1
|
Li S, Hong H, Li D, Yang X, Wang S, Zhang D, Xiong Q, Huang Z, Zhi C. Designing Zwitterionic Bottlebrush Polymers to Enable Long-Cycling Quasi-Solid-State Lithium Metal Batteries. Angew Chem Int Ed Engl 2024:e202409500. [PMID: 39636300 DOI: 10.1002/anie.202409500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/24/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
Ionogel polymer electrolyte (IPE), incorporating ionic liquid (IL) within a polymer matrix, presents a promising avenue for safe quasi-solid-state lithium metal batteries. However, sluggish Li+ kinetics, resulting from the formation of [Li(anion)n]-(n-1) clusters and the occupation of Li+ transport sites by organic cations, limit their practical applications. In this study, we have developed zwitterionic bottlebrush polymers-based IPE with promoted Li+ conduction by employing poly(sulfobetaine methacrylate)-grafted poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVC-g-PSBMA) bottlebrushes as matrices of IL. The grafted zwitterionic side chains greatly facilitate the dissociation of [Li(anion)n]-(n-1) clusters to produce more movable Li+. Moreover, the positively charged -NR4 + groups in zwitterionic side chains effectively restrain anions migration, while the negatively charged -SO3 - groups immobilize IL cations, preventing them from occupying Li+ hopping sites and reducing the energy barrier for Li+ migration. These synergistic effects contribute to a notable ionic conductivity (7.5×10-4 S cm-1) and Li+ transference number (0.62) of PVC-g-PSBMA IPE at 25 °C. As a result, PVC-g-PSBMA IPE enables ultralong-term (over 6500 h) reversible and stable Li plating/stripping in Li||Li symmetric cells. Remarkably, the assembled Li||LiFePO4 full batteries demonstrate unprecedented cycling stability of more than 2000 cycles with a superior capacity retention of 93.7 %.
Collapse
Affiliation(s)
- Shimei Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong S.A.R., 999077, P. R. China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong S.A.R., 999077, P. R. China
| | - Hu Hong
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong S.A.R., 999077, P. R. China
| | - Dedi Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong S.A.R., 999077, P. R. China
| | - Xinru Yang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong S.A.R., 999077, P. R. China
| | - Shixun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong S.A.R., 999077, P. R. China
| | - Dechao Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong S.A.R., 999077, P. R. China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong S.A.R., 999077, P. R. China
| | - Qi Xiong
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong S.A.R., 999077, P. R. China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong S.A.R., 999077, P. R. China
| | - Zhaodong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong S.A.R., 999077, P. R. China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong S.A.R., 999077, P. R. China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong S.A.R., 999077, P. R. China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong S.A.R., 999077, P. R. China
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon, Hong Kong S.A.R., 999077, P. R. China
| |
Collapse
|
2
|
Zhao J, Liu H, Zhao Y, Qi Y, Wang R, Lv Z, Yu Y, Sun S, Wang Y, Xie A. Construction of CS-SDAEM long-chain polysaccharide derivative on TA@CNTs coated PVDF membrane with effective oil-water emulsion purification and low contamination rate. Int J Biol Macromol 2024; 275:134230. [PMID: 39084996 DOI: 10.1016/j.ijbiomac.2024.134230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Currently, the most effective way to improve the anti-fouling performance of water treatment separation membrane is to enhance the hydrophilicity of the membrane surface, but it can still cause contamination, leading to the occurrence of flux reduction. The construction of a strong hydration layer to resist wastewater contamination is still a challenging task. In this study, a defect-free hydration layer barrier was achieved by grafting chitosan polysaccharide derivatives (CS-SDAEM) on the membrane, which achieved in effective fouling prevention and low flux decline rate. A layer of tannic acid-coated carbon nanotubes (TA@CNTs) has been uniformly deposited on the commercial PVDF membrane so that the surface was rich in -COOH groups, providing sufficient reaction sites. These reactive groups facilitate the grafting of amphiphilic polymers onto the membrane. This modification strategy achieved in enhancing the antifouling performance. The modified membrane achieved low contamination rate with DR of 16.9 % for wastewater filtration, and the flux recovery rate was above 95 % with PWF of 1100 (L·m-2·h-1). The membrane had excellent anti-fouling performance, which provided a new route for the future development of water treatment membrane.
Collapse
Affiliation(s)
- Jingxuan Zhao
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Hongxu Liu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Yuanhang Zhao
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Yuchao Qi
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Ruijia Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Ziwei Lv
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Yang Yu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Shulin Sun
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China.
| | - Yiming Wang
- Department of Automotive Engineering, Jining Polytechnic, Jining 272103, China
| | - Aihua Xie
- Department of Automotive Engineering, Jining Polytechnic, Jining 272103, China.
| |
Collapse
|
3
|
Uwaezuoke O, Kumar P, du Toit LC, Ally N, Choonara YE. Design Characteristics of a Neoteric, Superhydrophilic, Mechanically Robust Hydrogel Engineered To Limit Fouling in the Ocular Environment. ACS OMEGA 2024; 9:31410-31426. [PMID: 39072132 PMCID: PMC11270697 DOI: 10.1021/acsomega.4c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/22/2024] [Accepted: 05/20/2024] [Indexed: 07/30/2024]
Abstract
Current challenges with ocular drug delivery and the chronic nature of many ocular ailments render the use of traditional ocular devices for additional drug delivery purposes very attractive. To achieve this feat, there is the need to develop biomaterials that are biocompatible, mechanically robust for ocular applications, highly transparent (depending on the targeted ocular device), and with ultralow protein adhesion potential (the primary step in processes that lead to fouling and potential device failure). Herein is reported the facile synthesis of a novel, highly transparent, mechanically robust, nontoxic, bulk functionalized hydrogel with characteristics suited to scalable fabrication of ocular implantable and nonimplantable devices. Synergistic superhydrophilicity between methacrylated poly(vinyl alcohol) (PVAGMA) and zwitterionic sulfobetaine methacrylate was exploited to obtain a superhydrophilic polymer conjugate through facile photoinitiated cross-linking polymerization. Proton nuclear magnetic resonance (1H NMR), attenuated total reflectance-Fourier transform infrared spectroscopy (ATF-FTIR), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) were used to confirm the synthesis and establish the physicochemical parameters for both the starting materials, the conjugated polymer, and the hydrogels. Cytotoxicity and cell adhesion potential evaluated in primary human retinal epithelial cells showed no toxicity or adhesion of the ocular cells. Biofilm adhesion studies in Escherichia coli and Staphylococcus aureus showed over 85% reduction in biofilm adhesion for the best-modified polymer compared to the unconjugated PVAGMA, highlighting its antifouling potential.
Collapse
Affiliation(s)
- Onyinye
J. Uwaezuoke
- Wits
Advanced Drug Delivery Platform Research Unit, School of Therapeutic
Sciences, Faculty of Health Sciences, University
of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Pradeep Kumar
- Wits
Advanced Drug Delivery Platform Research Unit, School of Therapeutic
Sciences, Faculty of Health Sciences, University
of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Lisa C. du Toit
- Wits
Advanced Drug Delivery Platform Research Unit, School of Therapeutic
Sciences, Faculty of Health Sciences, University
of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Naseer Ally
- Department
of Neurosciences, Division of Ophthalmology, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Yahya E. Choonara
- Wits
Advanced Drug Delivery Platform Research Unit, School of Therapeutic
Sciences, Faculty of Health Sciences, University
of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
4
|
Zhai X, Chen B, He Y, An L, Chen S, Yan X, Zhang Y, Meng J. A novel loose nanofiltration membrane with superior anti-biofouling performance prepared from zwitterion-grafted chitosan. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.104191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Lazaridou M, Nanaki S, Zamboulis A, Papoulia C, Chrissafis K, Klonos PA, Kyritsis A, Vergkizi-Nikolakaki S, Kostoglou M, Bikiaris DN. Super absorbent chitosan-based hydrogel sponges as carriers for caspofungin antifungal drug. Int J Pharm 2021; 606:120925. [PMID: 34303816 DOI: 10.1016/j.ijpharm.2021.120925] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/21/2022]
Abstract
Novel chitosan copolymers (CS-g-SBMA) grafted with [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) in various molar ratio 1.5:1, 5:1, 11.5:1 and 20:1, were synthesized in the present study. SBMA was selected as zwitterion molecule showing promising antibacterial properties. Grafted chitosan derivatives were fully characterized for their successful synthesis by NMR and FT-IR, for their crystallinity by XRD showing reduced crystallinity compared to CS alone. Furthermore, swelling studies were conducted with the grafted derivatives showing extensive swelling capacity (maximum degree of swelling up to 1800%) and water absorption was studied with differential scanning calorimetry and equilibrium water adsorption/desorption isotherms were analyzed. Caspofungin, a novel antifungal drug, was used to prepare a double-acting system, with both antibacterial and antifungal properties, proper for topical use. Drug loaded hydrogels were prepared with 10, 20 and 30 wt% drug content and the loaded hydrogels were fully characterized while antimicrobial studies showed enhanced properties. Caspofungin in vitro release showed an initial burst effect followed by a diffusion process while data analysis verified the initial burst release followed by a quasi Fickian diffusion-driven sustained release. Enhance antimicrobial properties was also observed in caspofungin-loaded hydrogels showing the successful fulfill of our scope; an amphiphilic system having great potential for the development of patches with inherent antimicrobial properties and prolonged antifungal properties.
Collapse
Affiliation(s)
- Maria Lazaridou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Stavroula Nanaki
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Alexandra Zamboulis
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Chrysanthi Papoulia
- Department of Physics, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece.
| | | | - Panagiotis A Klonos
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece; Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Souzan Vergkizi-Nikolakaki
- Department of Microbiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Margaritis Kostoglou
- Laboratory of Chemical and Environmental Technology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Macedonia, Greece.
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
6
|
González-Torres M, Serrano-Aguilar IH, Cabrera-Wrooman A, Sánchez-Sánchez R, Pichardo-Bahena R, Melgarejo-Ramírez Y, Leyva-Gómez G, Cortés H, de Los Angeles Moyaho-Bernal M, Lima E, Ibarra C, Velasquillo C. Gamma radiation-induced grafting of poly(2-aminoethyl methacrylate) onto chitosan: A comprehensive study of a polyurethane scaffold intended for skin tissue engineering. Carbohydr Polym 2021; 270:117916. [PMID: 34364636 DOI: 10.1016/j.carbpol.2021.117916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 01/12/2023]
Abstract
A novel brush-like poly(2-aminoethyl methacrylate) (PAEMA) was grafted onto chitosan (CS) through gamma radiation-induced polymerization. The copolymer (CS-g-PAEMA) was used to prepare a sodium acetate leached poly(urethane-urea) scaffold. The above derivatives were developed, synthesized, and characterized to meet the specific characteristics of biomaterials. The results revealed that this method is an easy and successful route for grafting PAEMA onto CS. The feasibility of preparing a CS-g-PAEMA polyurethane foam was confirmed by mechanical, morphometric, spectroscopic, and cytotoxic studies. The scaffold showed high biocompatibility both in vitro and in vivo. The first experiment proved that CS-based polyurethane efficiently allows the dynamic culturing of human fibroblast cells. Additionally, an in vivo study in a murine model indicated a complete integration of the scaffold to surrounding subcutaneous tissue as supported by the histological and histochemical assessments. The aforementioned results support the use of CS-g-PAEMA poly(saccharide-urethane) as a model of in vitro-engineered skin.
Collapse
Affiliation(s)
- Maykel González-Torres
- Conacyt & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", 14389, Ciudad de Mexico, Mexico.
| | - Ilian Haide Serrano-Aguilar
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico.
| | - Alejandro Cabrera-Wrooman
- Laboratorio de Tejido Conjuntivo, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", 14389, Ciudad de Mexico, Mexico.
| | - Roberto Sánchez-Sánchez
- Unidad de Ingeniería de Tejidos, Terapia celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", 14389, Ciudad de Mexico, Mexico.
| | - Raúl Pichardo-Bahena
- Servicio de Anatomía Patológica, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", 14389, Ciudad de Mexico, Mexico.
| | - Yaaziel Melgarejo-Ramírez
- Conacyt & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", 14389, Ciudad de Mexico, Mexico.
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico.
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", 14389, Ciudad de Mexico, Mexico.
| | | | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| | - Clemente Ibarra
- Unidad de Ingeniería de Tejidos, Terapia celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", 14389, Ciudad de Mexico, Mexico.
| | - Cristina Velasquillo
- Conacyt & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", 14389, Ciudad de Mexico, Mexico.
| |
Collapse
|
7
|
Karava A, Lazaridou M, Nanaki S, Michailidou G, Christodoulou E, Kostoglou M, Iatrou H, Bikiaris DN. Chitosan Derivatives with Mucoadhesive and Antimicrobial Properties for Simultaneous Nanoencapsulation and Extended Ocular Release Formulations of Dexamethasone and Chloramphenicol Drugs. Pharmaceutics 2020; 12:pharmaceutics12060594. [PMID: 32604758 PMCID: PMC7356116 DOI: 10.3390/pharmaceutics12060594] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/31/2023] Open
Abstract
The aim of this work was to evaluate the effectiveness of neat chitosan (CS) and its derivatives with 2-acrylamido-2-methyl-1-propanesulfonic acid (AAMPS) and [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (MEDSP) as appropriate nanocarriers for the simultaneous ocular administration of dexamethasone sodium phosphate (DxP) and chloramphenicol (CHL). The derivatives CS-AAMPS and CS-MEDSP have been synthesized by free-radical polymerization and their structure has been proved by Fourier-Transformed Infrared Spectroscopy (FT-IR) spectroscopy. Both derivatives exhibited low cytotoxicity, enhanced mucoadhesive properties and antimicrobial activity against Staphylococcus aureus (S.aureus) and Escherichia coli (E. coli). Encapsulation was performed via ionic crosslinking gelation using sodium tripolyphosphate (TPP) as the crosslinking agent. Dynamic light scattering measurements (DLS) showed that the prepared nanoparticles had bimodal distribution and sizes ranging from 50–200 nm and 300–800 nm. Drugs were encapsulated in their crystalline (CHL) or amorphous (DexSP) form inside nanoparticles and their release rate was dependent on the used polymer. The CHL dissolution rate was substantially enhanced compared to the neat drug and the release time was extended up to 7 days. The release rate of DexSP was much faster than that of CHL and was prolonged up to 3 days. Drug release modeling unveiled that diffusion is the main release mechanism for both drugs. Both prepared derivatives and their drug-loaded nanoparticles could be used for extended and simultaneous ocular release formulations of DexSP and CHL drugs.
Collapse
Affiliation(s)
- Aikaterini Karava
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece;
| | - Maria Lazaridou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (M.L.); (S.N.); (G.M.); (E.C.)
| | - Stavroula Nanaki
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (M.L.); (S.N.); (G.M.); (E.C.)
| | - Georgia Michailidou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (M.L.); (S.N.); (G.M.); (E.C.)
| | - Evi Christodoulou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (M.L.); (S.N.); (G.M.); (E.C.)
| | - Margaritis Kostoglou
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Hermis Iatrou
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece;
- Correspondence: (H.I.); (D.N.B.); Tel.: +30-210-7274056 (H.I.); +30-2310-997812 (D.N.B.)
| | - Dimitrios N. Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (M.L.); (S.N.); (G.M.); (E.C.)
- Correspondence: (H.I.); (D.N.B.); Tel.: +30-210-7274056 (H.I.); +30-2310-997812 (D.N.B.)
| |
Collapse
|
8
|
|
9
|
Merzendorfer H. Chitosan Derivatives and Grafted Adjuncts with Unique Properties. BIOLOGICALLY-INSPIRED SYSTEMS 2019. [DOI: 10.1007/978-3-030-12919-4_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Mittal H, Ray SS, Kaith BS, Bhatia JK, Sukriti, Sharma J, Alhassan SM. Recent progress in the structural modification of chitosan for applications in diversified biomedical fields. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.10.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Jeong SI, Park SC, Park SJ, Kim EJ, Heo H, Park JS, Gwon HJ, Lim YM, Jang MK. One-step synthesis of gene carrier via gamma irradiation and its application in tumor gene therapy. Int J Nanomedicine 2018; 13:525-536. [PMID: 29416333 PMCID: PMC5790097 DOI: 10.2147/ijn.s149532] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Introduction Although numerous studies have been conducted with the aim of developing drug-delivery systems, chemically synthesized gene carriers have shown limited applications in the biomedical fields due to several problems, such as low-grafting yields, undesirable reactions, difficulties in controlling the reactions, and high-cost production owing to multi-step manufacturing processes. Materials and methods We developed a 1-step synthesis process to produce 2-aminoethyl methacrylate-grafted water-soluble chitosan (AEMA-g-WSC) as a gene carrier, using gamma irradiation for simultaneous synthesis and sterilization, but no catalysts or photoinitiators. We analyzed the AEMA graft site on WSC using 2-dimensional nuclear magnetic resonance spectroscopy (2D NMR; 1H and 13C NMR), and assayed gene transfection effects in vitro and in vivo. Results We revealed selective grafting of AEMA onto C6-OH groups of WSC. AEMA-g-WSC effectively condensed plasmid DNA to form polyplexes in the size range of 170 to 282 nm. AEMA-g-WSC polyplexes in combination with psi-hBCL2 (a vector expressing short hairpin RNA against BCL2 mRNA) inhibited tumor cell proliferation and tumor growth in vitro and in vivo, respectively, by inducing apoptosis. Conclusion The simple grafting process mediated via gamma irradiation is a promising method for synthesizing gene carriers.
Collapse
Affiliation(s)
- Sung In Jeong
- Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup
| | - Seong-Cheol Park
- Department of Polymer Science and Engineering, College of Engineering, Sunchon National University, Suncheon, Korea
| | - Sun-Jeong Park
- Department of Polymer Science and Engineering, College of Engineering, Sunchon National University, Suncheon, Korea
| | - Eun-Ji Kim
- Department of Polymer Science and Engineering, College of Engineering, Sunchon National University, Suncheon, Korea
| | - Hun Heo
- Department of Polymer Science and Engineering, College of Engineering, Sunchon National University, Suncheon, Korea
| | - Jong-Seok Park
- Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup
| | - Hui-Jeong Gwon
- Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup
| | - Youn-Mook Lim
- Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup
| | - Mi-Kyeong Jang
- Department of Polymer Science and Engineering, College of Engineering, Sunchon National University, Suncheon, Korea
| |
Collapse
|
12
|
Adamus A, Komasa J, Kadłubowski S, Ulański P, Rosiak J, Kawecki M, Klama-Baryła A, Dworak A, Trzebicka B, Szweda R. Thermoresponsive poly[tri(ethylene glycol) monoethyl ether methacrylate]-peptide surfaces obtained by radiation grafting-synthesis and characterisation. Colloids Surf B Biointerfaces 2016; 145:185-193. [PMID: 27182653 DOI: 10.1016/j.colsurfb.2016.04.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/06/2016] [Accepted: 04/30/2016] [Indexed: 12/19/2022]
|
13
|
Dong P, Zhou Y, He W, Hua D. A strategy for enhanced antibacterial activity against Staphylococcus aureus by the assembly of alamethicin with a thermo-sensitive polymeric carrier. Chem Commun (Camb) 2016; 52:896-9. [PMID: 26579549 DOI: 10.1039/c5cc07054f] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We demonstrate here a strategy for enhanced antibacterial activity against microbial strains by the assembly of antimicrobial peptides with a temperature-responsive polymeric carrier. The assembly complex was less toxic to human cells and more stable to enzymatic cleavage. This work may provide a promising drug delivery system for antimicrobial peptides.
Collapse
Affiliation(s)
- Ping Dong
- School for Radiological and Interdisciplinary Sciences (RAD-X) & College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Yuan Zhou
- School for Radiological and Interdisciplinary Sciences (RAD-X) & College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Weiwei He
- School for Radiological and Interdisciplinary Sciences (RAD-X) & College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China. and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Daoben Hua
- School for Radiological and Interdisciplinary Sciences (RAD-X) & College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China. and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| |
Collapse
|