1
|
Andrade CS, Borges MHR, Silva JP, Malheiros S, Sacramento C, Ruiz KGS, da Cruz NC, Rangel EC, Fortulan C, Figueiredo L, Nagay BE, Souza JGS, Barão VAR. Micro-arc driven porous ZrO 2 coating for tailoring surface properties of titanium for dental implants application. Colloids Surf B Biointerfaces 2024; 245:114237. [PMID: 39293292 DOI: 10.1016/j.colsurfb.2024.114237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Titanium (Ti) is an ideal material for dental implants due to its excellent properties. However, corrosion and mechanical wear lead to Ti ions and particles release, triggering inflammatory responses and bone resorption. To overcome these challenges, surface modification techniques are used, including micro-arc oxidation (MAO). MAO creates adherent, porous coatings on Ti implants with diverse chemical compositions. In this context, zirconia element stands out in its wear and corrosion properties associated with low friction and chemical stability. Therefore, we investigated the impact of adding zirconium oxide (ZrO2) to Ti surfaces through MAO, aiming for improved electrochemical and mechanical properties. Additionally, the antimicrobial and modulatory potentials, cytocompatibility, and proteomic profile of surfaces were investigated. Ti discs were divided into four groups: machined - control (cpTi), treated by MAO with 0.04 M KOH - control (KOH), and two experimental groups incorporating ZrO2 at concentrations of 0.04 M and 0.08 M, composing the KOH@Zr4 and KOH@Zr8 groups. KOH@Zr8 showed higher surface porosity and roughness, even distribution of zirconia, formation of crystalline phases like ZrTiO4, and hydrophilicity. ZrO2 groups showed better mechanical performance including higher hardness values, lower wear area and mass loss, and higher friction coefficient under tribological conditions. The formation of a more compact oxide layer was observed, which favors the electrochemical stability of ZrO2 surfaces. Besides not inducing greater biofilm formation, ZrO2 surfaces reduced the load of pathogenic bacteria evidenced by the DNA-DNA checkerboard analysis. ZrO2 surfaces were cytocompatible with pre-osteoblastic cells. The saliva proteomic profile, evaluated by liquid chromatography coupled with tandem mass spectrometry, was slightly changed by zirconia, with more proteins adsorbed. KOH@Zr8 group notably absorbed proteins crucial for implant biological responses, like albumin and fibronectin. Incorporating ZrO2 improved the mechanical and electrochemical behavior of Ti surfaces, as well as modulated biofilm composition and provided suitable biological responses.
Collapse
Affiliation(s)
- Cátia Sufia Andrade
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Maria Helena R Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - João Pedro Silva
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Samuel Malheiros
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Catharina Sacramento
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Karina G S Ruiz
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Nilson C da Cruz
- Laboratory of Technological Plasmas, Engineering College, Univ Estadual Paulista (UNESP), Av Três de Março, 511, Sorocaba, São Paulo 18087-180, Brazil
| | - Elidiane C Rangel
- Laboratory of Technological Plasmas, Engineering College, Univ Estadual Paulista (UNESP), Av Três de Março, 511, Sorocaba, São Paulo 18087-180, Brazil
| | - Carlos Fortulan
- Department of Mechanical Engineering, University of São Paulo (USP), Trabalhador São Carlense, 400, São Carlos, São Paulo 13566-590, Brazil
| | - Luciene Figueiredo
- Dental Research Division, Guarulhos University, Guarulhos, São Paulo 07023-070, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Joāo Gabriel S Souza
- Dental Research Division, Guarulhos University, Guarulhos, São Paulo 07023-070, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil.
| |
Collapse
|
2
|
Shen Y, Fang K, Xiang Y, Xu K, Yu L, Chen J, Ma P, Cai K, Shen X, Liu J. Improvement in osteogenesis, vascularization, and corrosion resistance of titanium with silicon-nitride doped micro-arc oxidation coatings. Front Bioeng Biotechnol 2022; 10:1023032. [PMID: 36324887 PMCID: PMC9621325 DOI: 10.3389/fbioe.2022.1023032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Titanium (Ti) implants have been widely used for the treatment of tooth loss due to their excellent biocompatibility and mechanical properties. However, modifying the biological properties of these implants to increase osteointegration remains a research challenge. Additionally, the continuous release of various metal ions in the oral microenvironment due to fluid corrosion can also lead to implant failure. Therefore, simultaneously improving the bioactivity and corrosion resistance of Ti-based materials is an urgent need. In recent decades, micro-arc oxidation (MAO) has been proposed as a surface modification technology to form a surface protective oxide layer and improve the comprehensive properties of Ti. The present study doped nano silicon nitride (Si3N4) particles into the Ti surface by MAO treatment to improve its corrosion resistance and provide excellent osteoinduction by enhancing alkaline phosphatase activity and osteogenic-related gene expression. In addition, due to the presence of silicon, the Si3N4-doped materials showed excellent angiogenesis properties, including the promotion of cell migration and tubule formation, which play essential roles in early recovery after implantation.
Collapse
Affiliation(s)
- Yiding Shen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Kai Fang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yun Xiang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Keyuan Xu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Liang Yu
- School and Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaquan Chen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Pingping Ma
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Kaiyong Cai
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- *Correspondence: Kaiyong Cai, ; Xinkun Shen, ; Jinsong Liu,
| | - Xinkun Shen
- Science and Education Division, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Wenzhou, China
- *Correspondence: Kaiyong Cai, ; Xinkun Shen, ; Jinsong Liu,
| | - Jinsong Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Kaiyong Cai, ; Xinkun Shen, ; Jinsong Liu,
| |
Collapse
|
3
|
Fabrication of a Protective Hybrid Coating Composed of TiO2, MoO2, and SiO2 by Plasma Electrolytic Oxidation of Titanium. METALS 2021. [DOI: 10.3390/met11081182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This work examined the influence of dual incorporation of MoO2 and SiO2 on the corrosion behavior of pure titanium treated via plasma electrolytic oxidation (PEO). To achieve this purpose, pure titanium substrate was treated via PEO in an alkaline-molybdate electrolyte without and with SiO2 nanoparticles. The microstructural observation revealed that the addition of SiO2 nanoparticles into the electrolyte during PEO helped to seal the structural defects in the PEO coating so that a rougher, thicker, and denser coating rich in SiO2 was successfully obtained. From the electrochemical measurements in a 3.5 wt.% NaCl solution, the TiO2-MoO2-SiO2 hybrid coating exhibited a higher corrosion resistance than the TiO2-MoO2 coating which was attributed to the sealing effect by stable SiO2 nanoparticles.
Collapse
|
4
|
Rizwan M, Alias R, Zaidi UZ, Mahmoodian R, Hamdi M. Surface modification of valve metals using plasma electrolytic oxidation for antibacterial applications: A review. J Biomed Mater Res A 2017; 106:590-605. [PMID: 28975693 DOI: 10.1002/jbm.a.36259] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/13/2017] [Accepted: 09/26/2017] [Indexed: 01/15/2023]
Abstract
Plasma electrolytic oxidation (PEO) is an advance technique to develop porous oxidation layer on light metals, primarily to enhance corrosion and wear resistance. The oxidation layer can also offer a wide variety of mechanical, biomedical, tribological, and antibacterial properties through the incorporation of several ions and particles. Due to the increasing need of antimicrobial surfaces for biomedical implants, antibacterial PEO coatings have been developed through the incorporation of antibacterial agents. Metallic nanoparticles that have been employed most widely as antibacterial agents are reported to demonstrate serious health and environmental threats. To overcome the current limitations of these coatings, there is a significant need to develop antibacterial surfaces that are not harmful for patient's health and environment. Attention of the readers has been directed to utilize bioactive glasses as antibacterial agents for PEO coatings. Bioactive glasses are well known for their excellent bioactivity, biocompatibility, and antibacterial character. PEO coatings incorporated with bioactive glasses can provide environment-friendly antimicrobial surfaces with exceptional bioactivity, biocompatibility, and osseointegration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 590-605, 2018.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia.,Department of Metallurgical Engineering, Faculty of Chemical and Process Engineering, NED University of Engineering and Technology, Karachi, 75270, Pakistan
| | - Rodianah Alias
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia.,Department of Manufacturing Technology, Faculty of Innovative Design and Technology, University Sultan Zainal Abidin (UNISZA), Kuala Terengganu, 21030, Malaysia
| | - Umi Zhalilah Zaidi
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia.,Centre of Advanced Manufacturing and Material Processing, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Reza Mahmoodian
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia.,Centre of Advanced Manufacturing and Material Processing, University of Malaya, Kuala Lumpur, 50603, Malaysia.,Department of Research and Development, Azarin Kar Ind. Co., Industrial Park 1, Kerman, 7635168361, Iran
| | - Mohd Hamdi
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia.,Centre of Advanced Manufacturing and Material Processing, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
5
|
Incorporation of ZrO2 particles in the oxide layer formed on Mg by anodizing: Influence of electrolyte concentration and current modes. J Colloid Interface Sci 2016; 464:36-47. [PMID: 26609921 DOI: 10.1016/j.jcis.2015.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/15/2015] [Accepted: 11/06/2015] [Indexed: 11/21/2022]
Abstract
HYPOTHESIS The objectives of the present study are to ascertain, particle incorporation during the initial stages of microarc oxidation (MAO), feasibility of increasing the level of particle incorporation through manipulation of process variables and, the use of MgO-ZrO2 composite coatings either as a pre-treatment or as a post-treatment for MAO coated Mg. EXPERIMENTS Anodic oxide coatings were prepared using 0.3M NaOH+15g/l ZrO2 and 3M NaOH+15g/l ZrO2 at 10V under direct current, pulsed current (PC) unipolar and PC bipolar modes. MAO coatings were prepared using 5g/l NaOH+15g/l Na2SiO3 at 250V under direct current mode for 2min. FINDINGS The study reveals that it is possible to incorporate ZrO2 particles in the anodic oxide layer, suggesting such a possibility during the initial stages of MAO. When the MgO-ZrO2 composite coating is used as a pre-treatment, it helps to reduce the size and density of the pores of the MAO coatings and increased the corrosion resistance. When it is used as a post-treatment, lamellar shaped Mg(OH)2 with a very high surface area is formed on the surface, which would be beneficial to impart a better bioactivity and to facilitate immobilization of biomolecules.
Collapse
|