1
|
Panio A, Ionescu AC, La Ferla B, Zoia L, Savadori P, Tartaglia GM, Brambilla E. Cellulose Nanocrystals Show Anti-Adherent and Anti-Biofilm Properties against Oral Microorganisms. Bioengineering (Basel) 2024; 11:355. [PMID: 38671777 PMCID: PMC11048519 DOI: 10.3390/bioengineering11040355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Cellulose nanocrystals (CNCs) are cellulose-derived nanomaterials that can be easily obtained, e.g., from vegetable waste produced by circular economies. They show promising antimicrobial activity and an absence of side effects and toxicity. This study investigated the ability of CNCs to reduce microbial adherence and biofilm formation using in vitro microbiological models reproducing the oral environment. Microbial adherence by microbial strains of oral interest, Streptococcus mutans and Candida albicans, was evaluated on the surfaces of salivary pellicle-coated enamel disks in the presence of different aqueous solutions of CNCs. The anti-biofilm activity of the same CNC solutions was tested against S. mutans and an oral microcosm model based on mixed plaque inoculum using a continuous-flow bioreactor. Results showed the excellent anti-adherent activity of the CNCs against the tested strains from the lowest concentration tested (0.032 wt. %, p < 0.001). Such activity was significantly higher against S. mutans than against C. albicans (p < 0.01), suggesting a selective anti-adherent activity against pathogenic strains. At the same time, there was a minimal, albeit significant, anti-biofilm activity (0.5 and 4 wt. % CNC solution for S. mutans and oral microcosm, respectively, p = 0.01). This makes CNCs particularly interesting as anticaries agents, encouraging their use in the oral field.
Collapse
Affiliation(s)
- Antonella Panio
- Oral Microbiology and Biomaterials Laboratory, Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Via Pascal, 36, 20133 Milan, Italy; (A.P.); (E.B.)
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20100 Milan, Italy; (P.S.); (G.M.T.)
| | - Andrei C. Ionescu
- Oral Microbiology and Biomaterials Laboratory, Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Via Pascal, 36, 20133 Milan, Italy; (A.P.); (E.B.)
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20100 Milan, Italy; (P.S.); (G.M.T.)
| | - Barbara La Ferla
- Department of Earth and Environmental Sciences, Università degli Studi di Milano-Bicocca, Piazza dell’Ateneo Nuovo, 1, 20126 Milan, Italy; (B.L.F.); (L.Z.)
| | - Luca Zoia
- Department of Earth and Environmental Sciences, Università degli Studi di Milano-Bicocca, Piazza dell’Ateneo Nuovo, 1, 20126 Milan, Italy; (B.L.F.); (L.Z.)
| | - Paolo Savadori
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20100 Milan, Italy; (P.S.); (G.M.T.)
- Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Via Della Commenda, 10/12, 20122 Milan, Italy
| | - Gianluca M. Tartaglia
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20100 Milan, Italy; (P.S.); (G.M.T.)
- Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Via Della Commenda, 10/12, 20122 Milan, Italy
| | - Eugenio Brambilla
- Oral Microbiology and Biomaterials Laboratory, Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Via Pascal, 36, 20133 Milan, Italy; (A.P.); (E.B.)
| |
Collapse
|
2
|
Francesconi S, Ronchetti R, Camaioni E, Giovagnoli S, Sestili F, Palombieri S, Balestra GM. Boosting Immunity and Management against Wheat Fusarium Diseases by a Sustainable, Circular Nanostructured Delivery Platform. PLANTS (BASEL, SWITZERLAND) 2023; 12:1223. [PMID: 36986912 PMCID: PMC10054448 DOI: 10.3390/plants12061223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Fusarium head blight (FHB) and Fusarium crown rot (FCR) are managed by the application of imidazole fungicides, which will be strictly limited by 2030, as stated by the European Green Deal. Here, a novel and eco-sustainable nanostructured particle formulation (NPF) is presented by following the principles of the circular economy. Cellulose nanocrystals (CNC) and resistant starch were obtained from the bran of a high amylose (HA) bread wheat and employed as carrier and excipient, while chitosan and gallic acid were functionalized as antifungal and elicitor active principles. The NPF inhibited conidia germination and mycelium growth, and mechanically interacted with conidia. The NPF optimally reduced FHB and FCR symptoms in susceptible bread wheat genotypes while being biocompatible on plants. The expression level of 21 genes involved in the induction of innate immunity was investigated in Sumai3 (FHB resistant) Cadenza (susceptible) and Cadenza SBEIIa (a mutant characterized by high-amylose starch content) and most of them were up-regulated in Cadenza SBEIIa spikes treated with the NPF, indicating that this genotype may possess an interesting genomic background particularly responsive to elicitor-like molecules. Quantification of fungal biomass revealed that the NPF controlled FHB spread, while Cadenza SBEIIa was resistant to FCR fungal spread. The present research work highlights that the NPF is a powerful weapon for FHB sustainable management, while the genome of Cadenza SBEIIa should be investigated deeply as particularly responsive to elicitor-like molecules and resistant to FCR fungal spread.
Collapse
Affiliation(s)
- Sara Francesconi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, snc, 01100 Viterbo, Italy
| | - Riccardo Ronchetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Emidio Camaioni
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Francesco Sestili
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, snc, 01100 Viterbo, Italy
| | - Samuela Palombieri
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, snc, 01100 Viterbo, Italy
| | - Giorgio Mariano Balestra
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, snc, 01100 Viterbo, Italy
| |
Collapse
|
3
|
Schiavi D, Ronchetti R, Di Lorenzo V, Vivani R, Giovagnoli S, Camaioni E, Balestra GM. Sustainable Protocols for Cellulose Nanocrystals Synthesis from Tomato Waste and Their Antimicrobial Properties against Pseudomonas syringae pv. tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040939. [PMID: 36840287 PMCID: PMC9963933 DOI: 10.3390/plants12040939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 06/12/2023]
Abstract
Nanotechnology is rapidly gaining ground in crop protection, with the growing quest for sustainable nanopesticides and nanocarriers for plant pathogen management. Among them, cellulose nanocrystals (CNC) are emerging as innovative agrofood-waste-derived antimicrobial materials. In this work, new chemical and enzymatic CNC extraction methods from tomato harvest residues were evaluated. The obtained nanomaterials were characterized and tested for their antimicrobial properties on Pseudomonas syringae pv. tomato (Pto), the causal agent of bacterial speck disease on tomato. Both protocols were efficient. The enzymatic extraction method was greener, producing purer CNC at slightly lower yield. The obtained CNC, although they weakly inhibited cell growth and did not promote reactive oxygen species (ROS) formation, provoked bacterial aggregation and the inhibition of biofilm production and swimming motility. Both protocols produced CNC with similar morpho-chemical features, as well as promising antimicrobial activity against plant bacterial pathogens, suggesting their potential role in sustainable crop protection strategies. The new protocols could be a valuable alternative to conventional methods.
Collapse
Affiliation(s)
- Daniele Schiavi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Riccardo Ronchetti
- Department of Pharmaceutical Sciences (DSF), University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Veronica Di Lorenzo
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Riccardo Vivani
- Department of Pharmaceutical Sciences (DSF), University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences (DSF), University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Emidio Camaioni
- Department of Pharmaceutical Sciences (DSF), University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Giorgio M. Balestra
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| |
Collapse
|
4
|
The interaction between nanocellulose and microorganisms for new degradable packaging: A review. Carbohydr Polym 2022; 295:119899. [DOI: 10.1016/j.carbpol.2022.119899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 11/19/2022]
|
5
|
Abbasi Moud A. Chiral Liquid Crystalline Properties of Cellulose Nanocrystals: Fundamentals and Applications. ACS OMEGA 2022; 7:30673-30699. [PMID: 36092570 PMCID: PMC9453985 DOI: 10.1021/acsomega.2c03311] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
By using an independent self-assembly process that is occasionally controlled by evaporation, cellulose nanocrystals (CNCs) may create films (pure or in conjunction with other materials) that have iridescent structural colors. The self-forming chiral nematic structures and environmental safety of a new class of photonic liquid crystals (LCs), referred to as CNCs and CNC-embedded materials, make them simple to make and treat. The structure of the matrix interacts with light to give structural coloring, as opposed to other dye pigments, which interact with light by adsorption and reflection. Understanding how CNC self-assembly constructs structures is vital in several fields, including physics, science, and engineering. To constructure this review, the colloidal characteristics of CNC particles and their behavior during the formation of liquid crystals and gelling were studied. Then, some of the recognized applications for these naturally occurring nanoparticles were summarized. Different factors were considered, including the CNC aspect ratio, surface chemistry, concentration, the amount of time needed to produce an anisotropic phase, and the addition of additional substances to the suspension medium. The effects of alignment and the drying process conditions on structural changes are also covered. The focus of this study however is on the optical properties of the films as well as the impact of the aforementioned factors on the final transparency, iridescent colors, and versus the overall response of these bioinspired photonic materials. Control of the examined factors was found to be necessary to produce reliable materials for optoelectronics, intelligent inks and papers, transparent flexible support for electronics, and decorative coatings and films.
Collapse
|
6
|
Shin G, Jeong DW, Kim H, Park SA, Kim S, Lee JY, Hwang SY, Park J, Oh DX. Biosynthesis of Polyhydroxybutyrate with Cellulose Nanocrystals Using Cupriavidus necator. Polymers (Basel) 2021; 13:2604. [PMID: 34451143 PMCID: PMC8398664 DOI: 10.3390/polym13162604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Polyhydroxybutyrate (PHB) is a natural polyester synthesized by several microorganisms. Moreover, it has excellent biodegradability and is an eco-friendly material because it converts water and carbon dioxide as final decomposition products. However, the applications of PHB are limited because of its stiffness and brittleness. Because cellulose nanocrystals (CNCs) have excellent intrinsic mechanical properties such as high specific strength and modulus, they may compensate for the insufficient physical properties of PHB by producing their nanocomposites. In this study, natural polyesters were extracted from Cupriavidus necator fermentation with CNCs, which were well-dispersed in nitrogen-limited liquid culture media. Fourier-transform infrared spectroscopy results revealed that the additional O-H peak originating from cellulose at 3500-3200 cm-1 was observed for PHB along with the C=O and -COO bands at 1720 cm-1. This suggests that PHB-CNC nanocomposites could be readily obtained using C. necator fermented in well-dispersed CNC-supplemented culture media.
Collapse
Affiliation(s)
- Giyoung Shin
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
| | - Da-Woon Jeong
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
| | - Hyeri Kim
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
| | - Seul-A Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
| | - Semin Kim
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
| | - Ju Young Lee
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
| | - Sung Yeon Hwang
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Jeyoung Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Dongyeop X Oh
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Korea
| |
Collapse
|
7
|
Gong X, Liu T, Zhang H, Liu Y, Boluk Y. Release of Cellulose Nanocrystal Particles from Natural Rubber Latex Composites into Immersed Aqueous Media. ACS APPLIED BIO MATERIALS 2021; 4:1413-1423. [DOI: 10.1021/acsabm.0c01310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoyu Gong
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada T6G 2H9
| | - Tong Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada T6G 2H9
| | - Huixin Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada T6G 2H9
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada T6G 2H9
| | - Yaman Boluk
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada T6G 2H9
| |
Collapse
|
8
|
Liu L, Wang Y, Craik S, James W, Shu Z, Narain R, Liu Y. Removal of Cryptosporidium surrogates in drinking water direct filtration. Colloids Surf B Biointerfaces 2019; 181:499-505. [PMID: 31177076 DOI: 10.1016/j.colsurfb.2019.05.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 05/12/2019] [Accepted: 05/25/2019] [Indexed: 10/26/2022]
Abstract
Pilot-scale direct filtration challenge experiments were conducted to determine the impact of chemical pretreatment and filter design on the removal of Cryptosporidium surrogates dosed into the filter influent water at low temperatures (Average 0.5 °C). Copolymers-modified microspheres were identified as representative Cryptosporidium oocysts surrogates based on our previous findings and were used to evaluate the oocysts filtration removal at this pilot-scale study. The operational parameters examined included coagulant type (aluminum sulfate (alum) versus polyaluminium chloride (PACl)), filter aid polymer type (polyamine Magnafloc® LT-7981 versus poly(Dimethyl Diallyl Ammonium Chloride) (polyDADMAC) Magnafloc® LT-7995) and dose (0.5 versus 2.0 mg/L), and filter configuration (regular versus deep bed filters). The study found that higher Cryptosporidium surrogate removal was associated with higher polymer dose (2 mg/L) of polyDADMAC polymer and the deep bed filter configuration. The difference in surrogate removal between PACl and alum was no significant at cold temperature conditions tested. The deep bed filters were associated with higher surrogate removal, while exhibiting lower rates of flow reduction and longer filter run time. This work emphasizes the importance of optimizing chemical pretreatment and filter configuration for removing surrogates of Cryptosporidium oocysts in cold-water conditions in granular media water filtration processes. This pilot-scale study also demonstrated the exceed 2.5-log removal of Cryptosporidium surrogates (required from Guideline for Canadian Drinking Water Quality) can be achieved in the direct filtration during Edmonton cold-water condition when the pretreatment processes are optimized using 0.454 mg/L of alum as Al with addition of 0.5 mg/L poly DADMAC.
Collapse
Affiliation(s)
- Lu Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada, T6G 2R3; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 2R3
| | - Yinan Wang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada, T6G 2R3; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 2R3
| | - Stephen Craik
- EPCOR Water Services Inc., Edmonton, AB, Canada, T6M 0J2
| | - Wendell James
- EPCOR Water Services Inc., Edmonton, AB, Canada, T6M 0J2
| | - Zengquan Shu
- EPCOR Water Services Inc., Edmonton, AB, Canada, T6M 0J2
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 2R3
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada, T6G 2R3.
| |
Collapse
|
9
|
Asha AB, Chen Y, Zhang H, Ghaemi S, Ishihara K, Liu Y, Narain R. Rapid Mussel-Inspired Surface Zwitteration for Enhanced Antifouling and Antibacterial Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1621-1630. [PMID: 30558423 DOI: 10.1021/acs.langmuir.8b03810] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Mussel-inspired dopamine chemistry has increasingly been used for surface modification due to its simplicity, versatility, and strong reactivity for secondary functionalization with amine or thiol containing molecules. In this work, we demonstrate a facile surface modification technique using dopamine chemistry to prepare a zwitterionic polymer coating with both antifouling and antimicrobial property. Catechol containing adhesive monomer dopamine methacrylamide (DMA) was copolymerized with bioinspired zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) monomer, and the synthesized copolymers were covalently grafted onto the amino (-NH2) rich polyethylenimine (PEI)/polydopamine (PDA) codeposited surface to obtain a stable antifouling surface. The resulting surface was later used for in situ deposition of antimicrobial silver nanoparticles (AgNPs), facilitated by the presence of catechol groups of the coating. The modified surface was characterized using X-ray photoelectron spectroscopy (XPS), water contact angle measurements, and atomic force microscopy (AFM). This dual functional coating significantly reduced the adhesion of both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria and showed excellent resistance to bovine serum albumin (BSA) adsorption. This bioinspired and efficient surface modification strategy with dual functional coating promises its potential application in implantable biomedical devices.
Collapse
Affiliation(s)
- Anika Benozir Asha
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 2G6 , Canada
| | - Yangjun Chen
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 2G6 , Canada
- School of Ophthalmology & Optometry, Eye Hospital , Wenzhou Medical University , Wenzhou , 325000 , Zhejiang , China
| | - Huixin Zhang
- Department of Civil and Environmental Engineering , University of Alberta , Edmonton , Alberta T6G 2G6 , Canada
| | - Sina Ghaemi
- Department of Mechanical Engineering , University of Alberta , Edmonton , Alberta T6G 2G6 , Canada
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Yang Liu
- Department of Civil and Environmental Engineering , University of Alberta , Edmonton , Alberta T6G 2G6 , Canada
| | - Ravin Narain
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 2G6 , Canada
| |
Collapse
|