviral peptides can exhibit distinct membrane-interaction profiles that confer different degrees of targeting selectivity, and the corresponding structural insights will be useful for peptide engineering applications.
Collapse
Affiliation(s)
- Soohyun Park
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue 639798 , Singapore
| | - Joshua A Jackman
- School of Chemical Engineering , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue 639798 , Singapore
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive 637459 , Singapore
| |
Collapse
|
10
|
Yoon BK, Jackman JA, Park S, Mokrzecka N, Cho NJ. Characterizing the Membrane-Disruptive Behavior of Dodecylglycerol Using Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3568-3575. [PMID: 30720282 DOI: 10.1021/acs.langmuir.9b00244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Monoglycerides are esterified adducts of fatty acid and glycerol molecules that disrupt phospholipid membranes, leading to a wide range of biological functions such as antimicrobial activity. Among monoglycerides, glycerol monolaurate (GML) exhibits particularly high antimicrobial activity, although enzymatic hydrolysis of its ester group can diminish potency. Consequently, there have been efforts to identify more chemically stable versions of GML, most notably its alkylglycerol ether equivalent called dodecylglycerol (DDG). However, despite high structural similarity, biological studies indicate that DDG and GML are not functionally equivalent and it has been speculated that the two compounds might have different interaction profiles with phospholipid membranes. To address this outstanding question, herein, we employed supported lipid bilayer (SLB) platforms to experimentally characterize the interactions of DDG with phospholipid membranes. Quartz crystal microbalance-dissipation experiments identified that DDG causes concentration-dependent membrane morphological changes in SLBs and the overall extent of membrane remodeling events was greater than that caused by GML. In addition, time-lapsed fluorescence microscopy imaging experiments revealed that DDG causes extensive membrane tubulation that is distinct from how GML induces membrane budding. We discuss how differences in the head group properties of DDG and GML contribute to distinct membrane interaction profiles, offering insight into how the molecular design of DDG not only improves chemical stability but also enhances membrane-disruptive activity.
Collapse
Affiliation(s)
- Bo Kyeong Yoon
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 Singapore
| | - Joshua A Jackman
- School of Chemical Engineering , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Soohyun Park
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 Singapore
| | - Natalia Mokrzecka
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 Singapore
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , 637459 Singapore
| |
Collapse
|
11
|
Sharma N, Phan HTT, Yoda T, Shimokawa N, Vestergaard MC, Takagi M. Effects of Capsaicin on Biomimetic Membranes. Biomimetics (Basel) 2019; 4:biomimetics4010017. [PMID: 31105202 PMCID: PMC6477667 DOI: 10.3390/biomimetics4010017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 12/03/2022] Open
Abstract
Capsaicin is a natural compound that produces a warm sensation and is known for its remarkable medicinal properties. Understanding the interaction between capsaicin with lipid membranes is essential to clarify the molecular mechanisms behind its pharmacological and biological effects. In this study, we investigated the effect of capsaicin on thermoresponsiveness, fluidity, and phase separation of liposomal membranes. Liposomal membranes are a bioinspired technology that can be exploited to understand biological mechanisms. We have shown that by increasing thermo-induced membrane excess area, capsaicin promoted membrane fluctuation. The effect of capsaicin on membrane fluidity was dependent on lipid composition. Capsaicin increased fluidity of (1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) membranes, while it rigidified DOPC and cholesterol-based liposomes. In addition, capsaicin tended to decrease phase separation of heterogeneous liposomes, inducing homogeneity. We imagine this lipid re-organization to be associated with the physiological warming sensation upon consumption of capsaicin. Since capsaicin has been reported to have biological properties such as antimicrobial and as antiplatelet, the results will help unravel these biological properties.
Collapse
Affiliation(s)
- Neha Sharma
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | - Huong T T Phan
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | - Tsuyoshi Yoda
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | - Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | - Mun'delanji C Vestergaard
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Japan.
| | - Masahiro Takagi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| |
Collapse
|
12
|
Neupane S, Cordoyiannis G, Renner FU, Losada-Pérez P. Real-Time Monitoring of Interactions between Solid-Supported Lipid Vesicle Layers and Short- and Medium-Chain Length Alcohols: Ethanol and 1-Pentanol. Biomimetics (Basel) 2019; 4:biomimetics4010008. [PMID: 31105194 PMCID: PMC6477617 DOI: 10.3390/biomimetics4010008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 11/21/2022] Open
Abstract
Lipid bilayers represent the interface between the cell and its environment, serving as model systems for the study of various biological processes. For instance, the addition of small molecules such as alcohols is a well-known process that modulates lipid bilayer properties, being considered as a reference for general anesthetic molecules. A plethora of experimental and simulation studies have focused on alcohol’s effect on lipid bilayers. Nevertheless, most studies have focused on lipid membranes formed in the presence of alcohols, while the effect of n-alcohols on preformed lipid membranes has received much less research interest. Here, we monitor the real-time interaction of short-chain alcohols with solid-supported vesicles of dipalmitoylphosphatidylcholine (DPPC) using quartz crystal microbalance with dissipation monitoring (QCM-D) as a label-free method. Results indicate that the addition of ethanol at different concentrations induces changes in the bilayer organization but preserves the stability of the supported vesicle layer. In turn, the addition of 1-pentanol induces not only changes in the bilayer organization, but also promotes vesicle rupture and inhomogeneous lipid layers at very high concentrations.
Collapse
Affiliation(s)
- Shova Neupane
- Institute for Materials Research (IMO), Hasselt University, 3590 Diepenbeek, Belgium.
- IMEC vzw. Division IMOMEC, 3590 Diepenbeek, Belgium.
| | - George Cordoyiannis
- Faculty for Industrial Engineering, 8000 Novo Mesto, Slovenia.
- Biomolecular Physics Laboratory, National Centre for Scientific Research "Demokritos", 15310 Aghia Paraskevi, Greece.
| | - Frank Uwe Renner
- Institute for Materials Research (IMO), Hasselt University, 3590 Diepenbeek, Belgium.
- IMEC vzw. Division IMOMEC, 3590 Diepenbeek, Belgium.
| | - Patricia Losada-Pérez
- Soft Matter Physics Laboratory, Physics Department, Université Libre de Bruxelles (ULB), Campus de La Plaine, CP223, Boulevard du Triomphe, 1050 Brussels, Belgium.
| |
Collapse
|
13
|
Kang T, Li C, Du T, Wu Y, Yang Y, Liu X, Zhang Q, Xu X, Gou M. A biomimetic nanoparticle-enabled toxoid vaccine against melittin. Int J Nanomedicine 2018; 13:3251-3261. [PMID: 29910613 PMCID: PMC5987856 DOI: 10.2147/ijn.s156346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Melittin, the main active peptide ingredient of bee venom, can cause severe cell membrane lysis due to its robust interaction with negatively charged phospholipids. So far, no effective anti-melittin vaccine has been developed to protect people from undesired melittin intoxication. Methods Herein, we prepared a polydiacetylene (PDA) nanoparticle with cell membrane-mimic surface to complex melittin, forming an anti-melittin vaccine (PDA–melittin). Results PDA nanoparticles could effectively combine with melittin and neutralize its toxicity. PDA–melittin nanocomplex is demonstrated to enhance melittin uptake by DCs and stimulate strong melittin-specific immunity. Mice immunized with PDA–melittin nanocomplex showed higher survival rate after exposion to melittin than untreated mice. Conclusion The PDA–melittin nanocomplex can efficiently and safely generate a specific immunity against melittin to protect body from melittin intoxication, providing a new method with potential clinical application for the treatment of melittin intoxication.
Collapse
Affiliation(s)
- Tianyi Kang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Chenyang Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.,Shanghai Institutes for Biological Science, Chinese Academy of Science, Shanghai 200031, People's Republic of China
| | - Ting Du
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yujiao Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yuping Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xuan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qianqian Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiaoping Xu
- West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.,Co-Innovation Center for Micro/Nano Optoelectronic Materials and Devices, Chongqing 402160, People's Republic of China
| |
Collapse
|
14
|
Ib-AMP4 insertion causes surface rearrangement in the phospholipid bilayer of biomembranes: Implications from quartz-crystal microbalance with dissipation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:617-623. [DOI: 10.1016/j.bbamem.2017.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 11/16/2022]
|
15
|
Flynn KR, Sutti A, Martin LL, Leigh Ackland M, Torriero AAJ. Critical effects of polar fluorescent probes on the interaction of DHA with POPC supported lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1135-1142. [PMID: 29338975 DOI: 10.1016/j.bbamem.2018.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 12/22/2017] [Accepted: 01/11/2018] [Indexed: 01/16/2023]
Abstract
The understanding of lipid bilayer structure and function has been advanced by the application of molecular fluorophores. However, the effects of these probe molecules on the physicochemical properties of membranes being studied are poorly understood. A quartz crystal microbalance with dissipation monitoring instrument was used in this work to investigate the impact of two commonly used fluorescent probes, 1‑palmitoyl‑2‑{12‑[(7‑nitro‑2‑1,3‑benzoxadiazol‑4‑yl)amino]dodecanoyl}‑sn‑glycero‑3‑phosphocholine (NBD-PC) and 1,2‑dipalmitoyl‑sn‑glycero‑3‑phosphoethanolamine‑n‑(lissamine rhodamine‑B‑sulfonyl) (Lis-Rhod PE), on the formation and physicochemical properties of a 1‑palmitoyl‑2‑oleoyl‑sn‑glycero‑3‑phosphocholine supported lipid bilayer (POPC-SLB). The interaction of the POPC-SLB and fluorophore-modified POPC-SLB with docosahexaenoic acid, DHA, was evaluated. The incorporation of DHA into the POPC-SLB was observed to significantly decrease in the presence of the Lis-Rhod PE probe compared with the POPC-SLB. In addition, it was observed that the small concentration of DHA incorporated into the POPC:NBD-PC SLB can produce rearrangement processes followed by the lost not only of DHA but also of POPC or NBD-PC molecules or both during the washing step. This work has significant implications for the interpretation of data employing fluorescent reporter molecules within SLBs.
Collapse
Affiliation(s)
- Kiera R Flynn
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Alessandra Sutti
- Institute for Frontier Materials, Deakin University, Geelong, Australia
| | | | - M Leigh Ackland
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Angel A J Torriero
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia.
| |
Collapse
|
16
|
Espiritu RA. Membrane permeabilizing action of amphidinol 3 and theonellamide A in raft-forming lipid mixtures. ACTA ACUST UNITED AC 2017; 72:43-48. [PMID: 27159918 DOI: 10.1515/znc-2016-0043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/11/2016] [Indexed: 11/15/2022]
Abstract
Amphidinol 3 (AM3) and theonellamide A (TNM-A) are potent antifungal compounds produced by the dinoflagellate Amphidinium klebsii and the sponge Theonella spp., respectively. Both of these metabolites have been demonstrated to interact with membrane lipids ultimately resulting in a compromised bilayer integrity. In this report, the activity of AM3 and TNM-A in ternary lipid mixtures composed of 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (POPC):brain sphingomyelin:cholesterol at a mole ratio of 1:1:1 or 3:1:1 exhibiting lipid rafts coexistence is presented. It was found that AM3 has a more extensive membrane permeabilizing activity compared with TNM-A in these membrane mimics, which was almost complete at 15 μM. The extent of their activity nevertheless is similar to the previously reported binary system of POPC and cholesterol, suggesting that phase separation has neither beneficial nor detrimental effects in their ability to disrupt the lipid bilayer.
Collapse
Affiliation(s)
- Rafael A Espiritu
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
17
|
Flynn KR, Martin LL, Ackland ML, Torriero AAJ. Real-Time Quartz Crystal Microbalance Monitoring of Free Docosahexaenoic Acid Interactions with Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11717-11727. [PMID: 27728769 DOI: 10.1021/acs.langmuir.6b01984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Docosahexaenoic acid (DHA) is the most abundant polyunsaturated omega-3 fatty acid found in mammalian neuronal cell membranes. Although DHA is known to be important for neuronal cell survival, little is know about how DHA interacts with phospholipid bilayers. This study presents a detailed quartz crystal microbalance with dissipation monitoring (QCM-D) analysis of free DHA interactions with individual and mixed phospholipid supported lipid bilayers (SLB). DHA incorporation and subsequent changes to the SLBs viscoelastic properties were observed to be concentration-dependent, influenced by the phospholipid species, the headgroup charge, and the presence or absence of calcium ions. It was observed that 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) SLBs incorporated the greatest amount of DHA concentration, whereas the presence of phospholipids, phosphatidylserine (PS), and phosphatidylinositol (PI) in a POPC SLB significantly reduced DHA incorporation and changed the SLBs physicochemical properties. These observations are hypothesized to be due to a substitution event occurring between DHA and phospholipid species. PS domain formation in POPC/PS 8:2 SLBs was observed in the presence of calcium ions, which favored DHA incorporation to a similar level as for a POPC only SLB. The changes in SLB thickness observed with different DHA concentrations are also presented. This work contributes to an understanding of the physical changes induced in a lipid bilayer as a consequence of its exposure to different DHA concentrations (from 50 to 200 μM). The capacity of DHA to influence the physical properties of SLBs indicates the potential for dietary DHA supplementation to cause changes in cellular membranes in vivo, with subsequent physiological consequences for cell function.
Collapse
Affiliation(s)
- Kiera R Flynn
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University , Melbourne, Australia
| | - Lisandra L Martin
- School of Chemistry, Monash University , Clayton 3800, Victoria, Australia
| | - M Leigh Ackland
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University , Melbourne, Australia
| | - Angel A J Torriero
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University , Burwood, Victoria 3125, Australia
| |
Collapse
|
18
|
Mechanical properties that influence antimicrobial peptide activity in lipid membranes. Appl Microbiol Biotechnol 2016; 100:10251-10263. [DOI: 10.1007/s00253-016-7975-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 01/22/2023]
|
19
|
Losada-Pérez P, Khorshid M, Renner FU. Interactions of Aqueous Imidazolium-Based Ionic Liquid Mixtures with Solid-Supported Phospholipid Vesicles. PLoS One 2016; 11:e0163518. [PMID: 27684947 PMCID: PMC5042501 DOI: 10.1371/journal.pone.0163518] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 09/09/2016] [Indexed: 11/22/2022] Open
Abstract
Despite the environmentally friendly reputation of ionic liquids (ILs), their safety has been recently questioned given their potential as cytotoxic agents. The fundamental mechanisms underlying the interactions between ILs and cells are less studied and by far not completely understood. Biomimetic films are here important biophysical model systems to elucidate fundamental aspects and mechanisms relevant for a large range of biological interaction ranging from signaling to drug reception or toxicity. Here we use dissipative quartz crystal microbalance QCM-D to examine the effect of aqueous imidazolium-based ionic liquid mixtures on solid-supported biomimetic membranes. Specifically, we assess in real time the effect of the cation chain length and the anion nature on a supported vesicle layer of the model phospholipid DMPC. Results indicate that interactions are mainly driven by the hydrophobic components of the IL, which significantly distort the layer and promote vesicle rupture. Our analyses evidence the gradual decrease of the main phase transition temperature upon increasing IL concentration, reflecting increased disorder by weakening of lipid chain interactions. The degree of rupture is significant for ILs with long hydrophobic cation chains and large hydrophobic anions whose behavior is reminiscent of that of antimicrobial peptides.
Collapse
Affiliation(s)
| | - Mehran Khorshid
- Institute for Materials Research IMO, Hasselt University, Diepenbeek, Belgium
| | - Frank Uwe Renner
- Institute for Materials Research IMO, Hasselt University, Diepenbeek, Belgium
- IMEC vzw, Associated lab IMOMEC, Diepenbeek, Belgium
| |
Collapse
|
20
|
Appadu A, Jelokhani-Niaraki M, DeBruin L. Conformational Changes and Association of Membrane-Interacting Peptides in Myelin Membrane Models: A Case of the C-Terminal Peptide of Proteolipid Protein and the Antimicrobial Peptide Melittin. J Phys Chem B 2015; 119:14821-30. [DOI: 10.1021/acs.jpcb.5b07375] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ashtina Appadu
- Department
of Chemistry and
Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario, Canada N2L 3C5
| | - Masoud Jelokhani-Niaraki
- Department
of Chemistry and
Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario, Canada N2L 3C5
| | - Lillian DeBruin
- Department
of Chemistry and
Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario, Canada N2L 3C5
| |
Collapse
|
21
|
Duša F, Ruokonen SK, Petrovaj J, Viitala T, Wiedmer SK. Ionic liquids affect the adsorption of liposomes onto cationic polyelectrolyte coated silica evidenced by quartz crystal microbalance. Colloids Surf B Biointerfaces 2015; 136:496-505. [PMID: 26454056 DOI: 10.1016/j.colsurfb.2015.09.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/09/2015] [Accepted: 09/28/2015] [Indexed: 01/28/2023]
Abstract
The worldwide use of ionic liquids (ILs) is steadily increasing, and even though they are often referred to as "green solvents" they have been reported to be toxic, especially toward aquatic organisms. In this work, we thoroughly study two phosphonium ILs; octyltributylphosphonium chloride ([P8444]Cl) and tributyl(tetradecyl)phosphonium chloride ([P14444]Cl). Firstly, the critical micelle concentrations (CMCs) of the ILs were determined with fluorescence spectroscopy and the optical pendant drop method in order to gain an understanding of the aggregation behavior of the ILs. Secondly, a biomimicking system of negatively charged unilamellar liposomes was used in order to study the effect of the ILs on biomembranes. Changes in the mechanical properties of adsorbed liposomes were determined by quartz crystal microbalance (QCM) measurements with silica coated quartz crystal sensors featuring a polycation layer. The results confirmed that both ILs were able to incorporate and alter the biomembrane structure. The membrane disrupting effect was emphasized with an increasing concentration and alkyl chain length of the ILs. In the extreme case, the phospholipid membrane integrity was completely compromised.
Collapse
Affiliation(s)
- Filip Duša
- Department of Chemistry, P.O. Box 55, 00014 University of Helsinki, Finland
| | | | - Ján Petrovaj
- Department of Chemistry, P.O. Box 55, 00014 University of Helsinki, Finland
| | - Tapani Viitala
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, P.O. Box 56, 00014 University of Helsinki, Finland.
| | - Susanne K Wiedmer
- Department of Chemistry, P.O. Box 55, 00014 University of Helsinki, Finland.
| |
Collapse
|
22
|
Rajaram K, Losada-Pérez P, Vermeeren V, Hosseinkhani B, Wagner P, Somers V, Michiels L. Real-time analysis of dual-display phage immobilization and autoantibody screening using quartz crystal microbalance with dissipation monitoring. Int J Nanomedicine 2015; 10:5237-47. [PMID: 26316752 PMCID: PMC4547655 DOI: 10.2147/ijn.s84800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Over the last three decades, phage display technology has been used for the display of target-specific biomarkers, peptides, antibodies, etc. Phage display-based assays are mostly limited to the phage ELISA, which is notorious for its high background signal and laborious methodology. These problems have been recently overcome by designing a dual-display phage with two different end functionalities, namely, streptavidin (STV)-binding protein at one end and a rheumatoid arthritis-specific autoantigenic target at the other end. Using this dual-display phage, a much higher sensitivity in screening specificities of autoantibodies in complex serum sample has been detected compared to single-display phage system on phage ELISA. Herein, we aimed to develop a novel, rapid, and sensitive dual-display phage to detect autoantibodies presence in serum samples using quartz crystal microbalance with dissipation monitoring as a sensing platform. The vertical functionalization of the phage over the STV-modified surfaces resulted in clear frequency and dissipation shifts revealing a well-defined viscoelastic signature. Screening for autoantibodies using antihuman IgG-modified surfaces and the dual-display phage with STV magnetic bead complexes allowed to isolate the target entities from complex mixtures and to achieve a large response as compared to negative control samples. This novel dual-display strategy can be a potential alternative to the time consuming phage ELISA protocols for the qualitative analysis of serum autoantibodies and can be taken as a departure point to ultimately achieve a point of care diagnostic system.
Collapse
Affiliation(s)
- Kaushik Rajaram
- Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| | - Patricia Losada-Pérez
- Institute for Materials Research (IMO), Hasselt University, Diepenbeek, Belgium ; IMEC vzw, Division IMOMEC, Diepenbeek, Belgium
| | - Veronique Vermeeren
- Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| | | | - Patrick Wagner
- Institute for Materials Research (IMO), Hasselt University, Diepenbeek, Belgium ; Soft Matter and Biophysics Section, Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
| | - Veerle Somers
- Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| | - Luc Michiels
- Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| |
Collapse
|
23
|
Losada-Pérez P, Khorshid M, Yongabi D, Wagner P. Effect of cholesterol on the phase behavior of solid-supported lipid vesicle layers. J Phys Chem B 2015; 119:4985-92. [PMID: 25812723 DOI: 10.1021/acs.jpcb.5b00712] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interest in solid-supported biomimetic membranes stems from their utility in nanotechnology and biosensing. In particular, supported lipid vesicles (SLVs) have become popular in both fundamental biophysical studies and pharmaceutical screening applications. It is thus essential to gain information on the structural properties and phase behavior of SLVs. Here we report on a study on the influence of cholesterol on the phase behavior of SLVs of saturated phospholipids by using quartz crystal microbalance with dissipation monitoring, a label-free and nonintrusive surface-sensitive technique. Two complementary approaches have been used, a Voigt-based viscoelastic model yielding shear viscosity temperature profiles and the first-order derivative of the frequency (mass-sensitive) shifts. Anomalies in the shear viscosity and extrema in the first-order derivative frequency curves stand as a token of the main phase transition and provide information on its gradual suppression upon addition of cholesterol. This method proves convenient for its small sample volume needed, its short temperature equilibration time and the non-necessity of external labels. This work can be regarded as a starting point for further studies on more rare lipid systems and different geometries, such as tethered SLVs or biologically relevant vesicles produced by living cells.
Collapse
Affiliation(s)
- P Losada-Pérez
- †Institute for Materials Research IMO, Hasselt University, Wetenschapspark 1, B-3590, Diepenbeek, Belgium.,‡Division IMOMEC, IMEC vzw, Wetenschapspark 1, B-3590, Diepenbeek, Belgium
| | - M Khorshid
- †Institute for Materials Research IMO, Hasselt University, Wetenschapspark 1, B-3590, Diepenbeek, Belgium.,§Soft Matter and Biophysics Section, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D bus 2416, B-3001, Leuven, Belgium
| | - D Yongabi
- †Institute for Materials Research IMO, Hasselt University, Wetenschapspark 1, B-3590, Diepenbeek, Belgium
| | - P Wagner
- †Institute for Materials Research IMO, Hasselt University, Wetenschapspark 1, B-3590, Diepenbeek, Belgium.,§Soft Matter and Biophysics Section, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D bus 2416, B-3001, Leuven, Belgium
| |
Collapse
|