1
|
Szota M, Jachimska B. Effect of Alkaline Conditions on Forming an Effective G4.0 PAMAM Complex with Doxorubicin. Pharmaceutics 2023; 15:pharmaceutics15030875. [PMID: 36986735 PMCID: PMC10057121 DOI: 10.3390/pharmaceutics15030875] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
In this study, special attention was paid to the correlation between the degree of ionization of the components and the effective formation of the complex under alkaline conditions. Using UV-Vis, 1H NMR, and CD, structural changes of the drug depending on the pH were monitored. In the pH range of 9.0 to 10.0, the G4.0 PAMAM dendrimer can bind 1 to 10 DOX molecules, while the efficiency increases with the concentration of the drug relative to the carrier. The binding efficiency was described by the parameters of loading content (LC = 4.80-39.20%) and encapsulation efficiency (EE = 17.21-40.16%), whose values increased twofold or even fourfold depending on the conditions. The highest efficiency was obtained for G4.0PAMAM-DOX at a molar ratio of 1:24. Nevertheless, regardless of the conditions, the DLS study indicates system aggregation. Changes in the zeta potential confirm the immobilization of an average of two drug molecules on the dendrimer's surface. Circular dichroism spectra analysis shows a stable dendrimer-drug complex for all the systems obtained. Since the doxorubicin molecule can simultaneously act as a therapeutic and an imaging agent, the theranostic properties of the PAMAM-DOX system have been demonstrated by the high fluorescence intensity observable on fluorescence microscopy.
Collapse
Affiliation(s)
- Magdalena Szota
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Krakow, Poland
| | - Barbara Jachimska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Krakow, Poland
| |
Collapse
|
2
|
Takami T, Kanai S, Nishiyama Y, Lee HJ, Nagatani H. Transfer Mechanism of Anthracycline Antibiotics and Their Ion‐Association with PAMAM Dendrimer at Liquid|Liquid Interfaces. ChemElectroChem 2022. [DOI: 10.1002/celc.202200359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Toshinari Takami
- Kanazawa University Graduate School of Natural Science and Technology: Kanazawa Daigaku Daigakuin Shizen Kagaku Kenkyuka Division of Material Chemistry JAPAN
| | - Shohei Kanai
- Kanazawa University Graduate School of Natural Science and Technology: Kanazawa Daigaku Daigakuin Shizen Kagaku Kenkyuka Division of Material Chemistry JAPAN
| | - Yoshio Nishiyama
- Kanazawa University Graduate School of Natural Science and Technology: Kanazawa Daigaku Daigakuin Shizen Kagaku Kenkyuka Division of Material Chemistry JAPAN
| | - Hye Jin Lee
- Kyungpook National University Department of Chemistry and Green-Nano Materials Research Center KOREA, REPUBLIC OF
| | - Hirohisa Nagatani
- Kanazawa University Faculty of Chemistry, Institute of Science and Engineering Kakuma 920-1192 Kanazawa JAPAN
| |
Collapse
|
3
|
Singh V, Kesharwani P. Dendrimer as a promising nanocarrier for the delivery of doxorubicin as an anticancer therapeutics. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1882-1909. [PMID: 34078252 DOI: 10.1080/09205063.2021.1938859] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendrimers are macromolecules with high-polymeric branching capable of undergoing major modifications. These characteristics make them an efficient nanocarrier capable of encapsulating and delivering drug, antibodies, or any therapeutic gene. The failure of conventional techniques to deliver drug with higher efficacy and reduced side effects has led to the use of nanomedicines including dendrimers. Dendrimers are novel drug carriers that are modified, complexed, and conjugated with different ligands and receptors to target the delivery of drug at the specific site without impacting any of the normal cells in surrounding. Moreover, the biocompatibility and safety of the dendrimers can be altered accordingly by the process of functionalization by PEGylation, acetylation, or amination. Various dendrimers have been designed to incorporate and deliver anticancer drug either in free form or as codelivery in conjugation with other drugs or therapeutic siRNA/DNA. Doxorubicin (DOX) is one such chemotherapeutic drug that acts by disrupting the process of DNA repair in tumor cells and hence is, since long been used for anticancer therapy. Certain adverse effects such as cardiotoxicity has limited the use of conventional DOX and has shifted the focus on use of safe nanodelivery systems viz dendrimers. DOX either in free or salt form can be loaded or encapsulated accordingly within the core of the dendrimers and linked with different receptors expressed over tumor cells to improve targeting in any cancerous organ site. Positive results obtained after cytotoxicity assay and in vivo/in vitro studies on different cancerous cell lines, and grafted models suggested the potential use of multifunctional DOX-dendrimers characterized with controlled release, better penetration, improved bioavailability, and reduced organ toxicity. This review consolidates studies on different types of DOX-loaded dendrimers that were synthesized, investigated, and are currently being explored for better cancer targeting. Foreseeing the prospects of dendrimers and their compatibility with DOX (free/salt), the article was updated with all current insights.
Collapse
Affiliation(s)
- Vanshikha Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
4
|
Dubey SK, Salunkhe S, Agrawal M, Kali M, Singhvi G, Tiwari S, Saraf S, Saraf S, Alexander A. Understanding the Pharmaceutical Aspects of Dendrimers for the Delivery of Anticancer Drugs. Curr Drug Targets 2021; 21:528-540. [PMID: 31670619 DOI: 10.2174/1389450120666191031092259] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/17/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022]
Abstract
Dendrimers are emerging class of nanoparticles used in targeted drug delivery systems. These are radially symmetric molecules with well-defined, homogeneous, and monodisperse structures. Due to the nano size, they can easily cross the biological membrane and increase bioavailability. The surface functionalization facilitates targeting of the particular site of action, assists the high drug loading and improves the therapeutic efficiency of the drug. These properties make dendrimers advantageous over conventional drug delivery systems. This article explains the features of dendrimers along with their method of synthesis, such as divergent growth method, convergent growth method, double exponential and mixed method, hyper-core and branched method. Dendrimers are effectively used in anticancer delivery and can be targeted at the site of tumor either by active or passive targeting. There are three mechanisms by which drugs interact with dendrimers, and they are physical encapsulation, electrostatic interaction, chemical conjugation of drug molecules. Drug releases from dendrimer either by in vivo cleavage of the covalent bond between drugdendrimer complexes or by physical changes or stimulus like pH, temperature, etc.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, 333031, India
| | - Shubham Salunkhe
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, 333031, India
| | - Mukta Agrawal
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh, 490024, India
| | - Maithili Kali
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, 333031, India
| | - Sanjay Tiwari
- UKA Tarsadia University, Maliba Pharmacy College, Gopal-Vidyanagar Campus, Surat, Gujarat, 394350, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492 010, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492 010, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER GUWAHATI), Ministry of Chemicals & Fertilizers, Govt. of India, NH 37, NITS Mirza, Kamrup- 781125, Guwahati (Assam), India
| |
Collapse
|
5
|
Zloh M, Barata TS. An update on the use of molecular modeling in dendrimers design for biomedical applications: are we using its full potential? Expert Opin Drug Discov 2020; 15:1015-1024. [PMID: 32452244 DOI: 10.1080/17460441.2020.1769597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Dendrimers are well-defined hyperbranched polymers built from a variety of different monomers and with tuneable properties that make them suitable for different biomedical applications. Their three-dimensional (3D) structure cannot be usually determined experimentally due to their inherent nature of repeating patterns in the topology, failure to crystalize, and/or high flexibility. Therefore, their conformations and interactions at the atomistic level can be studied only by using computational chemistry methods, including molecular dynamics, Monte Carlo simulations, and molecular docking. AREAS COVERED In this review, the methods that could be utilized in computer-aided dendrimer design are considered, providing a list of approaches to generate initial 3D coordinates and selected examples of applications of relevant molecular modeling methods. EXPERT OPINION Computational chemistry provides an invaluable set of tools to study dendrimers and their interactions with drugs and biological targets. There is a gap in the software development that is dedicated to study of these highly variable and complex systems that could be overcome by the integration of already established approaches for topology generation and open source molecular modeling libraries. Furthermore, it would be highly beneficial to collate already built 3D models of various dendrimers with corresponding relevant experimental data.
Collapse
Affiliation(s)
- Mire Zloh
- UCL School of Pharmacy, University College London , London, UK.,Faculty of Pharmacy, University Business Academy , Novi Sad, Serbia.,Nanopuzzle Medicines Design Ltd , Stevenage, UK
| | - Teresa S Barata
- Department of Biochemical Engineering, University College London , London, UK
| |
Collapse
|
6
|
Chivere VT, Kondiah PPD, Choonara YE, Pillay V. Nanotechnology-Based Biopolymeric Oral Delivery Platforms for Advanced Cancer Treatment. Cancers (Basel) 2020; 12:E522. [PMID: 32102429 PMCID: PMC7073194 DOI: 10.3390/cancers12020522] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/01/2023] Open
Abstract
Routes of drug administration and their corresponding physiochemical characteristics play major roles in drug therapeutic efficiency and biological effects. Each route of delivery has favourable aspects and limitations. The oral route of delivery is the most convenient, widely accepted and safe route. However, the oral route of chemotherapeutics to date have displayed high gastric degradation, low aqueous solubility, poor formulation stability and minimum intestinal absorption. Thus, mainstream anti-cancer drugs in current formulations are not suitable as oral chemotherapeutic formulations. The use of biopolymers such as chitosan, gelatin, hyaluronic acid and polyglutamic acid, for the synthesis of oral delivery platforms, have potential to help overcome problems associated with oral delivery of chemotherapeutics. Biopolymers have favourable stimuli-responsive properties, and thus can be used to improve oral bioavailability of anti-cancer drugs. These biopolymeric formulations can protect gastric-sensitive drugs from pH degradation, target specific binding sites for targeted absorption and consequently control drug release. In this review, the use of various biopolymers as oral drug delivery systems for chemotherapeutics will be discussed.
Collapse
Affiliation(s)
| | | | | | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (V.T.C.); (P.P.D.K.); (Y.E.C.)
| |
Collapse
|
7
|
Chanphai P, Thomas TJ, Tajmir-Riahi HA. Application and biomolecular study of functionalized folic acid-dendrimer nanoparticles in drug delivery. J Biomol Struct Dyn 2020; 39:787-794. [PMID: 31948357 DOI: 10.1080/07391102.2020.1717994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We determined the loading efficacy of folic acid - PAMAM - G3 and folic acid - PAMAM - G4 nanoparticles with doxorubicin (Dox), tamoxifen (Tam) and tetracycline (Tet) in aqueous solution at pH 7.2. Thermodynamic parameters ΔH0 -16 to -4 (kJ mol-1), ΔS0 31 to -0.3 (J mol-1K-1) and ΔG0 -14 to -11 (kJ mol-1) showed drug folic acid-PAMAM bindings are via ionic, H-bonding and van der Waals interactions. As acid - PAMAM size increased the stability and loading efficacy of drug-polymer conjugates were increased. The order of stability for drug-nanoparticles was doxorubicin > tetracycline > tamoxifen. TEM analysis showed major polymer morphological changes, upon drug encapsulation. Folic acid-PAMAM conjugates are effective drug delivery tools in vitro. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- P Chanphai
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada
| | - T J Thomas
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, and Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - H A Tajmir-Riahi
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada
| |
Collapse
|
8
|
Yang W, Veroniaina H, Qi X, Chen P, Li F, Ke PC. Soft and Condensed Nanoparticles and Nanoformulations for Cancer Drug Delivery and Repurpose. ADVANCED THERAPEUTICS 2020; 3:1900102. [PMID: 34291146 PMCID: PMC8291088 DOI: 10.1002/adtp.201900102] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Indexed: 12/24/2022]
Abstract
Drug repurpose or reposition is recently recognized as a high-performance strategy for developing therapeutic agents for cancer treatment. This approach can significantly reduce the risk of failure, shorten R&D time, and minimize cost and regulatory obstacles. On the other hand, nanotechnology-based delivery systems are extensively investigated in cancer therapy due to their remarkable ability to overcome drug delivery challenges, enhance tumor specific targeting, and reduce toxic side effects. With increasing knowledge accumulated over the past decades, nanoparticle formulation and delivery have opened up a new avenue for repurposing drugs and demonstrated promising results in advanced cancer therapy. In this review, recent developments in nano-delivery and formulation systems based on soft (i.e., DNA nanocages, nanogels, and dendrimers) and condensed (i.e., noble metal nanoparticles and metal-organic frameworks) nanomaterials, as well as their theranostic applications in drug repurpose against cancer are summarized.
Collapse
Affiliation(s)
- Wen Yang
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, USA
| | | | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| | - Pengyu Chen
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, USA
| | - Feng Li
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn AL 36849, USA
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| |
Collapse
|
9
|
Ghaffari M, Dehghan G, Abedi-Gaballu F, Kashanian S, Baradaran B, Ezzati Nazhad Dolatabadi J, Losic D. Surface functionalized dendrimers as controlled-release delivery nanosystems for tumor targeting. Eur J Pharm Sci 2018; 122:311-330. [PMID: 30003954 DOI: 10.1016/j.ejps.2018.07.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 01/12/2023]
Abstract
Dendrimers are nano-sized and three-dimensional macromolecules with well-defined globular architecture and are widely used in various aspects such as drug and gene delivery owing to multivalent and host-guest entrapment properties. However, dendrimers like other nanomaterials have some disadvantages for example rapid clearance by reticuloendothelial system, toxicity due to interaction of amine terminated group with cell membrane, low transfection efficiency and lack of controlled release behavior, which reduce their therapeutic efficiency. To solve these problems, surface functionalization of dendrimers can be carried out. Surface functionalization not only mitigates this obstacle but also renders excessive specificity to dendrimer to improve efficiency of cancer therapy. Specific properties in cancer cell compared to normal cells such as overexpression of various receptors and difference in biological condition like pH, temperature and redox of tumor environment can be an appropriate strategy to increase site-specific targeting efficiency. Therefore, in this article we focus on numerous functionalization strategies, which are used in the modification of dendrimers through attachment of lipid, amino acid, protein/peptide, aptamer, vitamin, antibody. Moreover, increased biocompatibility, site-specific delivery based on various ligands, enhanced transfection efficiency, sustained and controlled release behavior based on stimuli responsiveness are benefits of functionalized dendrimer which we discuss in this review. Overall, these functionalized dendrimers can open a new horizon in the field of targeted drug and gene delivery.
Collapse
Affiliation(s)
- Maryam Ghaffari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Fereydoon Abedi-Gaballu
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Kashanian
- Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC) & Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah, Iran; Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Dusan Losic
- School of Chemical Engineering, The University of Adelaide, North Engineering Building, N206, Adelaide, SA 5005, Australia.
| |
Collapse
|
10
|
Chanphai P, Tajmir-Riahi HA. Encapsulation of micronutrients resveratrol, genistein, and curcumin by folic acid-PAMAM nanoparticles. Mol Cell Biochem 2018; 449:157-166. [DOI: 10.1007/s11010-018-3352-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/05/2018] [Indexed: 12/22/2022]
|
11
|
Au@p4VP core@shell pH-sensitive nanocomposites suitable for drug entrapment. J Colloid Interface Sci 2018; 514:704-714. [DOI: 10.1016/j.jcis.2017.12.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/22/2017] [Accepted: 12/26/2017] [Indexed: 01/12/2023]
|
12
|
Chanphai P, Tajmir-Riahi HA. Binding analysis of antioxidant polyphenols with PAMAM nanoparticles. J Biomol Struct Dyn 2017; 36:3487-3495. [PMID: 29019428 DOI: 10.1080/07391102.2017.1391124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Dietary polyphenols are abundant micronutrients in our diet and paly major role in prevention of degenerative diseases. The binding efficacy of antioxidant polyphenols resveratrol, genistein, and curcumin with PAMAM-G3 and PAMAM-G4 nanoparticles was investigated in aqueous solution at physiological conditions, using multiple spectroscopic methods, TEM images, and docking studies. The polyphenol bindings are via hydrophilic, hydrophobic, and H-bonding contacts with resveratrol forming more stable conjugates. As PAMAM size increased the loading efficacy and the stability of polyphenol-polymer conjugates were increased. Polyphenol binding induced major alterations of dendrimer morphology. PAMAM nanoparticles are capable of delivery of polyphenols in vitro.
Collapse
Affiliation(s)
- P Chanphai
- a Department of Chemistry-Biochemistry, Physics , University of Québec , C. P. 500, Trois-Rivières , Québec G9A 5H7 , Canada
| | - H A Tajmir-Riahi
- a Department of Chemistry-Biochemistry, Physics , University of Québec , C. P. 500, Trois-Rivières , Québec G9A 5H7 , Canada
| |
Collapse
|
13
|
Jurj A, Braicu C, Pop LA, Tomuleasa C, Gherman CD, Berindan-Neagoe I. The new era of nanotechnology, an alternative to change cancer treatment. Drug Des Devel Ther 2017; 11:2871-2890. [PMID: 29033548 PMCID: PMC5628667 DOI: 10.2147/dddt.s142337] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the last few years, nanostructures have gained considerable interest for the safe delivery of therapeutic agents. Several therapeutic approaches have been reported, such as molecular diagnosis, disease detection, nanoscale immunotherapy and anticancer drug delivery that could be integrated into clinical use. The current paper aims to highlight the background that supports the use of nanoparticles conjugated with different types of therapeutic agents, applicable in targeted therapy and cancer research, with a special emphasis on hematological malignancies. A particular key point is the functional characterization of nonviral delivery systems, such as gold nanoparticles, liposomes and dendrimers. The paper also presents relevant published data related to microRNA and RNA interference delivery using nanoparticles in cancer therapy.
Collapse
Affiliation(s)
- Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| | - Laura-Ancuta Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
- Department of Hematology, The Oncology Institute “Prof Dr Ion Chiricuta”, Cluj-Napoca, Romania
| | - Claudia Diana Gherman
- Practical Abilities, Department of Medical Education, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
- Department of Medical Education, University of Medicine and Pharmacy “Iuliu Hatieganu”, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof Dr Ion Chiricuta”, Cluj-Napoca, Romania
- MedFuture Research Center for Advanced Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| |
Collapse
|
14
|
Chanphai P, Bekale L, Sanyakamdhorn S, Agudelo D, Bérubé G, Thomas T, Tajmir-Riahi H. PAMAM dendrimers in drug delivery: loading efficacy and polymer morphology. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The binding efficacy of anticancer drugs doxorubicin and tamoxifen with polyamidoamine (PAMAM-G4) dendrimers was studied in aqueous solution at physiological pH. The results of multiple spectroscopic methods, transmission electron microscopy (TEM), and molecular modeling of conjugated drug–polymer were examined. Structural analysis showed that drug–polymer conjugation occurs mainly via H-bonding and hydrophilic and hydrophobic contacts. Doxorubicin forms a more stable conjugate with PAMAM-G4 than tamoxifen. The drug loading efficacy was 40%–50%. The TEM images showed major changes in the PAMAM morphology upon drug encapsulation. Modeling showed that drug is located in the polymer surface and in the internal cavities. PAMAM nanoparticles are capable of transporting doxorubicin and tamoxifen in vitro. This minireview presents the most recent work performed with the dendrimers demonstrating their usefulness for drug delivery in cancer therapy.
Collapse
Affiliation(s)
- P. Chanphai
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, Trois-Rivières, QC G9A 5H7, Canada
| | - L. Bekale
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, Trois-Rivières, QC G9A 5H7, Canada
| | - S. Sanyakamdhorn
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, Trois-Rivières, QC G9A 5H7, Canada
| | - D. Agudelo
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, Trois-Rivières, QC G9A 5H7, Canada
| | - G. Bérubé
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, Trois-Rivières, QC G9A 5H7, Canada
| | - T.J. Thomas
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, and Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - H.A. Tajmir-Riahi
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, Trois-Rivières, QC G9A 5H7, Canada
| |
Collapse
|
15
|
Palmerston Mendes L, Pan J, Torchilin VP. Dendrimers as Nanocarriers for Nucleic Acid and Drug Delivery in Cancer Therapy. Molecules 2017; 22:E1401. [PMID: 28832535 PMCID: PMC5600151 DOI: 10.3390/molecules22091401] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 01/09/2023] Open
Abstract
Dendrimers are highly branched polymers with easily modifiable surfaces. This makes them promising structures for functionalization and also for conjugation with drugs and DNA/RNA. Their architecture, which can be controlled by different synthesis processes, allows the control of characteristics such as shape, size, charge, and solubility. Dendrimers have the ability to increase the solubility and bioavailability of hydrophobic drugs. The drugs can be entrapped in the intramolecular cavity of the dendrimers or conjugated to their functional groups at their surface. Nucleic acids usually form complexes with the positively charged surface of most cationic dendrimers and this approach has been extensively employed. The presence of functional groups in the dendrimer's exterior also permits the addition of other moieties that can actively target certain diseases and improve delivery, for instance, with folate and antibodies, now widely used as tumor targeting strategies. Dendrimers have been investigated extensively in the medical field, and cancer treatment is one of the greatest areas where they have been most used. This review will consider the main types of dendrimer currently being explored and how they can be utilized as drug and gene carriers and functionalized to improve the delivery of cancer therapy.
Collapse
Affiliation(s)
- Livia Palmerston Mendes
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
- CAPES Foundation, Ministry of Education of Brazil, Brasilia 70040-020, Brazil.
| | - Jiayi Pan
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Chanphai P, Tajmir-Riahi H. Characterization of folic acid-PAMAM conjugates: drug loading efficacy and dendrimer morphology. J Biomol Struct Dyn 2017; 36:1918-1924. [DOI: 10.1080/07391102.2017.1341339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- P. Chanphai
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières , C. P. 500, Trois-Rivières, Quebec G9A 5H7, Canada
| | - H.A. Tajmir-Riahi
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières , C. P. 500, Trois-Rivières, Quebec G9A 5H7, Canada
| |
Collapse
|
17
|
Chanphai P, Froehlich E, Mandeville JS, Tajmir-Riahi HA. Protein conjugation with PAMAM nanoparticles: Microscopic and thermodynamic analysis. Colloids Surf B Biointerfaces 2016; 150:168-174. [PMID: 27914253 DOI: 10.1016/j.colsurfb.2016.11.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/03/2016] [Accepted: 11/26/2016] [Indexed: 01/05/2023]
Abstract
PAMAM dendrimers form strong protein conjugates that are used in drug delivery systems. We report the thermodynamic and binding analysis of polyamidoamine (PAMAM-G4) conjugation with human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (b-LG) in aqueous solution at physiological pH. Hydrophobicity played a major role in PAMAM-protein interactions with more hydrophobic b-LG forming stronger polymer-protein conjugates. Thermodynamic parameters showed PAMAM-protein bindings occur via hydrophobic and H-bonding contacts for b-LG, while van der waals and H-bonding interactions prevail in HSA and BSA-polymer conjugates. The protein loading efficacy was 45-55%. PAMAM complexation induced major alterations of protein conformation. TEM images show major polymer morphological changes upon protein conjugation.
Collapse
Affiliation(s)
- P Chanphai
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, TR (Quebec) Canada G9A 5H7, Canada
| | - E Froehlich
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, TR (Quebec) Canada G9A 5H7, Canada
| | - J S Mandeville
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, TR (Quebec) Canada G9A 5H7, Canada
| | - H A Tajmir-Riahi
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, TR (Quebec) Canada G9A 5H7, Canada.
| |
Collapse
|
18
|
Sanyakamdhorn S, Agudelo D, Tajmir-Riahi H. Review on the targeted conjugation of anticancer drugs doxorubicin and tamoxifen with synthetic polymers for drug delivery. J Biomol Struct Dyn 2016; 35:2497-2508. [DOI: 10.1080/07391102.2016.1222971] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- S. Sanyakamdhorn
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, Trois-Rivières, Québec G9A 5H7, Canada
| | - D. Agudelo
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, Trois-Rivières, Québec G9A 5H7, Canada
| | - H.A. Tajmir-Riahi
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, Trois-Rivières, Québec G9A 5H7, Canada
| |
Collapse
|
19
|
Agudelo D, Bérubé G, Tajmir-Riahi H. An overview on the delivery of antitumor drug doxorubicin by carrier proteins. Int J Biol Macromol 2016; 88:354-60. [DOI: 10.1016/j.ijbiomac.2016.03.060] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/27/2016] [Accepted: 03/28/2016] [Indexed: 12/16/2022]
|
20
|
Sanyakamdhorn S, Agudelo D, Bekale L, Tajmir-Riahi HA. Targeted conjugation of breast anticancer drug tamoxifen and its metabolites with synthetic polymers. Colloids Surf B Biointerfaces 2016; 145:55-63. [PMID: 27137803 DOI: 10.1016/j.colsurfb.2016.04.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/14/2016] [Accepted: 04/19/2016] [Indexed: 01/27/2023]
Abstract
Conjugation of antitumor drug tamoxifen and its metabolites, 4-hydroxytamxifen and ednoxifen with synthetic polymers poly(ethylene glycol) (PEG), methoxypoly (ethylene glycol) polyamidoamine (mPEG-PAMAM-G3) and polyamidoamine (PAMAM-G4) dendrimers was studied in aqueous solution at pH 7.4. Multiple spectroscopic methods, transmission electron microscopy (TEM) and molecular modeling were used to characterize the drug binding process to synthetic polymers. Structural analysis showed that drug-polymer binding occurs via both H-bonding and hydrophobic contacts. The order of binding is PAMAM-G4>mPEG-PAMAM-G3>PEG-6000 with 4-hydroxttamoxifen forming more stable conjugate than tamoxifen and endoxifen. Transmission electron microscopy showed significant changes in carrier morphology with major changes in the shape of the polymer aggregate as drug encapsulation occurred. Modeling also showed that drug is located in the surface and in the internal cavities of PAMAM with the free binding energy of -3.79 for tamoxifen, -3.70 for 4-hydroxytamoxifen and -3.69kcal/mol for endoxifen, indicating of spontaneous drug-polymer interaction at room temperature.
Collapse
Affiliation(s)
- S Sanyakamdhorn
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois- Rivières, C. P. 500, Trois-Rivières, Québec G9A 5H7, Canada
| | - D Agudelo
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois- Rivières, C. P. 500, Trois-Rivières, Québec G9A 5H7, Canada
| | - L Bekale
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois- Rivières, C. P. 500, Trois-Rivières, Québec G9A 5H7, Canada
| | - H A Tajmir-Riahi
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois- Rivières, C. P. 500, Trois-Rivières, Québec G9A 5H7, Canada.
| |
Collapse
|
21
|
Review on the binding of anticancer drug doxorubicin with DNA and tRNA: Structural models and antitumor activity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 158:274-9. [PMID: 26971631 DOI: 10.1016/j.jphotobiol.2016.02.032] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/13/2016] [Indexed: 01/08/2023]
Abstract
In this review, we have compared the results of multiple spectroscopic studies and molecular modeling of anticancer drug doxorubicin (DOX) bindings to DNA and tRNA. DOX was intercalated into DNA duplex, while tRNA binding is via major and minor grooves. DOX-DNA intercalation is close to A-7, C-5, *C-19 (H-bonding with DOX NH2 group), G-6, T-8 and T-18 with the free binding energy of -4.99kcal/mol. DOX-tRNA groove bindings are near A-29, A-31, A-38, C-25, C-27, C-28, *G-30 (H-bonding) and U-41 with the free binding energy of -4.44kcal/mol. Drug intercalation induced a partial B to A-DNA transition, while tRNA remained in A-family structure. The structural differences observed between DOX bindings to DNA and tRNA can be the main reasons for drug antitumor activity. The results of in vitro MTT assay on SKC01 colon carcinoma are consistent with the observed DNA structural changes. Future research should be focused on finding suitable nanocarriers for delivery of DOX in vivo in order to exploit the full capacity of this very important anticancer drug.
Collapse
|