1
|
Kim HK, Park JH, Jang MJ, Han SJ, Cho YS, Park HH. Flexible and transparent nanohole-patterned films with antibacterial properties against Staphylococcus aureus. J Mater Chem B 2024. [PMID: 38953113 DOI: 10.1039/d4tb00434e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
In this paper, we explore the development of a multi-functional surface designed to tackle the challenges posed by Staphylococcus aureus (S. aureus), a common opportunistic pathogen. Infections caused by S. aureus during surgical procedures highlight the need for effective strategies to inhibit its adhesion, growth, and colonization, particularly on the surfaces of invasive medical devices. Until now, most existing research has focused on nanopillar structures (positive topographies). Uniform nanopillar arrays have been shown to control bacterial behavior based on the spacing between nanopillars. However, nanopillar structures are susceptible to external friction, impact, and force, making it challenging to maintain their antibacterial properties. Therefore, in this study, we investigate the antibacterial behavior of nanohole structures, which offer relatively superior mechanical robustness compared to nanopillars. Moreover, for applications in medical devices such as laparoscopes, there is a pressing need for surfaces that are not only transparent and flexible (or curved) but are also equipped with antibacterial properties. Our study introduces a scalable multi-functional surface that synergistically combines antibacterial and anti-fog properties. This is achieved by fabricating thin films with variously sized holes (ranging from 0.3 μm to 4 μm) using polyurethane acrylate (PUA). We assessed the activity of S. aureus on these surfaces and found that a 1 μm-diameter-hole pattern significantly reduced the presence of live S. aureus, without any detection of dead S. aureus. This bacteriostatic effect is attributed to the restricted proliferation due to the confined area provided by the hole pattern. However, the persistence of some live S. aureus on the surface necessitates further measures to minimize bacterial adhesion and enhance antibacterial effectiveness. To address this challenge, we coated the zwitterionic polymer 2-methacryloyloxyethyl phosphorylcholine (MPC) onto the nanohole pattern surface to reduce S. aureus adhesion. Moreover, in long-term experiments on surfaces, the MPC-coated effectively inhibited the colonization of S. aureus (18 h; 82%, 7 days; 83%, and 14 days; 68% antibacterial rate). By integrating PUA, MPC, and nanohole architectures into a single, flexible platform, we achieved a multi-functional surface catering to transparency, anti-fogging, and anti-biofouling requirements. This innovative approach marks a significant advancement in surface engineering, offering a versatile solution applicable in various fields, particularly in preventing S. aureus contamination in invasive medical devices like laparoscopes. The resultant surface, characterized by its transparency, flexibility, and antibacterial functionality, stands out as a promising candidate for mitigating S. aureus-related risks in medical applications.
Collapse
Affiliation(s)
- Hee-Kyeong Kim
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Jeong-Hun Park
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Min-Jun Jang
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Su-Ji Han
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Young-Sam Cho
- Division of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea.
- MECHABIO Group, Wonkwang University, 460 Ikandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Hyun-Ha Park
- Division of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea.
- MECHABIO Group, Wonkwang University, 460 Ikandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
2
|
Zagiczek SN, Weiss-Tessbach M, Kussmann M, Moser D, Stoiber M, Moscato F, Schima H, Grasl C. Two-photon lithography for customized microstructured surfaces and their influence on wettability and bacterial load. 3D Print Med 2024; 10:12. [PMID: 38627256 PMCID: PMC11022422 DOI: 10.1186/s41205-024-00211-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Device-related bacterial infections account for a large proportion of hospital-acquired infections. The ability of bacteria to form a biofilm as a protective shield usually makes treatment impossible without removal of the implant. Topographic surfaces have attracted considerable attention in studies seeking antibacterial properties without the need for additional antimicrobial substances. As there are still no valid rules for the design of antibacterial microstructured surfaces, a fast, reproducible production technique with good resolution is required to produce test surfaces and to examine their effectiveness with regard to their antibacterial properties. METHODS In this work various surfaces, flat and with microcylinders in different dimensions (flat, 1, 3 and 9 μm) with a surface area of 7 × 7 mm were fabricated with a nanoprinter using two-photon lithography and evaluated for their antibiofilm effect. The microstructured surfaces were cultured for 24 h with different strains of Pseudomonas aeruginosa and Staphylococcus aureus to study bacterial attachment to the patterned surfaces. In addition, surface wettability was measured by a static contact angle measurement. RESULTS Contact angles increased with cylinder size and thus hydrophobicity. Despite the difference in wettability, Staphylococcus aureus was not affected by the microstructures, while for Pseudomonas aeruginosa the bacterial load increased with the size of the cylinders, and compared to a flat surface, a reduction in bacteria was observed for one strain on the smallest cylinders. CONCLUSIONS Two-photon lithography allowed rapid and flexible production of microcylinders of different sizes, which affected surface wettability and bacterial load, however, depending on bacterial type and strain.
Collapse
Affiliation(s)
- Sophie Nilsson Zagiczek
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, AKH 4L, 1090, Vienna, Austria
| | - Matthias Weiss-Tessbach
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Manuel Kussmann
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Doris Moser
- Department of Cranio-Maxillofacial and Oral Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Martin Stoiber
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, AKH 4L, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090, Vienna, Austria
| | - Francesco Moscato
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, AKH 4L, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1090, Vienna, Vienna, Austria
| | - Heinrich Schima
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, AKH 4L, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090, Vienna, Austria
- Department for Cardiac Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Christian Grasl
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, AKH 4L, 1090, Vienna, Austria.
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090, Vienna, Austria.
| |
Collapse
|
3
|
Liu X, Feng Z, Ran Z, Zeng Y, Cao G, Li X, Ye H, Wang M, Liang W, He Y. External Stimuli-Responsive Strategies for Surface Modification of Orthopedic Implants: Killing Bacteria and Enhancing Osteogenesis. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38497341 DOI: 10.1021/acsami.3c19149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Bacterial infection and insufficient osteogenic activity are the main causes of orthopedic implant failure. Conventional surface modification methods are difficult to meet the requirements for long-term implant placement. In order to better regulate the function of implant surfaces, especially to improve both the antibacterial and osteogenic activity, external stimuli-responsive (ESR) strategies have been employed for the surface modification of orthopedic implants. External stimuli act as "smart switches" to regulate the surface interactions with bacteria and cells. The balance between antibacterial and osteogenic capabilities of implant surfaces can be achieved through these specific ESR manifestations, including temperature changes, reactive oxygen species production, controlled release of bioactive molecules, controlled release of functional ions, etc. This Review summarizes the recent progress on different ESR strategies (based on light, ultrasound, electric, and magnetic fields) that can effectively balance antibacterial performance and osteogenic capability of orthopedic implants. Furthermore, the current limitations and challenges of ESR strategies for surface modification of orthopedic implants as well as future development direction are also discussed.
Collapse
Affiliation(s)
- Xujie Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenzhen Feng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhili Ran
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaoxun Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Guining Cao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinyi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Huiling Ye
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Meijing Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanting Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Kim HK, Baek HW, Park HH, Cho YS. Reusable mechano-bactericidal surface with echinoid-shaped hierarchical micro/nano-structure. Colloids Surf B Biointerfaces 2024; 234:113729. [PMID: 38160475 DOI: 10.1016/j.colsurfb.2023.113729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/09/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Biofilms formed owing to the attachment of bacteria to surfaces have caused various problems in industries such as marine transportation/logistics and medicine. In response, many studies have been conducted on bactericidal surfaces, and nanostructured surfaces mimicking cicada and dragonfly wings are emerging as candidates for mechano-bactericidal surfaces. In specific circumstances involving mechano-bactericidal activity, certain nanostructured surfaces could exhibit their bactericidal effects by directly deforming the membranes of bacteria that adhere to these nanostructures. Additionally, in most cases, debris of bacterial cells may accumulate on these nanostructured surfaces. Such accumulation poses a significant challenge: it diminishes the mechano-bactericidal effectiveness of the surface, as it hinders the direct interaction between the nanostructures and any new bacteria that attach subsequently. In specific circumstances involving mechano-bactericidal activity, certain nanostructured surfaces could exhibit their bactericidal effects by directly deforming the membranes of bacteria that adhere to these nanostructures. Additionally, in most cases, debris of bacterial cells may accumulate on these nanostructured surfaces. Such accumulation poses a significant challenge: it diminishes the mechano-bactericidal effectiveness of the surface, as it hinders the direct interaction between the nanostructures and any new bacteria that attach subsequently.In other words, there is a need for strategies to remove the accumulated bacterial debris in order to sustain the mechano-bactericidal effect of the nanostructured surface. In this study, hierarchical micro/nano-structured surface (echinoid-shaped nanotextures were formed on Al micro-particle's surfaces) was fabricated using a simple pressure-less sintering method, and effective bactericidal efficiency was shown against E. coli (97 ± 3.81%) and S. aureus (80 ± 9.34%). In addition, thermal cleaning at 500 °C effectively eliminated accumulated dead bacterial debris while maintaining the intact Al2O3 nanostructure, resulting in significant mechano-bactericidal activity (E. coli: 89 ± 6.86%, S. aureus: 75 ± 8.31%). As a result, thermal cleaning maintains the intact nanostructure and allows the continuance of the mechano-bactericidal effect. This effect was consistently maintained even after five repetitive use (E. coli: 80 ± 16.26%, S. aureus: 76 ± 12.67%).
Collapse
Affiliation(s)
- Hee-Kyeong Kim
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Hyeon Woo Baek
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Hyun-Ha Park
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea; MECHABIO Group, Wonkwang University, 460 Ikandae-ro, Iksan, Jeonbuk 54538, Republic of Korea.
| | - Young-Sam Cho
- Department of Mechanical Design Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea; MECHABIO Group, Wonkwang University, 460 Ikandae-ro, Iksan, Jeonbuk 54538, Republic of Korea.
| |
Collapse
|
5
|
Han Z, Xiong J, Jin X, Dai Q, Han M, Wu H, Yang J, Tang H, He L. Advances in reparative materials for infectious bone defects and their applications in maxillofacial regions. J Mater Chem B 2024; 12:842-871. [PMID: 38173410 DOI: 10.1039/d3tb02069j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Infectious bone defects are characterized by the partial loss or destruction of bone tissue resulting from bacterial contaminations subsequent to diseases or external injuries. Traditional bone transplantation and clinical methods are insufficient in meeting the treatment demands for such diseases. As a result, researchers have increasingly focused on the development of more sophisticated biomaterials for improved therapeutic outcomes in recent years. This review endeavors to investigate specific reparative materials utilized for the treatment of infectious bone defects, particularly those present in the maxillofacial region, with a focus on biomaterials capable of releasing therapeutic substances, functional contact biomaterials, and novel physical therapy materials. These biomaterials operate via heightened antibacterial or osteogenic properties in order to eliminate bacteria and/or stimulate bone cells regeneration in the defect, ultimately fostering the reconstitution of maxillofacial bone tissue. Based upon some successful applications of new concept materials in bone repair of other parts, we also explore their future prospects and potential uses in maxillofacial bone repair later in this review. We highlight that the exploration of advanced biomaterials holds promise in establishing a solid foundation for the development of more biocompatible, effective, and personalized treatments for reconstructing infectious maxillofacial defects.
Collapse
Affiliation(s)
- Ziyi Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jingdi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Xiaohan Jin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qinyue Dai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Mingyue Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Hongkun Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Haiqin Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Libang He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Agarwalla A, Ahmed W, Al-Marzouqi AH, Rizvi TA, Khan M, Zaneldin E. Characteristics and Key Features of Antimicrobial Materials and Associated Mechanisms for Diverse Applications. Molecules 2023; 28:8041. [PMID: 38138531 PMCID: PMC10745420 DOI: 10.3390/molecules28248041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Since the Fourth Industrial Revolution, three-dimensional (3D) printing has become a game changer in manufacturing, particularly in bioengineering, integrating complex medical devices and tools with high precision, short operation times, and low cost. Antimicrobial materials are a promising alternative for combating the emergence of unforeseen illnesses and device-related infections. Natural antimicrobial materials, surface-treated biomaterials, and biomaterials incorporated with antimicrobial materials are extensively used to develop 3D-printed products. This review discusses the antimicrobial mechanisms of different materials by providing examples of the most commonly used antimicrobial materials in bioengineering and brief descriptions of their properties and biomedical applications. This review will help researchers to choose suitable antimicrobial agents for developing high-efficiency biomaterials for potential applications in medical devices, packaging materials, biomedical applications, and many more.
Collapse
Affiliation(s)
- Aaruci Agarwalla
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.)
| | - Waleed Ahmed
- Engineering Requirements Unit, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ali H. Al-Marzouqi
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.)
| | - Tahir A. Rizvi
- Department of Microbiology & Immunology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Mushtaq Khan
- Department of Microbiology & Immunology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Essam Zaneldin
- Department of Civil and Environmental Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| |
Collapse
|
7
|
Nan Z, Floquet P, Combes D, Tendero C, Castelain M. Surface Conditioning Effects on Submerged Optical Sensors: A Comparative Study of Fused Silica, Titanium Dioxide, Aluminum Oxide, and Parylene C. SENSORS (BASEL, SWITZERLAND) 2023; 23:9546. [PMID: 38067919 PMCID: PMC10708880 DOI: 10.3390/s23239546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023]
Abstract
Optical sensors excel in performance but face efficacy challenges when submerged due to potential surface colonization, leading to signal deviation. This necessitates robust solutions for sustained accuracy. Protein and microorganism adsorption on solid surfaces is crucial in antibiofilm studies, contributing to conditioning film and biofilm formation. Most studies focus on surface characteristics (hydrophilicity, roughness, charge, and composition) individually for their adhesion impact. In this work, we tested four materials: silica, titanium dioxide, aluminum oxide, and parylene C. Bovine Serum Albumin (BSA) served as the biofouling conditioning model, assessed with X-ray photoelectron spectroscopy (XPS). Its effect on microorganism adhesion (modeled with functionalized microbeads) was quantified using a shear stress flow chamber. Surface features and adhesion properties were correlated via Principal Component Analysis (PCA). Protein adsorption is influenced by nanoscale roughness, hydrophilicity, and likely correlated with superficial electron distribution and bond nature. Conditioning films alter the surface interaction with microbeads, affecting hydrophilicity and local charge distribution. Silica shows a significant increase in microbead adhesion, while parylene C exhibits a moderate increase, and titanium dioxide shows reduced adhesion. Alumina demonstrates notable stability, with the conditioning film minimally impacting adhesion, which remains low.
Collapse
Affiliation(s)
- Zibin Nan
- TBI, Université de Toulouse, CNRS UMR5504, INRAe UMR792—INSA 135, avenue de Rangueil, 31055 Toulouse, France
| | - Pascal Floquet
- LGC, Université de Toulouse, CNRS, INPT, UPS—ENSIACET 4, allée Émile Monso, 31030 Toulouse, France;
| | - Didier Combes
- TBI, Université de Toulouse, CNRS UMR5504, INRAe UMR792—INSA 135, avenue de Rangueil, 31055 Toulouse, France
| | - Claire Tendero
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS—ENSIACET 4, allée Émile Monso, 31030 Toulouse, France;
| | - Mickaël Castelain
- TBI, Université de Toulouse, CNRS UMR5504, INRAe UMR792—INSA 135, avenue de Rangueil, 31055 Toulouse, France
| |
Collapse
|
8
|
Georgakopoulos-Soares I, Papazoglou EL, Karmiris-Obratański P, Karkalos NE, Markopoulos AP. Surface antibacterial properties enhanced through engineered textures and surface roughness: A review. Colloids Surf B Biointerfaces 2023; 231:113584. [PMID: 37837687 DOI: 10.1016/j.colsurfb.2023.113584] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
The spread of bacteria through contaminated surfaces is a major issue in healthcare, food industry, and other economic sectors. The widespread use of antibiotics is not a sustainable solution in the long term due to the development of antibiotic resistance. Therefore, surfaces with antibacterial properties have the potential to be a disruptive approach to combat microbial contamination. Different methods and approaches have been studied to impart or enhance antibacterial properties on surfaces. The surface roughness and texture are inherent parameters that significantly impact the antibacterial properties of a surface. They are also directly related to the previously employed machining and treatment methods. This review article discusses the correlation between surface roughness and antibacterial properties is presented and discussed. It begins with an introduction to the concepts of surface roughness and texture, followed by a description of the most commonly utilized machining methods and surface. A thorough analysis of bacterial adhesion and growth is then presented. Finally, the most recent studies in this research area are comprehensively reviewed. The studies are sorted and classified based on the utilized machining and treatment methods, which are divided into mechanical processes, surface treatments and coatings. Through the systematic review and record of the recent advances, the authors aim to assist and promote further research in this very promising and extremely important direction, by providing a systematic review of recent advances.
Collapse
Affiliation(s)
- Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; School of Mechanical Engineering, Section of Manufacturing Technology, National Technical University of Athens, Heroon Polytechniou 9, 15780 Athens, Greece
| | - Emmanouil L Papazoglou
- School of Mechanical Engineering, Section of Manufacturing Technology, National Technical University of Athens, Heroon Polytechniou 9, 15780 Athens, Greece
| | - Panagiotis Karmiris-Obratański
- Department of Manufacturing Systems, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, 30-059 Cracow, Poland.
| | - Nikolaos E Karkalos
- School of Mechanical Engineering, Section of Manufacturing Technology, National Technical University of Athens, Heroon Polytechniou 9, 15780 Athens, Greece
| | - Angelos P Markopoulos
- School of Mechanical Engineering, Section of Manufacturing Technology, National Technical University of Athens, Heroon Polytechniou 9, 15780 Athens, Greece
| |
Collapse
|
9
|
Zhai S, Tian Y, Shi X, Liu Y, You J, Yang Z, Wu Y, Chu S. Overview of strategies to improve the antibacterial property of dental implants. Front Bioeng Biotechnol 2023; 11:1267128. [PMID: 37829564 PMCID: PMC10565119 DOI: 10.3389/fbioe.2023.1267128] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023] Open
Abstract
The increasing number of peri-implant diseases and the unsatisfactory results of conventional treatment are causing great concern to patients and medical staff. The effective removal of plaque which is one of the key causes of peri-implant disease from the surface of implants has become one of the main problems to be solved urgently in the field of peri-implant disease prevention and treatment. In recent years, with the advancement of materials science and pharmacology, a lot of research has been conducted to enhance the implant antimicrobial properties, including the addition of antimicrobial coatings on the implant surface, the adjustment of implant surface topography, and the development of new implant materials, and significant progress has been made in various aspects. Antimicrobial materials have shown promising applications in the prevention of peri-implant diseases, but meanwhile, there are some shortcomings, which leads to the lack of clinical widespread use of antimicrobial materials. This paper summarizes the research on antimicrobial materials applied to implants in recent years and presents an outlook on the future development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shunli Chu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
10
|
Zhou H, Li Q, Zhang Z, Wang X, Niu H. Recent Advances in Superhydrophobic and Antibacterial Cellulose-Based Fibers and Fabrics: Bio-inspiration, Strategies, and Applications. ADVANCED FIBER MATERIALS 2023; 5:1-37. [PMID: 37361104 PMCID: PMC10201051 DOI: 10.1007/s42765-023-00297-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/03/2023] [Indexed: 06/28/2023]
Abstract
Cellulose-based fabrics are ubiquitous in our daily lives. They are the preferred choice for bedding materials, active sportswear, and next-to-skin apparels. However, the hydrophilic and polysaccharide characteristics of cellulose materials make them vulnerable to bacterial attack and pathogen infection. The design of antibacterial cellulose fabrics has been a long-term and on-going effort. Fabrication strategies based on the construction of surface micro-/nanostructure, chemical modification, and the application of antibacterial agents have been extensively investigated by many research groups worldwide. This review systematically discusses recent research on super-hydrophobic and antibacterial cellulose fabrics, focusing on morphology construction and surface modification. First, natural surfaces showing liquid-repellent and antibacterial properties are introduced and the mechanisms behind are explained. Then, the strategies for fabricating super-hydrophobic cellulose fabrics are summarized, and the contribution of the liquid-repellent function to reducing the adhesion of live bacteria and removing dead bacteria is elucidated. Representative studies on cellulose fabrics functionalized with super-hydrophobic and antibacterial properties are discussed in detail, and their potential applications are also introduced. Finally, the challenges in achieving super-hydrophobic antibacterial cellulose fabrics are discussed, and the future research direction in this area is proposed. Graphical Abstract The figure summarizes the natural surfaces and the main fabrication strategies of superhydrophobic antibacterial cellulose fabrics and their potential applications. Supplementary Information The online version contains supplementary material available at 10.1007/s42765-023-00297-1.
Collapse
Affiliation(s)
- Hua Zhou
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071 China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education Collaborative, Qingdao University, Qingdao, 266071 China
| | - Qingshuo Li
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071 China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education Collaborative, Qingdao University, Qingdao, 266071 China
| | - Zhong Zhang
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071 China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education Collaborative, Qingdao University, Qingdao, 266071 China
| | - Xungai Wang
- JC STEM Lab of Sustainable Fibers and Textiles, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Haitao Niu
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071 China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education Collaborative, Qingdao University, Qingdao, 266071 China
| |
Collapse
|
11
|
Mu M, Liu S, DeFlorio W, Hao L, Wang X, Salazar KS, Taylor M, Castillo A, Cisneros-Zevallos L, Oh JK, Min Y, Akbulut M. Influence of Surface Roughness, Nanostructure, and Wetting on Bacterial Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5426-5439. [PMID: 37014907 PMCID: PMC10848269 DOI: 10.1021/acs.langmuir.3c00091] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/22/2023] [Indexed: 05/11/2023]
Abstract
Bacterial fouling is a persistent problem causing the deterioration and failure of functional surfaces for industrial equipment/components; numerous human, animal, and plant infections/diseases; and energy waste due to the inefficiencies at internal and external geometries of transport systems. This work gains new insights into the effect of surface roughness on bacterial fouling by systematically studying bacterial adhesion on model hydrophobic (methyl-terminated) surfaces with roughness scales spanning from ∼2 nm to ∼390 nm. Additionally, a surface energy integration framework is developed to elucidate the role of surface roughness on the energetics of bacteria and substrate interactions. For a given bacteria type and surface chemistry; the extent of bacterial fouling was found to demonstrate up to a 75-fold variation with surface roughness. For the cases showing hydrophobic wetting behavior, both increased effective surface area with increasing roughness and decreased activation energy with increased surface roughness was concluded to enhance the extent of bacterial adhesion. For the cases of superhydrophobic surfaces, the combination of factors including (i) the surpassing of Laplace pressure force of interstitial air over bacterial adhesive force, (ii) the reduced effective substrate area for bacteria wall due to air gaps to have direct/solid contact, and (iii) the reduction of attractive van der Waals force that holds adhering bacteria on the substrate were summarized to weaken the bacterial adhesion. Overall, this study is significant in the context of designing antifouling coatings and systems as well as explaining variations in bacterial contamination and biofilm formation processes on functional surfaces.
Collapse
Affiliation(s)
- Minchen Mu
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Shuhao Liu
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - William DeFlorio
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Li Hao
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou, Guangdong 510225, P. R. China
| | - Xunhao Wang
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Karla Solis Salazar
- Department
of Food Science and Technology, Texas A&M
University, College Station, Texas 77843, United States
| | - Matthew Taylor
- Department
of Food Science and Technology, Texas A&M
University, College Station, Texas 77843, United States
| | - Alejandro Castillo
- Department
of Food Science and Technology, Texas A&M
University, College Station, Texas 77843, United States
| | - Luis Cisneros-Zevallos
- Department
of Horticultural Sciences, Texas A&M
University, College Station, Texas 77843, United States
| | - Jun Kyun Oh
- Department
of Polymer Science and Engineering, Dankook
University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 16890, Republic of Korea
| | - Younjin Min
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Mustafa Akbulut
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
12
|
Vieira A, Rodríguez-Lorenzo L, Leonor IB, Reis RL, Espiña B, Dos Santos MB. Innovative Antibacterial, Photocatalytic, Titanium Dioxide Microstructured Surfaces Based on Bacterial Adhesion Enhancement. ACS APPLIED BIO MATERIALS 2023; 6:754-764. [PMID: 36696391 DOI: 10.1021/acsabm.2c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Bacterial colonization and biofilm formation are found on nearly all wet surfaces, representing a serious problem for both human healthcare and industrial applications, where traditional treatments may not be effective. Herein, we describe a synergistic approach for improving the performance of antibacterial surfaces based on microstructured surfaces that embed titanium dioxide nanoparticles (TiO2 NPs). The surfaces were designed to enhance bacteria entrapment, facilitating their subsequent eradication by a combination of UVC disinfection and TiO2 NPs photocatalysis. The efficacy of the engineered TiO2-modified microtopographic surfaces was evaluated using three different designs, and it was found that S2-lozenge and S3-square patterns had a higher concentration of trapped bacteria, with increases of 70 and 76%, respectively, compared to flat surfaces. Importantly, these surfaces showed a significant reduction (99%) of viable bacteria after just 30 min of irradiation with UVC 254 nm light at low intensity, being sixfold more effective than flat surfaces. Overall, our results showed that the synergistic effect of combining microstructured capturing surfaces with the chemical functionality of TiO2 NPs paves the way for developing innovative and efficient antibacterial surfaces with numerous potential applications in the healthcare and biotechnology market.
Collapse
Affiliation(s)
- Ana Vieira
- INL─International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga4715-330, Portugal
| | - Laura Rodríguez-Lorenzo
- INL─International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga4715-330, Portugal
| | - Isabel B Leonor
- 3B's Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães4805-017, Barco, Portugal.,ICVS/3B's─PT Government Associate Laboratory, Braga/Guimarães4805-017, Portugal
| | - Rui L Reis
- 3B's Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães4805-017, Barco, Portugal.,ICVS/3B's─PT Government Associate Laboratory, Braga/Guimarães4805-017, Portugal
| | - Begoña Espiña
- INL─International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga4715-330, Portugal
| | | |
Collapse
|
13
|
Liu Q, Li R, Qu W, Tian X, Zhang Y, Wang W. Influence of surface properties on the adhesion of bacteria onto different casings. Food Res Int 2023; 164:112463. [PMID: 36738014 DOI: 10.1016/j.foodres.2023.112463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/30/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Bacteria adhere to the surfaces of sausage casing and form biofilms, which causes food spoilage and quality deterioration. However, bacterial adhesion to the casing surfaces has not received enough attention and has not been extensively studied. In this study, the effect of the physicochemical properties of casing surfaces on bacterial initial adhesion were investigated with Leuconostoc mesenteroides as model bacteria. The adhesion of Leuconostoc mesenteroides onto 5 types of casings were systematically investigated, including animal casings, collagen casings, cellulose casings, fiber casings, and nylon casings, which are the most frequently encountered casings in sausage processing. It was found that the number of viable cells on the casings following the trend as: animal casings > collagen casings > fiber casings > cellulose casings > nylon casings after 4 h of incubation time. This phenomenon might be due to the different physicochemical properties of the different casings. Therefore, physicochemical factors, including zeta potential, hydrophobicity and roughness of casings, zeta potential and hydrophobicity of Leuconostoc mesenteroides, were further characterized. In terms of hydrophobic interactions, the results showed that the number of bacteria attached to the casings did not conform to the trend of hydrophobic interaction. In terms of electrostatic interactions, the results showed that the number of bacteria attached to the casings did not conform to the trend of hydrophobic interaction. The casings with different surface roughnesses in a range of 1.67-20.83 μm, the variation of bacterial adhesion quantity was in good agreement with the variation trend of casing roughness, the result showed that the surface roughness was the key factor dominating the bacterial adhesion rate compared with the surface hydrophobicity and zeta potential. The results give new insights to explore the mechanism of bacterial adhesion on casings and prevent sausage spoilage.
Collapse
Affiliation(s)
- Qiubo Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ruonan Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wei Qu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaojing Tian
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yafei Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenhang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
14
|
Fajstavr D, Fajstavrová K, Frýdlová B, Slepičková Kasálková N, Švorčík V, Slepička P. Biopolymer Honeycomb Microstructures: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:772. [PMID: 36676507 PMCID: PMC9863042 DOI: 10.3390/ma16020772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
In this review, we present a comprehensive summary of the formation of honeycomb microstructures and their applications, which include tissue engineering, antibacterial materials, replication processes or sensors. The history of the honeycomb pattern, the first experiments, which mostly involved the breath figure procedure and the improved phase separation, the most recent approach to honeycomb pattern formation, are described in detail. Subsequent surface modifications of the pattern, which involve physical and chemical modifications and further enhancement of the surface properties, are also introduced. Different aspects influencing the polymer formation, such as the substrate influence, a particular polymer or solvent, which may significantly contribute to pattern formation, and thus influence the target structural properties, are also discussed.
Collapse
|
15
|
Wang J, Li P, Wang N, Wang J, Xing D. Antibacterial features of material surface: strong enough to serve as antibiotics? J Mater Chem B 2023; 11:280-302. [PMID: 36533438 DOI: 10.1039/d2tb02139k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacteria are small but need big efforts to control. The use of antibiotics not only produces superbugs that are increasingly difficult to inactivate, but also raises environmental concerns with the growing consumption. It is now believed that the antibacterial task can count on some physiochemical features of material surfaces, which can be anti-adhesive or bactericidal without releasing toxicants. It is necessary to evaluate to what extent can we rely on the surface design since the actual application scenarios will need the antibacterial performance to be sharp, robust, environmentally friendly, and long-lasting. Herein, we review the recent laboratory advances that have been classified based on the specific surface features, including hydrophobicity, charge potential, micromorphology, stiffness and viscosity, and photoactivity, and the antibacterial mechanisms of each feature are included to provide a basic rationale for future design. The significance of anti-biofilms is also introduced, given the big role of biofilms in bacteria-caused damage. A perspective on the potential wide application of antibacterial surface features as a substitute or supplement to antibiotics is then discussed. Surface design is no doubt a solution worthy to explore, and future success will be a result of further progress in multiple directions, including mechanism study and material preparation.
Collapse
Affiliation(s)
- Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China. .,CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, China Academy of Sciences, Qingdao 266071, China.
| | - Ping Li
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Ning Wang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, China Academy of Sciences, Qingdao 266071, China.
| | - Jing Wang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, China Academy of Sciences, Qingdao 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
16
|
Biagini F, Daddi C, Calvigioni M, De Maria C, Zhang YS, Ghelardi E, Vozzi G. Designs and methodologies to recreate in vitro human gut microbiota models. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractThe human gut microbiota is widely considered to be a metabolic organ hidden within our bodies, playing a crucial role in the host’s physiology. Several factors affect its composition, so a wide variety of microbes residing in the gut are present in the world population. Individual excessive imbalances in microbial composition are often associated with human disorders and pathologies, and new investigative strategies to gain insight into these pathologies and define pharmaceutical therapies for their treatment are needed. In vitro models of the human gut microbiota are commonly used to study microbial fermentation patterns, community composition, and host-microbe interactions. Bioreactors and microfluidic devices have been designed to culture microorganisms from the human gut microbiota in a dynamic environment in the presence or absence of eukaryotic cells to interact with. In this review, we will describe the overall elements required to create a functioning, reproducible, and accurate in vitro culture of the human gut microbiota. In addition, we will analyze some of the devices currently used to study fermentation processes and relationships between the human gut microbiota and host eukaryotic cells.
Graphic abstract
Collapse
|
17
|
In situ real-time investigation of Staphylococcus aureus on hemisphere-patterned polyurethane films. Colloids Surf B Biointerfaces 2022; 216:112577. [PMID: 35623259 DOI: 10.1016/j.colsurfb.2022.112577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022]
Abstract
Surface patterning is a promising approach to prevent bacterial adhesion and biofilm formation without the concerns of antimicrobial resistance. To determine the parameters of a patterned surface that can affect bacterial behavior, a sphere-like coccus (Staphylococcus aureus) was investigated on a series of polyurethane films with ordered hemisphere patterns. The bacterial retention data in a growth medium indicated that the surface patterns significantly decreased bacterial adhesion and proliferation. The most notable effects were observed with the 2 µm-pattern as well as the patterned polycaprolactone and polystyrene films, and the accessible contact area of the polyurethane films, surface wettability, and spatial confinement, did not show an influence. An optical microscope with a modified incubation cell was used for in situ real-time observations of bacterial colonization, proliferation, and migration. Based on appropriate statistical analyses, it was concluded that topographical geometry played a dominant role. In combination with the retention assessment in a nongrowth medium, it was found that pattern-mediated inhibition of biofilm formation was mainly achieved by affecting bacterial proliferation rather than adhesion. This study provides new insight for designing biofilm-resistant biomimetic materials.
Collapse
|
18
|
Motility Suppression and Trapping Bacteria by ZnO Nanostructures. CRYSTALS 2022. [DOI: 10.3390/cryst12081027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Regulating the swimming motility of bacteria near surfaces is essential to suppress or avoid bacterial contamination and infection in catheters and medical devices with wall surfaces. However, the motility of bacteria near walls strongly depends on the combination of the local physicochemical properties of the surfaces. To unravel how nanostructures and their local chemical microenvironment dynamically affect the bacterial motility near surfaces, here, we directly visualize the bacterial swimming and systematically analyze the motility of Escherichia coli swimming on ZnO nanoparticle films and nanowire arrays with further ultraviolet irradiation. The results show that the ZnO nanowire arrays reduce the swimming motility, thus significantly enhancing the trapping ability for motile bacteria. Additionally, thanks to the wide bandgap nature of a ZnO semiconductor, the ultraviolet irradiation rapidly reduces the bacteria locomotion due to the hydroxyl and singlet oxygen produced by the photodynamic effects of ZnO nanowire arrays in an aqueous solution. The findings quantitatively reveal how the combination of geometrical nanostructured surfaces and local tuning of the steric microenvironment are able to regulate the motility of swimming bacteria and suggest the efficient inhibition of bacterial translocation and infection by nanostructured coatings.
Collapse
|
19
|
Lee SW, Johnson EL, Chediak JA, Shin H, Wang Y, Phillips KS, Ren D. High-Throughput Biofilm Assay to Investigate Bacterial Interactions with Surface Topographies. ACS APPLIED BIO MATERIALS 2022; 5:3816-3825. [PMID: 35816421 PMCID: PMC9382637 DOI: 10.1021/acsabm.2c00367] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The specific topography of biomaterials plays an important
role
in their biological interactions with cells and thus the safety of
medical implants. Antifouling materials can be engineered with topographic
features to repel microbes. Meanwhile, undesired topographies of implants
can cause complications such as breast implant-associated anaplastic
large cell lymphoma (BIA-ALCL). While the cause of BIA-ALCL is not
well understood, it is speculated that textured surfaces are prone
to bacterial biofilm formation as a contributing factor. To guide
the design of safer biomaterials and implants, quantitative screening
approaches are needed to assess bacterial adhesion to different topographic
surface features. Here we report the development of a high-throughput
microplate biofilm assay for such screening. The assay was used to
test a library of polydimethylsiloxane (PDMS) textures composed of
varying sizes of recessive features and distances between features
including those in the range of breast implant textures. Outliers
of patterns prone to bacterial adhesion were further studied using
real-time confocal fluorescence microscopy. The results from these
analyses revealed that surface area itself is a poor predictor for
adhesion, while the size and spacing of topographic features play
an important role. This high-throughput biofilm assay can be applied
to studying bacteria–material interactions and rational development
of materials that inhibit bacterial colonization.
Collapse
Affiliation(s)
- Sang Won Lee
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States.,Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Erick L Johnson
- Mechanical and Industrial Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - J Alex Chediak
- Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States.,Department of Mathematical Sciences, California Baptist University, Riverside, California 92504, United States
| | - Hainsworth Shin
- Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Yi Wang
- Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - K Scott Phillips
- Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States.,Department of Civil and Environmental Engineering, Syracuse University, Syracuse, New York 13244, United States.,Department of Biology, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
20
|
Recent Progress on Bioinspired Antibacterial Surfaces for Biomedical Application. Biomimetics (Basel) 2022; 7:biomimetics7030088. [PMID: 35892358 PMCID: PMC9326651 DOI: 10.3390/biomimetics7030088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 12/10/2022] Open
Abstract
Surface bacterial fouling has become an urgent global challenge that calls for resilient solutions. Despite the effectiveness in combating bacterial invasion, antibiotics are susceptible to causing microbial antibiotic resistance that threatens human health and compromises the medication efficacy. In nature, many organisms have evolved a myriad of surfaces with specific physicochemical properties to combat bacteria in diverse environments, providing important inspirations for implementing bioinspired approaches. This review highlights representative natural antibacterial surfaces and discusses their corresponding mechanisms, including repelling adherent bacteria through tailoring surface wettability and mechanically killing bacteria via engineering surface textures. Following this, we present the recent progress in bioinspired active and passive antibacterial strategies. Finally, the biomedical applications and the prospects of these antibacterial surfaces are discussed.
Collapse
|
21
|
Zhang X, Zhang T, Liu B, Zhang Y, Ji Z, Wang X. Effects of Biomimetic Micropatterned Surfaces on the Adhesion and Morphology of Cervical Cancer Cells. ACS OMEGA 2022; 7:19913-19919. [PMID: 35722016 PMCID: PMC9202008 DOI: 10.1021/acsomega.2c01703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
It has been demonstrated that micropatterned surfaces have an important influence on modulating cellular behavior. In recent years, with the rapid development of microfabrication techniques and in-depth study of nature, an increasing number of patterned structures imitating natural organisms have been successfully fabricated and widely evaluated. However, there are only a few reports about biomimetic patterned microstructures in biologically related fields. In our work, micropatterned polydimethylsiloxane (PDMS) was fabricated by mimicking the surface microstructures of natural Trifolium and Parthenocissus tricuspidata leaves using the template duplication method. The interactions between the two types of biomimetic micro-PDMS surfaces and two kinds of human cervical cancer cells (HeLa and SiHa) were investigated. HeLa and SiHa cells cultured on the two micropatterned PDMS samples exhibited more stretchable morphology, higher diffusion, and a much lower nuclear/cytoplasmic ratio than those cultured on flat PDMS surfaces, indicating a higher adhesion area of the cells. Both of the micro-PDMS substrates were found to induce significantly different morphological changes between HeLa and SiHa cells. This suggests that the micropatterned structure affects cell adhesion and morphology correlated with their surface geometric structure and roughness. The results reveal that biomimetic micropatterned surfaces from natural leaves significantly regulate the morphology and adhesion behavior of cervical cancer cells and are believed to be the new platforms for investigating the interaction between cells and substrates.
Collapse
Affiliation(s)
- Xiaohui Zhang
- School
of Stomatology, Key Laboratory of Oral Diseases of Gansu Province, Northwest Minzu University, Lanzhou 730000, China
| | - Ting Zhang
- School/Hospital
of Stomatology Lanzhou University, Lanzhou 730000, China
| | - Bin Liu
- School/Hospital
of Stomatology Lanzhou University, Lanzhou 730000, China
| | - Yun Zhang
- Lanzhou
Stomatology Hospital, Lanzhou 730000, China
| | - Zhongying Ji
- State
Key Laboratory of Solid Lubrication, , Lanzhou
Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Yantai
Zhongke Research Institute of Advanced Materials and Green Chemical
Engineering, Yantai 264006, China
| | - Xiaolong Wang
- State
Key Laboratory of Solid Lubrication, , Lanzhou
Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
22
|
Filipov E, Angelova L, Vig S, Fernandes MH, Moreau G, Lasgorceix M, Buchvarov I, Daskalova A. Investigating Potential Effects of Ultra-Short Laser-Textured Porous Poly-ε-Caprolactone Scaffolds on Bacterial Adhesion and Bone Cell Metabolism. Polymers (Basel) 2022; 14:polym14122382. [PMID: 35745958 PMCID: PMC9227156 DOI: 10.3390/polym14122382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/04/2022] [Accepted: 06/10/2022] [Indexed: 12/01/2022] Open
Abstract
Developing antimicrobial surfaces that combat implant-associated infections while promoting host cell response is a key strategy for improving current therapies for orthopaedic injuries. In this paper, we present the application of ultra-short laser irradiation for patterning the surface of a 3D biodegradable synthetic polymer in order to affect the adhesion and proliferation of bone cells and reject bacterial cells. The surfaces of 3D-printed polycaprolactone (PCL) scaffolds were processed with a femtosecond laser (λ = 800 nm; τ = 130 fs) for the production of patterns resembling microchannels or microprotrusions. MG63 osteoblastic cells, as well as S. aureus and E. coli, were cultured on fs-laser-treated samples. Their attachment, proliferation, and metabolic activity were monitored via colorimetric assays and scanning electron microscopy. The microchannels improved the wettability, stimulating the attachment, spreading, and proliferation of osteoblastic cells. The same topography induced cell-pattern orientation and promoted the expression of alkaline phosphatase in cells growing in an osteogenic medium. The microchannels exerted an inhibitory effect on S. aureus as after 48 h cells appeared shrunk and disrupted. In comparison, E. coli formed an abundant biofilm over both the laser-treated and control samples; however, the film was dense and adhesive on the control PCL but unattached over the microchannels.
Collapse
Affiliation(s)
- Emil Filipov
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shousse Blvd., 1784 Sofia, Bulgaria; (L.A.); (A.D.)
- Correspondence:
| | - Liliya Angelova
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shousse Blvd., 1784 Sofia, Bulgaria; (L.A.); (A.D.)
| | - Sanjana Vig
- Faculdade de Medicina Dentaria, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; (S.V.); (M.H.F.)
- LAQV/REQUIMTE, University of Porto, 4160-007 Porto, Portugal
| | - Maria Helena Fernandes
- Faculdade de Medicina Dentaria, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; (S.V.); (M.H.F.)
- LAQV/REQUIMTE, University of Porto, 4160-007 Porto, Portugal
| | - Gerard Moreau
- Laboratoire des Matériaux Céramiques et Procédés Associés, Université Polytechnique Hauts-de-France, INSA Hauts-de-France, CERAMATHS, F-59313 Valenciennes, France; (G.M.); (M.L.)
| | - Marie Lasgorceix
- Laboratoire des Matériaux Céramiques et Procédés Associés, Université Polytechnique Hauts-de-France, INSA Hauts-de-France, CERAMATHS, F-59313 Valenciennes, France; (G.M.); (M.L.)
| | - Ivan Buchvarov
- Faculty of Physics, St. Kliment Ohridski University of Sofia, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria;
| | - Albena Daskalova
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shousse Blvd., 1784 Sofia, Bulgaria; (L.A.); (A.D.)
| |
Collapse
|
23
|
Surface Modification of Titanium by Femtosecond Laser in Reducing Bacterial Colonization. COATINGS 2022. [DOI: 10.3390/coatings12030414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the past few decades, titanium and its alloys have been widely used in the orthopaedic field. However, because titanium is bioinert and lacks antibacterial properties, infection may happen when bacteria attach to implant surfaces and form biofilms. It has been studied that some naturally existing micron-scale topographies can reduce bacterial attachment such as cicada wings and gecko skins. The aim of this in vitro study was to find an implant with good biocompatibility and antimicrobial properties by the modification of micron-scale topographies. In this paper, a femtosecond laser was used to provide microtopography coatings on Ti substrates. The surface morphology of Ti substrates was observed by scanning electron microscopy (SEM). XPS was used to fulfil the chemical compositional analysis. The surface wettability was measured by contact angle measurement system. The effect of microtopography coatings with different surface microstructures on bacterial activities and bone marrow mesenchymal stem cells (BMSC) functions was investigated. The results of in vitro study revealed that microtopography coatings restrain the adhesion of Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis), which are common pathogens of orthopaedic implant infections. In addition, microtopography coatings stimulated BMSC adhesion and proliferation. Our studies suggest that a microtopography-coated sample modified by femtosecond laser showed promising antibacterial properties and favourable biocompatibility. The femtosecond laser technique provides an accurate and valid way to produce microtopography coatings with outstanding biocompatibility and antimicrobial properties, and could be widely used to modify the surface of orthopaedic metal implants with great potential.
Collapse
|
24
|
Biagini F, Calvigioni M, De Maria C, Magliaro C, Montemurro F, Mazzantini D, Celandroni F, Mattioli-Belmonte M, Ghelardi E, Vozzi G. Study of the Adhesion of the Human Gut Microbiota on Electrospun Structures. Bioengineering (Basel) 2022; 9:bioengineering9030096. [PMID: 35324785 PMCID: PMC8945341 DOI: 10.3390/bioengineering9030096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 12/04/2022] Open
Abstract
Although the adhesion of bacteria on surfaces is a widely studied process, to date, most of the works focus on a single species of microorganisms and are aimed at evaluating the antimicrobial properties of biomaterials. Here, we describe how a complex microbial community, i.e., the human gut microbiota, adheres to a surface to form stable biofilms. Two electrospun structures made of natural, i.e., gelatin, and synthetic, i.e., polycaprolactone, polymers were used to study their ability to both promote the adhesion of the human gut microbiota and support microbial growth in vitro. Due to the different wettabilities of the two surfaces, a mucin coating was also added to the structures to decouple the effect of bulk and surface properties on microbial adhesion. The developed biofilm was quantified and monitored using live/dead imaging and scanning electron microscopy. The results indicated that the electrospun gelatin structure without the mucin coating was the optimal choice for developing a 3D in vitro model of the human gut microbiota.
Collapse
Affiliation(s)
- Francesco Biagini
- Research Center “E. Piaggio”, University of Pisa, Largo Lucio Lazzarino 1, 55122 Pisa, Italy; (F.B.); (C.D.M.); (C.M.); (F.M.)
- Department of Information Engineering, University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy
| | - Marco Calvigioni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37, 56127 Pisa, Italy; (M.C.); (D.M.); (F.C.); (E.G.)
| | - Carmelo De Maria
- Research Center “E. Piaggio”, University of Pisa, Largo Lucio Lazzarino 1, 55122 Pisa, Italy; (F.B.); (C.D.M.); (C.M.); (F.M.)
- Department of Information Engineering, University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy
| | - Chiara Magliaro
- Research Center “E. Piaggio”, University of Pisa, Largo Lucio Lazzarino 1, 55122 Pisa, Italy; (F.B.); (C.D.M.); (C.M.); (F.M.)
- Department of Information Engineering, University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy
| | - Francesca Montemurro
- Research Center “E. Piaggio”, University of Pisa, Largo Lucio Lazzarino 1, 55122 Pisa, Italy; (F.B.); (C.D.M.); (C.M.); (F.M.)
| | - Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37, 56127 Pisa, Italy; (M.C.); (D.M.); (F.C.); (E.G.)
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37, 56127 Pisa, Italy; (M.C.); (D.M.); (F.C.); (E.G.)
| | - Monica Mattioli-Belmonte
- Department of Clinical and Molecular Science—DISCLIMO Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy;
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37, 56127 Pisa, Italy; (M.C.); (D.M.); (F.C.); (E.G.)
| | - Giovanni Vozzi
- Research Center “E. Piaggio”, University of Pisa, Largo Lucio Lazzarino 1, 55122 Pisa, Italy; (F.B.); (C.D.M.); (C.M.); (F.M.)
- Department of Information Engineering, University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy
- Correspondence:
| |
Collapse
|
25
|
Manivasagam VK, Perumal G, Arora HS, Popat KC. Enhanced antibacterial properties on superhydrophobic micro-nano structured titanium surface. J Biomed Mater Res A 2022; 110:1314-1328. [PMID: 35188338 DOI: 10.1002/jbm.a.37375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 12/13/2022]
Abstract
Micro/nano scale surface modifications of titanium based orthopedic and cardiovascular implants has shown to augment biocompatibility. However, bacterial infection remains a serious concern for implant failure, aggravated by increasing antibiotic resistance and over usage of antibiotics. Bacteria cell adhesion on implant surface leads to colonization and biofilm formation resulting in morbidity and mortality. Hence, there is a need to develop new implant surfaces with high antibacterial properties. Recent developments have shown that superhydrophobic surfaces prevent protein and bacteria cell adhesion. In this study, a thermochemical treatment was used modify the surface properties for high efficacy antibacterial activity on titanium surface. The modification led to a micro-nano surface topography and upon modification with polyethylene glycol (PEG) and silane the surfaces were superhydrophilic and superhydrophobic, respectively. The modified surfaces were characterized for morphology, wettability, chemistry, corrosion resistance and surface charge. The antibacterial capability was characterized with Staphylococcus aureus and Escherichia coli by evaluating the bacteria cell inhibition, adhesion kinetics, and biofilm formation. The results indicated that the superhydrophobic micro-nano structured titanium surface reduced bacteria cell adhesion significantly (>90%) and prevented biofilm formation compared to the unmodified titanium surface after 24 h of incubation.
Collapse
Affiliation(s)
- Vignesh K Manivasagam
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Gopinath Perumal
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Greater Noida, India
| | - Harpreet Singh Arora
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Greater Noida, India
| | - Ketul C Popat
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado, USA.,School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA.,School of Advanced Materials Discovery, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
26
|
Li W, Thian ES, Wang M, Wang Z, Ren L. Surface Design for Antibacterial Materials: From Fundamentals to Advanced Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100368. [PMID: 34351704 PMCID: PMC8498904 DOI: 10.1002/advs.202100368] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/27/2021] [Indexed: 05/14/2023]
Abstract
Healthcare-acquired infections as well as increasing antimicrobial resistance have become an urgent global challenge, thus smart alternative solutions are needed to tackle bacterial infections. Antibacterial materials in biomedical applications and hospital hygiene have attracted great interest, in particular, the emergence of surface design strategies offer an effective alternative to antibiotics, thereby preventing the possible development of bacterial resistance. In this review, recent progress on advanced surface modifications to prevent bacterial infections are addressed comprehensively, starting with the key factors against bacterial adhesion, followed by varying strategies that can inhibit biofilm formation effectively. Furthermore, "super antibacterial systems" through pre-treatment defense and targeted bactericidal system, are proposed with increasing evidence of clinical potential. Finally, the advantages and future challenges of surface strategies to resist healthcare-associated infections are discussed, with promising prospects of developing novel antimicrobial materials.
Collapse
Affiliation(s)
- Wenlong Li
- Department of BiomaterialsState Key Lab of Physical Chemistry of Solid SurfaceCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Eng San Thian
- Department of Mechanical EngineeringNational University of SingaporeSingapore117576Singapore
| | - Miao Wang
- Department of BiomaterialsState Key Lab of Physical Chemistry of Solid SurfaceCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Zuyong Wang
- College of Materials Science and EngineeringHunan UniversityChangsha410082P. R. China
| | - Lei Ren
- Department of BiomaterialsState Key Lab of Physical Chemistry of Solid SurfaceCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| |
Collapse
|
27
|
Mahanta U, Khandelwal M, Deshpande AS. Antimicrobial surfaces: a review of synthetic approaches, applicability and outlook. JOURNAL OF MATERIALS SCIENCE 2021; 56:17915-17941. [PMID: 34393268 PMCID: PMC8354584 DOI: 10.1007/s10853-021-06404-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/29/2021] [Indexed: 05/08/2023]
Abstract
The rapid spread of microorganisms such as bacteria, fungi, and viruses can be extremely detrimental and can lead to seasonal epidemics or even pandemic situations. In addition, these microorganisms may bring about fouling of food and essential materials resulting in substantial economic losses. Typically, the microorganisms get transmitted by their attachment and growth on various household and high contact surfaces such as doors, switches, currency. To prevent the rapid spread of microorganisms, it is essential to understand the interaction between various microbes and surfaces which result in their attachment and growth. Such understanding is crucial in the development of antimicrobial surfaces. Here, we have reviewed different approaches to make antimicrobial surfaces and correlated surface properties with antimicrobial activities. This review concentrates on physical and chemical modification of the surfaces to modulate wettability, surface topography, and surface charge to inhibit microbial adhesion, growth, and proliferation. Based on these aspects, antimicrobial surfaces are classified into patterned surfaces, functionalized surfaces, superwettable surfaces, and smart surfaces. We have critically discussed the important findings from systems of developing antimicrobial surfaces along with the limitations of the current research and the gap that needs to be bridged before these approaches are put into practice. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10853-021-06404-0.
Collapse
Affiliation(s)
- Urbashi Mahanta
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285 Telangana India
| | - Mudrika Khandelwal
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285 Telangana India
| | - Atul Suresh Deshpande
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285 Telangana India
| |
Collapse
|
28
|
Hurtuková K, Fajstavrová K, Rimpelová S, Vokatá B, Fajstavr D, Kasálková NS, Siegel J, Švorčík V, Slepička P. Antibacterial Properties of a Honeycomb-like Pattern with Cellulose Acetate and Silver Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4051. [PMID: 34300969 PMCID: PMC8306805 DOI: 10.3390/ma14144051] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/03/2022]
Abstract
This study involved the preparation and characterization of structures with a honeycomb-like pattern (HCP) formed using the phase separation method using a solution mixture of chloroform and methanol together with cellulose acetate. Fluorinated ethylene propylene modified by plasma treatment was used as a suitable substrate for the formation of the HCP structures. Further, we modified the HCP structures using silver sputtering (discontinuous Ag nanoparticles) or by adding Ag nanoparticles in PEG into the cellulose acetate solution. The material morphology was then determined using atomic force microscopy (AFM) and scanning electron microscopy (SEM), while the material surface chemistry was studied using energy dispersive spectroscopy (EDS) and wettability was analyzed with goniometry. The AFM and SEM results revealed that the surface morphology of pristine HCP with hexagonal pores changed after additional sample modification with Ag, both via the addition of nanoparticles and sputtering, accompanied with an increase in the roughness of the PEG-doped samples, which was caused by the high molecular weight of PEG and its gel-like structure. The highest amount (approx. 25 at %) of fluorine was detected using the EDS method on the sample with an HCP-like structure, while the lowest amount (0.08%) was measured on the PEG + Ag sample, which revealed the covering of the substrate with biopolymer (the greater fluorine extent means more of the fluorinated substrate is exposed). As expected, the thickness of the Ag layer on the HCP surface depended on the length of sputtering (either 150 s or 500 s). The sputtering times for Ag (150 s and 500 s) corresponded to layers with heights of about 8 nm (3.9 at % of Ag) and 22 nm (10.8 at % of Ag), respectively. In addition, we evaluated the antibacterial potential of the prepared substrate using two bacterial strains, one Gram-positive of S. epidermidis and one Gram-negative of E. coli. The most effective method for the construction of antibacterial surfaces was determined to be sputtering (150 s) of a silver nanolayer onto a HCP-like cellulose structure, which proved to have excellent antibacterial properties against both G+ and G- bacterial strains.
Collapse
Affiliation(s)
- Klaudia Hurtuková
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (K.F.); (D.F.); (N.S.K.); (J.S.); (V.Š.)
| | - Klára Fajstavrová
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (K.F.); (D.F.); (N.S.K.); (J.S.); (V.Š.)
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic;
| | - Barbora Vokatá
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic;
| | - Dominik Fajstavr
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (K.F.); (D.F.); (N.S.K.); (J.S.); (V.Š.)
| | - Nikola Slepičková Kasálková
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (K.F.); (D.F.); (N.S.K.); (J.S.); (V.Š.)
| | - Jakub Siegel
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (K.F.); (D.F.); (N.S.K.); (J.S.); (V.Š.)
| | - Václav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (K.F.); (D.F.); (N.S.K.); (J.S.); (V.Š.)
| | - Petr Slepička
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (K.F.); (D.F.); (N.S.K.); (J.S.); (V.Š.)
| |
Collapse
|
29
|
Khalid S, Gao A, Wang G, Chu PK, Wang H. Tuning surface topographies on biomaterials to control bacterial infection. Biomater Sci 2021; 8:6840-6857. [PMID: 32812537 DOI: 10.1039/d0bm00845a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microbial contamination and subsequent formation of biofilms frequently cause failure of surgical implants and a good understanding of the bacteria-surface interactions is vital to the design and safety of biomaterials. In this review, the physical and chemical factors that are involved in the various stages of implant-associated bacterial infection are described. In particular, topographical modification strategies that have been employed to mitigate bacterial adhesion via topographical mechanisms are summarized and discussed comprehensively. Recent advances have improved our understanding about bacteria-surface interactions and have enabled biomedical engineers and researchers to develop better and more effective antibacterial surfaces. The related interdisciplinary efforts are expected to continue in the quest for next-generation medical devices to attain the ultimate goal of improved clinical outcomes and reduced number of revision surgeries.
Collapse
Affiliation(s)
- Saud Khalid
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | | | | | | | | |
Collapse
|
30
|
Liao Y, Zhou Z, Dai S, Jiang L, Yang P, Zhao A, Lu L, Chen J, Huang N. Cell-friendly photo-functionalized TiO 2 nano-micro-honeycombs for selectively preventing bacteria and platelet adhesion. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111996. [PMID: 33812616 DOI: 10.1016/j.msec.2021.111996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/16/2021] [Accepted: 02/21/2021] [Indexed: 11/19/2022]
Abstract
Titanium dioxide (TiO2) is a widely used biomaterial. It is a great challenge to confer antibacterial and antithrombotic properties to TiO2 while maintaining its cell affinity. Here, we developed a new strategy to achieve the above goal by comprehensively controlling the chemical cues and geometrical cues of the surface of TiO2. Using colloidal etching technology and UV irradiation treatment, we obtained the photofunctionalized nano-micro-honeycomb structured TiO2. The honeycomb structured increased the photocatalytic activity of TiO2, which endowed TiO2 with photo-induced superhydrophilicity to inhibit bacterial adhesion. The high photocatalytic activity also induced the strong photocatalytic oxidation of TiO2 surface organic adsorbates to suppress fibrinogen and platelet attachment. In addition, owing to the micropore trapping-isolation effect on the bacteria and the nano-frames' contact guidance effect on the growth and spreading of platelet pseudopods, the honeycomb structure also shows a considerable inhibiting effect on bacterial and platelet adhesion. Therefore, due to the controlled chemical and geometrical cues' synergistic effect, the photo-functionalized TiO2 honeycomb structure shows excellent bacterial-adhesion resistance and antithrombotic properties. More importantly, the photo-functionalized TiO2 honeycomb did not inhibit the adhesion and growth of endothelial cells (ECs) after culturing for 3 d, indicating a good cell affinity that the traditional antifouling surfaces do not possess.
Collapse
Affiliation(s)
- Yuzhen Liao
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhi Zhou
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Sheng Dai
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Lang Jiang
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Ping Yang
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China.
| | - Ansha Zhao
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Lei Lu
- School of Life Science and Engineering, Southwest Jiaotong University, 610031 Chengdu, China
| | - Jiang Chen
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Nan Huang
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
31
|
Zheng S, Bawazir M, Dhall A, Kim HE, He L, Heo J, Hwang G. Implication of Surface Properties, Bacterial Motility, and Hydrodynamic Conditions on Bacterial Surface Sensing and Their Initial Adhesion. Front Bioeng Biotechnol 2021; 9:643722. [PMID: 33644027 PMCID: PMC7907602 DOI: 10.3389/fbioe.2021.643722] [Citation(s) in RCA: 243] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/25/2021] [Indexed: 12/29/2022] Open
Abstract
Biofilms are structured microbial communities attached to surfaces, which play a significant role in the persistence of biofoulings in both medical and industrial settings. Bacteria in biofilms are mostly embedded in a complex matrix comprised of extracellular polymeric substances that provide mechanical stability and protection against environmental adversities. Once the biofilm is matured, it becomes extremely difficult to kill bacteria or mechanically remove biofilms from solid surfaces. Therefore, interrupting the bacterial surface sensing mechanism and subsequent initial binding process of bacteria to surfaces is essential to effectively prevent biofilm-associated problems. Noting that the process of bacterial adhesion is influenced by many factors, including material surface properties, this review summarizes recent works dedicated to understanding the influences of surface charge, surface wettability, roughness, topography, stiffness, and combination of properties on bacterial adhesion. This review also highlights other factors that are often neglected in bacterial adhesion studies such as bacterial motility and the effect of hydrodynamic flow. Lastly, the present review features recent innovations in nanotechnology-based antifouling systems to engineer new concepts of antibiofilm surfaces.
Collapse
Affiliation(s)
- Sherry Zheng
- Department of Preventive & Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Marwa Bawazir
- Department of Preventive & Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Atul Dhall
- Department of Preventive & Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hye-Eun Kim
- Department of Preventive & Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Le He
- Department of Preventive & Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph Heo
- Department of Preventive & Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Geelsu Hwang
- Department of Preventive & Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
32
|
Lee SW, Phillips KS, Gu H, Kazemzadeh-Narbat M, Ren D. How microbes read the map: Effects of implant topography on bacterial adhesion and biofilm formation. Biomaterials 2020; 268:120595. [PMID: 33360301 DOI: 10.1016/j.biomaterials.2020.120595] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/24/2020] [Accepted: 12/06/2020] [Indexed: 12/19/2022]
Abstract
Microbes have remarkable capabilities to attach to the surface of implanted medical devices and form biofilms that adversely impact device function and increase the risk of multidrug-resistant infections. The physicochemical properties of biomaterials have long been known to play an important role in biofilm formation. More recently, a series of discoveries in the natural world have stimulated great interest in the use of 3D surface topography to engineer antifouling materials that resist bacterial colonization. There is also increasing evidence that some medical device surface topographies, such as those designed for tissue integration, may unintentionally promote microbial attachment. Despite a number of reviews on surface topography and biofilm control, there is a missing link between how bacteria sense and respond to 3D surface topographies and the rational design of antifouling materials. Motivated by this gap, we present a review of how bacteria interact with surface topographies, and what can be learned from current laboratory studies of microbial adhesion and biofilm formation on specific topographic features and medical devices. We also address specific biocompatibility considerations and discuss how to improve the assessment of the anti-biofilm performance of topographic surfaces. We conclude that 3D surface topography, whether intended or unintended, is an important consideration in the rational design of safe medical devices. Future research on next-generation smart antifouling materials could benefit from a greater focus on translation to real-world applications.
Collapse
Affiliation(s)
- Sang Won Lee
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States; Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY, 13244, United States
| | - K Scott Phillips
- United States Food and Drug Administration, Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, Silver Spring, MD, 20993, United States.
| | - Huan Gu
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States; Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY, 13244, United States
| | - Mehdi Kazemzadeh-Narbat
- United States Food and Drug Administration, Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Product Evaluation and Quality, Office of Health Technology 6, Silver Spring, MD, 20993, United States; Musculoskeletal Clinical Regulatory Advisers (MCRA), Washington DC, 20001, United States
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States; Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY, 13244, United States; Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY, 13244, United States; Department of Biology, Syracuse University, Syracuse, NY, 13244, United States.
| |
Collapse
|
33
|
Neznalová K, Fajstavr D, Rimpelová S, Kasálková NS, Kolská Z, Švorčík V, Slepička P. Honeycomb-patterned poly(L-lactic) acid on plasma-activated FEP as cell culture scaffold. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
34
|
Ge X, Ren C, Ding Y, Chen G, Lu X, Wang K, Ren F, Yang M, Wang Z, Li J, An X, Qian B, Leng Y. Micro/nano-structured TiO 2 surface with dual-functional antibacterial effects for biomedical applications. Bioact Mater 2019; 4:346-357. [PMID: 31720491 PMCID: PMC6838358 DOI: 10.1016/j.bioactmat.2019.10.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 01/10/2023] Open
Abstract
Implant-associated infections are generally difficult to cure owing to the bacterial antibiotic resistance which is attributed to the widespread usage of antibiotics. Given the global threat and increasing influence of antibiotic resistance, there is an urgent demand to explore novel antibacterial strategies other than using antibiotics. Recently, using a certain surface topography to provide a more persistent antibacterial solution attracts more and more attention. However, the clinical application of biomimetic nano-pillar array is not satisfactory, mainly because its antibacterial ability against Gram-positive strain is not good enough. Thus, the pillar array should be equipped with other antibacterial agents to fulfill the bacteriostatic and bactericidal requirements of clinical application. Here, we designed a novel model substrate which was a combination of periodic micro/nano-pillar array and TiO2 for basically understanding the topographical bacteriostatic effects of periodic micro/nano-pillar array and the photocatalytic bactericidal activity of TiO2. Such innovation may potentially exert the synergistic effects by integrating the persistent topographical antibacterial activity and the non-invasive X-ray induced photocatalytic antibacterial property of TiO2 to combat against antibiotic-resistant implant-associated infections. First, to separately verify the topographical antibacterial activity of TiO2 periodic micro/nano-pillar array, we systematically investigated its effects on bacterial adhesion, growth, proliferation, and viability in the dark without involving the photocatalysis of TiO2. The pillar array with sub-micron motif size can significantly inhibit the adhesion, growth, and proliferation of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Such antibacterial ability is mainly attributed to a spatial confinement size-effect and limited contact area availability generated by the special topography of pillar array. Moreover, the pillar array is not lethal to S. aureus and E. coli in 24 h. Then, the X-ray induced photocatalytic antibacterial property of TiO2 periodic micro/nano-pillar array in vitro and in vivo will be systematically studied in a future work. This study could shed light on the direction of surface topography design for future medical implants to combat against antibiotic-resistant implant-associated infections without using antibiotics.
Collapse
Affiliation(s)
- Xiang Ge
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, 300354, China
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Chengzu Ren
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, 300354, China
| | - Yonghui Ding
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Guang Chen
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, 300354, China
| | - Xiong Lu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Fuzeng Ren
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Meng Yang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhuochen Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Junlan Li
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, 300354, China
| | - Xinxin An
- School of Humanities, Tianjin Agricultural University, Tianjin, 300384, China
| | - Bao Qian
- Department of Machine Elements and Engineering Design, University of Kassel, Kassel, 34125, Germany
| | - Yang Leng
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
35
|
Affiliation(s)
- Xiang Ge
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of EducationSchool of Mechanical EngineeringTianjin UniversityTianjin300354People's Republic of China
| |
Collapse
|
36
|
Ghilini F, Pissinis DE, Miñán A, Schilardi PL, Diaz C. How Functionalized Surfaces Can Inhibit Bacterial Adhesion and Viability. ACS Biomater Sci Eng 2019; 5:4920-4936. [DOI: 10.1021/acsbiomaterials.9b00849] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Fiorela Ghilini
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP − CONICET, CC16 Suc 4 (1900), La Plata, Buenos Aires, Argentina
| | - Diego E. Pissinis
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP − CONICET, CC16 Suc 4 (1900), La Plata, Buenos Aires, Argentina
| | - Alejandro Miñán
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP − CONICET, CC16 Suc 4 (1900), La Plata, Buenos Aires, Argentina
| | - Patricia L. Schilardi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP − CONICET, CC16 Suc 4 (1900), La Plata, Buenos Aires, Argentina
| | - Carolina Diaz
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP − CONICET, CC16 Suc 4 (1900), La Plata, Buenos Aires, Argentina
| |
Collapse
|
37
|
Influence of surface topography on bacterial adhesion: A review (Review). Biointerphases 2018; 13:060801. [DOI: 10.1116/1.5054057] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
38
|
Vadillo-Rodríguez V, Guerra-García-Mora AI, Perera-Costa D, Gónzalez-Martín ML, Fernández-Calderón MC. Bacterial response to spatially organized microtopographic surface patterns with nanometer scale roughness. Colloids Surf B Biointerfaces 2018; 169:340-347. [DOI: 10.1016/j.colsurfb.2018.05.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/20/2018] [Accepted: 05/16/2018] [Indexed: 11/16/2022]
|
39
|
Champigneux P, Delia ML, Bergel A. Impact of electrode micro- and nano-scale topography on the formation and performance of microbial electrodes. Biosens Bioelectron 2018; 118:231-246. [PMID: 30098490 DOI: 10.1016/j.bios.2018.06.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 02/05/2023]
Abstract
From a fundamental standpoint, microbial electrochemistry is unravelling a thrilling link between life and materials. Technically, it may be the source of a large number of new processes such as microbial fuel cells for powering remote sensors, autonomous sensors, microbial electrolysers and equipment for effluent treatment. Microbial electron transfers are also involved in many natural processes such as biocorrosion. In these contexts, a huge number of studies have dealt with the impact of electrode materials, coatings and surface functionalizations but very few have focused on the effect of the surface topography, although it has often been pointed out as a key parameter impacting the performance of electroactive biofilms. The first part of the review gives an overview of the influence of electrode topography on abiotic electrochemical reactions. The second part recalls some basics of the effect of surface topography on bacterial adhesion and biofilm formation, in a broad domain reaching beyond the context of electroactivity. On these well-established bases, the effect of surface topography is reviewed and analysed in the field of electroactive biofilms. General trends are extracted and fundamental questions are pointed out, which should be addressed to boost future research endeavours. The objective is to provide basic guidelines useful to the widest possible range of research communities so that they can exploit surface topography as a powerful lever to improve, or to mitigate in the case of biocorrosion for instance, the performance of electrode/biofilm interfaces.
Collapse
Affiliation(s)
- Pierre Champigneux
- Laboratoire de Génie Chimique, CNRS, Université de Toulouse (INPT), 4 allée Emile Monso, 31432 Toulouse, France
| | - Marie-Line Delia
- Laboratoire de Génie Chimique, CNRS, Université de Toulouse (INPT), 4 allée Emile Monso, 31432 Toulouse, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, CNRS, Université de Toulouse (INPT), 4 allée Emile Monso, 31432 Toulouse, France.
| |
Collapse
|
40
|
Pingle H, Wang PY, Thissen H, Kingshott P. Controlled Attachment of Pseudomonas aeruginosa with Binary Colloidal Crystal-Based Topographies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703574. [PMID: 29484803 DOI: 10.1002/smll.201703574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/17/2018] [Indexed: 06/08/2023]
Abstract
Micro- and nanotopographies can interfere with bacteria attachment, however, the interplay existing between surface chemistry and topography remains unclear. Here, self-assembled spherical micrometer- silica and nanometer poly(methyl methacrylate) (PMMA)-sized particles are used to make binary colloidal crystal (BCC) topographical patterns to study bacterial attachment. A uniform surface chemistry of allylamine plasma polymer (AAMpp) is coated on the top of the BCCs to study only the topography effects. The uncoated and coated BCCs are exposed to Pseudomonas aeruginosa, and the surfaces and bacteria are characterized using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and fluorescence microscopy. It is found that bacteria attachment to the uncoated BCCs is delayed and individual cells are attracted to the small particle regions of the patterns. Surprisingly, this phenomenon is also observed for the AAMpp-coated BCCs, with bacteria attaching to the small particle regions of the pattern, in stark contrast to uniform flat films of AAMpp that are highly adhesive toward P. aeruginosa. Also, the overall levels of bacterial attachment are significantly reduced by the BCC patterns compared to controls. Thus, there is a trade-off that exists between chemistry and topography that can be exploited to delay the onset of P. aeruginosa biofilm formation on surfaces.
Collapse
Affiliation(s)
- Hitesh Pingle
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, 3122, Australia
| | - Peng-Yuan Wang
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, 3122, Australia
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | | | - Peter Kingshott
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, 3122, Australia
| |
Collapse
|
41
|
Xiao W, Li Q, He H, Li W, Cao X, Dong H. Patterning Multi-Nanostructured Poly(l-lactic acid) Fibrous Matrices to Manipulate Biomolecule Distribution and Functions. ACS APPLIED MATERIALS & INTERFACES 2018; 10:8465-8473. [PMID: 29461036 DOI: 10.1021/acsami.7b18423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Precise manipulation of biomolecule distribution and functions via biomolecule-matrix interaction is very important and challenging for tissue engineering and regenerative medicine. As a well-known biomimetic matrix, electrospun fibers often lack the unique spatial complexity compared to their natural counterparts in vivo and thus cannot deliver fully the regulatory cues to biomolecules. In this paper, we report a facile and reliable method to fabricate micro- and nanostructured poly(l-lactic acid) (PLLA) fibrous matrices with spatial complexity by a combination of advanced electrospinning and agarose hydrogel stamp-based micropatterning. Specifically, advanced electrospinning is used to construct multi-nanostructures of fibrous matrices while solvent-loaded agarose hydrogel stamps are used to create microstructures. Compared with other methods, our method shows extreme simplicity and flexibility originated from the mono-/multi-spinneret conversion and limitless micropatterns of agarose hydrogel stamps. Three types of PLLA fibrous matrices including patterned nano-Ag/PLLA hybrid fibers, patterned bicompartment polyethylene terephthalate/PLLA fibers, and patterned hollow PLLA fibers are fabricated and their capability to manipulate biomolecule distribution and functions, that is, bacterial distribution and antibacterial performance, cell patterning and adhesion/spreading behaviors, and protein adsorption and delivery, is demonstrated in detail. The method described in our paper provides a powerful tool to restore spatial complexity in biomimetic matrices and would have promising applications in the field of biomedical engineering.
Collapse
Affiliation(s)
- Wenwu Xiao
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR) , Guangzhou 510006 , China
| | - Qingtao Li
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR) , Guangzhou 510006 , China
| | - Huimin He
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR) , Guangzhou 510006 , China
| | - Wenxiu Li
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR) , Guangzhou 510006 , China
| | - Xiaodong Cao
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR) , Guangzhou 510006 , China
- Guangdong Province Key Laboratory of Biomedical Engineering , South China University of Technology , Guangzhou 510641 , China
| | - Hua Dong
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR) , Guangzhou 510006 , China
| |
Collapse
|
42
|
Hasan J, Jain S, Padmarajan R, Purighalla S, Sambandamurthy VK, Chatterjee K. Multi-scale surface topography to minimize adherence and viability of nosocomial drug-resistant bacteria. MATERIALS & DESIGN 2018; 140:332-344. [PMID: 29391661 PMCID: PMC5788004 DOI: 10.1016/j.matdes.2017.11.074] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/14/2017] [Accepted: 11/30/2017] [Indexed: 05/14/2023]
Abstract
Toward minimizing bacterial colonization of surfaces, we present a one-step etching technique that renders aluminum alloys with micro- and nano-scale roughness. Such a multi-scale surface topography exhibited enhanced antibacterial effect against a wide range of pathogens. Multi-scale topography of commercially grade pure aluminum killed 97% of Escherichia coli and 28% of Staphylococcus aureus cells in comparison to 7% and 3%, respectively, on the smooth surfaces. Multi-scale topography on Al 5052 surface was shown to kill 94% of adhered E. coli cells. The microscale features on the etched Al 1200 alloy were not found to be significantly bactericidal, but shown to decrease the adherence of S. aureus cells by one-third. The fabrication method is easily scalable for industrial applications. Analysis of roughness parameters determined by atomic force microscopy revealed a set of significant parameters that can yield a highly bactericidal surface; thereby providing the design to make any surface bactericidal irrespective of the method of fabrication. The multi-scale roughness of Al 5052 alloy was also highly bactericidal to nosocomial isolates of E. coli, K. pneumoniae and P. aeruginosa. We envisage the potential application of engineered surfaces with multi-scale topography to minimize the spread of nosocomial infections.
Collapse
Affiliation(s)
- Jafar Hasan
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Shubham Jain
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Rinsha Padmarajan
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Swathi Purighalla
- Mazumdar Shaw Centre for Translational Research, NH Health City, Bangalore 560099, India
| | | | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
- Corresponding author.
| |
Collapse
|
43
|
Xie M, Luo W, Gray SR. Surface pattern by nanoimprint for membrane fouling mitigation: Design, performance and mechanisms. WATER RESEARCH 2017; 124:238-243. [PMID: 28763639 DOI: 10.1016/j.watres.2017.07.057] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/06/2017] [Accepted: 07/23/2017] [Indexed: 06/07/2023]
Abstract
Imparting water treatment membrane with surface pattern by nanoimprint offered a novel approach to fouling resistance. We employed nanoimprint to fabricate line-shape nanostructure on membrane distillation (MD) membrane surface. Patterned MD membrane exhibited strong antifouling property to Bovine Serum Albumin (BSA) protein during MD separation. Water flux decline and protein deposition were substantially minimized on the patterned MD membrane in comparison with the pristine one. Such lower fouling propensity on the patterned MD membrane was mainly driven by the weak hydrophobic interaction between BSA protein and patterned MD membrane surface. Weaker adhesion force mapping of the patterned MD membrane was quantified. Representative force-distance curve of pristine MD membrane showed a strong attractive depletion force comparing with that of patterned one. The simple, chemical-free, and scalable nanofabrication approach enables varying designs on membrane surface for special membrane properties.
Collapse
Affiliation(s)
- Ming Xie
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, PO Box 14428, Melbourne, Victoria, 8001, Australia.
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Stephen R Gray
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, PO Box 14428, Melbourne, Victoria, 8001, Australia
| |
Collapse
|
44
|
Mendez AR, Tan TY, Low HY, Otto KH, Tan H, Khoo X. Micro-textured films for reducing microbial colonization in a clinical setting. J Hosp Infect 2017; 98:83-89. [PMID: 28797757 DOI: 10.1016/j.jhin.2017.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/01/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND Transmission of microbes in the hospital environment occurs frequently through human interactions with high-touch surfaces such as patient beds and over-bed tables. Although stringent cleaning routines are implemented as a preventive measure to minimize transmission of microbes, it is desirable to have high-touch surfaces made of antimicrobial materials. Physical texturing of solid surfaces offers a non-bactericidal approach to control the colonization of such surfaces by microbes. AIM To investigate the efficacy of micro-textured polycarbonate films in reducing bacterial load on over-bed tables in a hospital ward. METHODS Two different micro-patterns were fabricated on polycarbonate film via a thermal imprinting method. Micro-textured films were then mounted on patient over-bed tables in a general hospital ward and the bacterial load monitored over 24 h. Total colony counts, which represented on-specific bacterial loading, and meticillin-resistant Staphylococcus aureus counts were monitored at each time-point. FINDINGS Over a period of 24 h, both micro-textured surfaces showed consistently lower bacterial load as compared to the unpatterned polycarbonate and the bare over-bed table laminate. This study supports the findings of earlier laboratory-scale studies that microscale physical texturing can reduce bacterial colonization on a solid surface. CONCLUSION Results of the current study suggest that micro-textured surfaces could provide a viable method for reducing microbial contamination of high-touch surfaces in hospitals.
Collapse
Affiliation(s)
- A R Mendez
- Engineering Product Development Pillar, Singapore University of Technology and Design, Singapore
| | - T Y Tan
- Operations, Changi General Hospital, Singapore
| | - H Y Low
- Engineering Product Development Pillar, Singapore University of Technology and Design, Singapore.
| | - K H Otto
- Engineering Product Development Pillar, Singapore University of Technology and Design, Singapore; Design Factory, Department of Mechanical Engineering, Aalto University, Finland
| | - H Tan
- Operations, Changi General Hospital, Singapore
| | - X Khoo
- Engineering Product Development Pillar, Singapore University of Technology and Design, Singapore
| |
Collapse
|
45
|
Fabrication of high-density array of barnacle-like porous structures using polystyrene colloidal particle monolayer and poly(vinyl alcohol) coating. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.03.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Shen C, Li Y, Wang H, Meng Q. Mechanically strong interpenetrating network hydrogels for differential cellular adhesion. RSC Adv 2017. [DOI: 10.1039/c7ra01271c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hydrogels as “soft-and-wet” materials have been widely used as tissue engineering scaffolds due to their similarity to natural extracellular matrix.
Collapse
Affiliation(s)
- Chong Shen
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- PR China
| | - Yuyan Li
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- PR China
| | - Huadi Wang
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- PR China
| | - Qin Meng
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- PR China
| |
Collapse
|
47
|
Gu H, Lee SW, Buffington SL, Henderson JH, Ren D. On-Demand Removal of Bacterial Biofilms via Shape Memory Activation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21140-4. [PMID: 27517738 PMCID: PMC5222513 DOI: 10.1021/acsami.6b06900] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/12/2016] [Indexed: 05/19/2023]
Abstract
Bacterial biofilms are a major cause of chronic infections and biofouling; however, effective removal of established biofilms remains challenging. Here we report a new strategy for biofilm control using biocompatible shape memory polymers with defined surface topography. These surfaces can both prevent bacterial adhesion and remove established biofilms upon rapid shape change with moderate increase of temperature, thereby offering more prolonged antifouling properties. We demonstrate that this strategy can achieve a total reduction of Pseudomonas aeruginosa biofilms by 99.9% compared to the static flat control. It was also found effective against biofilms of Staphylococcus aureus and an uropathogenic strain of Escherichia coli.
Collapse
Affiliation(s)
- Huan Gu
- Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, Department of Civil
and Environmental Engineering, and Department of Biology, Syracuse University, Syracuse, New York 13244, United States
| | - Sang Won Lee
- Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, Department of Civil
and Environmental Engineering, and Department of Biology, Syracuse University, Syracuse, New York 13244, United States
| | - Shelby Lois Buffington
- Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, Department of Civil
and Environmental Engineering, and Department of Biology, Syracuse University, Syracuse, New York 13244, United States
| | - James H. Henderson
- Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, Department of Civil
and Environmental Engineering, and Department of Biology, Syracuse University, Syracuse, New York 13244, United States
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, Department of Civil
and Environmental Engineering, and Department of Biology, Syracuse University, Syracuse, New York 13244, United States
- Dacheng Ren. Phone: 001-315-443-4409. Fax: 001-315-443-9175.
| |
Collapse
|
48
|
Gu H, Chen A, Song X, Brasch ME, Henderson JH, Ren D. How Escherichia coli lands and forms cell clusters on a surface: a new role of surface topography. Sci Rep 2016; 6:29516. [PMID: 27412365 PMCID: PMC4944170 DOI: 10.1038/srep29516] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 06/20/2016] [Indexed: 12/21/2022] Open
Abstract
Bacterial response to surface topography during biofilm formation was studied using 5 μm tall line patterns of poly (dimethylsiloxane) (PDMS). Escherichia coli cells attached on top of protruding line patterns were found to align more perpendicularly to the orientation of line patterns when the pattern narrowed. Consistently, cell cluster formation per unit area on 5 μm wide line patterns was reduced by 14-fold compared to flat PDMS. Contrasting the reduced colony formation, cells attached on narrow patterns were longer and had higher transcriptional activities, suggesting that such unfavorable topography may present a stress to attached cells. Results of mutant studies indicate that flagellar motility is involved in the observed preference in cell orientation on narrow patterns, which was corroborated by the changes in cell rotation pattern before settling on different surface topographies. These findings led to a set of new design principles for creating antifouling topographies, which was validated using 10 μm tall hexagonal patterns.
Collapse
Affiliation(s)
- Huan Gu
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Aaron Chen
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Xinran Song
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Megan E Brasch
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - James H Henderson
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA.,Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, USA.,Department of Biology, Syracuse University, Syracuse, NY 13244, United States
| |
Collapse
|
49
|
Kargar M, Chang YR, Khalili Hoseinabad H, Pruden A, Ducker WA. Colloidal Crystals Delay Formation of Early Stage Bacterial Biofilms. ACS Biomater Sci Eng 2016; 2:1039-1048. [DOI: 10.1021/acsbiomaterials.6b00163] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Mehdi Kargar
- Department of Mechanical Engineering, ‡Via Department of Civil and Environmental
Engineering, and §Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia United States
| | - Yow-Ren Chang
- Department of Mechanical Engineering, ‡Via Department of Civil and Environmental
Engineering, and §Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia United States
| | - Hamoun Khalili Hoseinabad
- Department of Mechanical Engineering, ‡Via Department of Civil and Environmental
Engineering, and §Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia United States
| | - Amy Pruden
- Department of Mechanical Engineering, ‡Via Department of Civil and Environmental
Engineering, and §Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia United States
| | - William A. Ducker
- Department of Mechanical Engineering, ‡Via Department of Civil and Environmental
Engineering, and §Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia United States
| |
Collapse
|
50
|
Chen Z, Zhao W, Mo M, Zhou C, Liu G, Zeng Z, Wu X, Xue Q. Architecture of modified silica resin coatings with various micro/nano patterns for fouling resistance: microstructure and antifouling performance. RSC Adv 2015. [DOI: 10.1039/c5ra17179b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of modified silicone surfaces with different textures, shapes and surface roughnesses were fabricated. Those with sizes smaller than algae were effective in inhibiting N. closterium, P. tricornutum and Chlorella with reduction ratios of 49%, 75% and 81%.
Collapse
Affiliation(s)
- Zifei Chen
- Key Laboratory of Marine Materials and Related Technologies
- Zhejiang Key Laboratory of Marine Materials and Protective Technologies
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| | - Wenjie Zhao
- Key Laboratory of Marine Materials and Related Technologies
- Zhejiang Key Laboratory of Marine Materials and Protective Technologies
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| | - Mengting Mo
- Key Laboratory of Marine Materials and Related Technologies
- Zhejiang Key Laboratory of Marine Materials and Protective Technologies
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| | - Chengxu Zhou
- School of Marine Sciences
- Ningbo University
- Ningbo
- China
| | - Gang Liu
- Key Laboratory of Marine Materials and Related Technologies
- Zhejiang Key Laboratory of Marine Materials and Protective Technologies
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| | - Zhixiang Zeng
- Key Laboratory of Marine Materials and Related Technologies
- Zhejiang Key Laboratory of Marine Materials and Protective Technologies
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| | - Xuedong Wu
- Key Laboratory of Marine Materials and Related Technologies
- Zhejiang Key Laboratory of Marine Materials and Protective Technologies
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| | - Qunji Xue
- Key Laboratory of Marine Materials and Related Technologies
- Zhejiang Key Laboratory of Marine Materials and Protective Technologies
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| |
Collapse
|