1
|
Abdollahi S, Chamchangi MA, Raoufi Z, Heidari F. Dual-layer alginate hydrogel dressings with chitosan nanofibers for enhanced wound healing, infection prevention, and controlled drug release. Int J Biol Macromol 2025; 307:142033. [PMID: 40089247 DOI: 10.1016/j.ijbiomac.2025.142033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
An ideal wound dressing should possess high mechanical properties, biocompatibility, and antibacterial and anti-inflammatory properties while being simple and affordable. So, a dual-layer hydrogel-nanofiber wound dressing was fabricated in this study. The hydrogel as the inner layer was prepared using sodium alginate and guar gum, while the nanofiber layer was made of polyvinyl alcohol and chitosan enriched with Ciprofloxacin. Besides the biological and morphological characteristics, the films were evaluated for mechanical properties and swelling behavior and in-vivo experiments were conducted to investigate their wound healing ability. Compared to single-layer hydrogel, the bi-layer hydrogel-nanofiber exhibited excellent mechanical properties, a proportional swelling rate, and water vapor transmission rate, slow degradation towards tissue regeneration, and anti-inflammatory and antimicrobial properties. Tensile strength and elongation at break improved from 0.163 ± 0.55 MPa and 16.869 ± 0.48 % to 1.674 ± 0.41 MPa and 34.062 ± 0.33 %, respectively (p < 0.05). The drug release profile showed an initial burst of 35 ± 1 % within the first hour, followed by controlled release over 24 h. Hemolysis rates were below 2 %, with 1.13 ± 0.03 % for hydrogel-nanofibers, demonstrating excellent blood compatibility. Bi-layer hydrogel-nanofiber significantly enhanced wound healing in rats, resulting in minimal wound surface and denser collagen deposits. Reductions in IL-1β and IL-6 (p < 0.05), confirmed the films' efficacy in wound healing and inflammation mitigation.
Collapse
Affiliation(s)
- Sajad Abdollahi
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Mohammad Arab Chamchangi
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Zeinab Raoufi
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Fatemeh Heidari
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| |
Collapse
|
2
|
Chen W, Wang J, Zhang C, Cao S, Li J, Shi J. Hyaluronic acid/chitosan microcapsules capped with hollow CuS nanoparticles for NIR/pH dual-responsive drug release. Int J Biol Macromol 2024; 280:136050. [PMID: 39341315 DOI: 10.1016/j.ijbiomac.2024.136050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/15/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Hollow natural polysaccharide microcapsules have broad applications in drug delivery field due to their excellent biocompatibility and drug loading efficiency. In this paper, pH/near-infrared (NIR) dual-responsive microcapsules composed of hyaluronic acid (HA), chitosan (CS) and hollow CuS (HA/CS/HA@CuS) had been fabricated via a layer-by-layer (LbL) approach. The negative charge, rough surface and hollow structure of microcapsules are very favorable for loading positively charged DOX. As a result, hollow microcapsules display a high drug loading efficiency of 91.15 %. The variation in the degree of amino ionization at different pH values leads to the changes in the electrostatic force between CS/HA multilayers, resulting in the structural change in microcapsules. Therefore, microcapsules exhibit significant pH-responsive drug release properties. In addition, hollow CuS nanoparticles with excellent photothermal conversion ability are capped on the multilayer surface, enabling microcapsules to exhibit excellent NIR-responsive drug delivery properties. Overall, hyaluronic acid/chitosan-based hollow microcapsules with notable pH/NIR dual-responsiveness have been prepared, which can be used as a potential drug carrier for controlled drug delivery and photothermal chemical combination therapy.
Collapse
Affiliation(s)
- Wenhui Chen
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Jiayao Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Chiyin Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Shaokui Cao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Jingguo Li
- People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450003, China.
| | - Jun Shi
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Lopes LM, Germiniani LGL, Rocha Neto JBM, Andrade PF, da Silveira GAT, Taketa TB, Gonçalves MDC, Beppu MM. Preparation and characterization of porous membranes of glucomannan and silver decorated cellulose nanocrystals for application as biomaterial. Int J Biol Macromol 2023; 250:126236. [PMID: 37562469 DOI: 10.1016/j.ijbiomac.2023.126236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/06/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Bacterial infection usually represents a threat in medical wound care, due to the increase in treatment complexity and the risk of antibiotic resistance. For presenting interesting characteristics for the use as biomaterial, natural polymers have been explored for this application. Among them, a promising candidate is the konjac glucomannan (KGM) with outstanding biocompatibility and biodegradability but lack of antibacterial activity. In this study, KGM was combined with silver decorated cellulose nanocrystals (CNC-Ag) to prepare membranes by using a recent reported casting-freezing method. The results highlight the potential anti-adhesive activity of the new materials against Staphylococcus aureus upon contact, without the burst release of silver nanoparticles. Furthermore, the incorporation of CNC enhanced the thermal stability of these membranes while preserving the favorable mechanical properties of the KGM-based material. These findings highlight a straightforward approach to enhance the antibacterial properties of natural polymers, which can be effectively useful in medical devices like wound dressings that typically lack such properties.
Collapse
Affiliation(s)
- Laise Maia Lopes
- University of Campinas, School of Chemical Engineering, Campinas, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Kotla NG, Mohd Isa IL, Larrañaga A, Maddiboyina B, Swamy SK, Sivaraman G, Vemula PK. Hyaluronic Acid-Based Bioconjugate Systems, Scaffolds, and Their Therapeutic Potential. Adv Healthc Mater 2023; 12:e2203104. [PMID: 36972409 DOI: 10.1002/adhm.202203104] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/04/2023] [Indexed: 03/29/2023]
Abstract
In recent years, the development of hyaluronic acid or hyaluronan (HA) based scaffolds, medical devices, bioconjugate systems have expanded into a broad range of research and clinical applications. Research findings over the last two decades suggest that the abundance of HA in most mammalian tissues with distinctive biological roles and chemical simplicity for modifications have made it an attractive material with a rapidly growing global market. Besides its use as native forms, HA has received much interest on so-called "HA-bioconjugates" and "modified-HA systems". In this review, the importance of chemical modifications of HA, underlying rationale approaches, and various advancements of bioconjugate derivatives with their potential physicochemical, and pharmacological advantages are summarized. This review also highlights the current and emerging HA-based conjugates of small molecules, macromolecules, crosslinked systems, and surface coating strategies with their biological implications, including their potentials and key challenges discussed in detail.
Collapse
Affiliation(s)
- Niranjan G Kotla
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, 560065, India
| | - Isma Liza Mohd Isa
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Aitor Larrañaga
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty of Engineering, University of the Basque Country (UPV/EHU), Bilbao, 48013, Spain
| | - Balaji Maddiboyina
- Department of Medical Writing, Freyr Solutions, Hyderabad, Telangana, 500081, India
| | - Samantha K Swamy
- Thrombosis Research Center (TREC), Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, 9037, Norway
| | - Gandhi Sivaraman
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, Tamil Nadu, 624302, India
| | - Praveen K Vemula
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, 560065, India
| |
Collapse
|
5
|
Santinon C, Beppu MM, Vieira MGA. Optimization of kappa-carrageenan cationization using experimental design for model-drug release and investigation of biological properties. Carbohydr Polym 2023; 308:120645. [PMID: 36813338 DOI: 10.1016/j.carbpol.2023.120645] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/15/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023]
Abstract
Cationization is a promising chemical modification technique that improves properties by attaching permanent positive charges to the backbone of biopolymers. Carrageenan is a widely available and non-toxic polysaccharide, commonly used in food industry but with low solubility in cold water. We performed a central composite design experiment to check the parameters that most influence the degree of cationic substitution and the film solubility. Hydrophilic quaternary ammonium groups on the carrageenan backbone enhance interaction in drug delivery systems and create active surfaces. Statistical analysis indicated that within the studied range, only the molar ratio between the cationizing reagent and the repeating disaccharide unit of carrageenan had a significant effect. Optimized parameters using 0.086 g of sodium hydroxide and glycidyltrimethylammonium/disaccharide repeating unit of 6.83 achieved 65.47 % degree of substitution and 4.03 % solubility. Characterizations confirmed the effective incorporation of cationic groups into the commercial structure of carrageenan and thermal stability improvement of the derivatives.
Collapse
Affiliation(s)
- Caroline Santinon
- School of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Av., 500, 13083-852 Campinas, SP, Brazil
| | - Marisa Masumi Beppu
- School of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Av., 500, 13083-852 Campinas, SP, Brazil
| | - Melissa Gurgel Adeodato Vieira
- School of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Av., 500, 13083-852 Campinas, SP, Brazil.
| |
Collapse
|
6
|
Lakhan MN, Chen R, Liu F, Shar AH, Soomro IA, Chand K, Ahmed M, Hanan A, Khan A, Maitlo AA, Wang J. Construction of antifouling marine coatings via layer-by-layer assembly of chitosan and acid siloxane resin. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
7
|
Polysaccharide-based layer-by-layer nanoarchitectonics with sulfated chitosan for tuning anti-thrombogenic properties. Colloids Surf B Biointerfaces 2022; 213:112359. [PMID: 35144082 DOI: 10.1016/j.colsurfb.2022.112359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/23/2022]
Abstract
The development of blood-interacting surfaces is critical to fabricate biomaterials for medical use, such as prostheses, implants, biosensors, and membranes. For instance, thrombosis is one of the leading clinical problems when polymer-based materials interact with blood. To overcome this limitation is necessary to develop strategies that limit platelets adhesion and activation. In this work, hyaluronan (HA)/chitosan (Chi) based-films, recently reported in the literature as platforms for tumor cell capture, were developed and, subsequently, functionalized with sulfated chitosan (ChiS) using a layer-by-layer technique. ChiS, when compared to native Chi, presents the unique abilities to confer anti-thrombogenic properties, to reduce protein adsorption, and also to limit calcification. Film physicochemical characterization was carried out using FTIR and XPS for chemical composition assessment, AFM for the surface morphology, and contact angle for hydrophilicity evaluation. The deposition of ChiS monolayer promoted a decrease in both roughness and hydrophilicity of the HA/Chi films. In addition, the appearance of sulfur in the chemical composition of ChiS-functionalized films confirmed the film modification. Biological assay indicated that the incorporation of sulfated groups limited platelet adhesion, mainly because a significant reduction of platelets adhesion to ChiS-functionalized films was observed compared to HA/Chi films. On balance, this work provides a new insight for the development of novel antithrombogenic biomaterials, opening up new possibilities for devising blood-interaction surfaces.
Collapse
|
8
|
Mohammed M, Devnarain N, Elhassan E, Govender T. Exploring the applications of hyaluronic acid-based nanoparticles for diagnosis and treatment of bacterial infections. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1799. [PMID: 35485247 PMCID: PMC9539990 DOI: 10.1002/wnan.1799] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022]
Abstract
Hyaluronic acid (HA) has become a topic of significant interest in drug delivery research due to its excellent properties, including biosafety, biodegradability, and nonimmunogenicity. Moreover, due to its ease of modification, HA can be used to prepare several HA‐based nanosystems using various approaches. These approaches involve conjugating/grafting of hydrophobic moieties, polyelectrolytes complexation with cationic polymers, or surface modification of various nanoparticles using HA. These nanoparticles are able to selectively deliver antibacterial drugs or diagnostic molecules into the site of infections. In addition, HA can bind with overexpressed cluster of differentiation 44 (CD44) receptors in macrophages and also can be degraded by a family of enzymes called hyaluronidase (HAase) to release drugs or molecules. By binding with these receptors or being degraded at the infection site by HAase, HA‐based nanoparticles allow enhanced and targeted antibacterial delivery. Herein, we present a comprehensive and up‐to‐date review that highlights various techniques of preparation of HA‐based nanoparticles that have been reported in the literature. Furthermore, we also discuss and critically analyze numerous types of HA‐based nanoparticles that have been employed in antibacterial delivery to date. This article offers a critical overview of the potential of HA‐based nanoparticles to overcome the challenges of conventional antibiotics in the treatment of bacterial infections. Moreover, this review identifies further avenues of research for developing multifunctional and biomimetic HA‐based nanoparticles for the treatment, prevention, and/or detection of pathogenic bacteria. This article is categorized under:
Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies
Collapse
Affiliation(s)
- Mahir Mohammed
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
9
|
Redolfi Riva E, D’Alessio A, Micera S. Polysaccharide Layer-by-Layer Coating for Polyimide-Based Neural Interfaces. MICROMACHINES 2022; 13:692. [PMID: 35630159 PMCID: PMC9146946 DOI: 10.3390/mi13050692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023]
Abstract
Implantable flexible neural interfaces (IfNIs) are capable of directly modulating signals of the central and peripheral nervous system by stimulating or recording the action potential. Despite outstanding results in acute experiments on animals and humans, their long-term biocompatibility is hampered by the effects of foreign body reactions that worsen electrical performance and cause tissue damage. We report on the fabrication of a polysaccharide nanostructured thin film as a coating of polyimide (PI)-based IfNIs. The layer-by-layer technique was used to coat the PI surface due to its versatility and ease of manufacturing. Two different LbL deposition techniques were tested and compared: dip coating and spin coating. Morphological and physiochemical characterization showed the presence of a very smooth and nanostructured thin film coating on the PI surface that remarkably enhanced surface hydrophilicity with respect to the bare PI surface for both the deposition techniques. However, spin coating offered more control over the fabrication properties, with the possibility to tune the coating's physiochemical and morphological properties. Overall, the proposed coating strategies allowed the deposition of a biocompatible nanostructured film onto the PI surface and could represent a valid tool to enhance long-term IfNI biocompatibility by improving tissue/electrode integration.
Collapse
Affiliation(s)
- Eugenio Redolfi Riva
- The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (A.D.); (S.M.)
| | - Angela D’Alessio
- The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (A.D.); (S.M.)
| | - Silvestro Micera
- The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (A.D.); (S.M.)
- Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1000 Lausanne, Switzerland
| |
Collapse
|
10
|
Potaś J, Winnicka K. The Potential of Polyelectrolyte Multilayer Films as Drug Delivery Materials. Int J Mol Sci 2022; 23:ijms23073496. [PMID: 35408857 PMCID: PMC8998809 DOI: 10.3390/ijms23073496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Polyelectrolyte multilayers (PEMs) represent a group of polyelectrolyte complex (PEC)–based materials widely investigated in the biomedical and pharmaceutical sciences. Despite the unflagging popularity of the aforementioned systems in tissue engineering, only a few updated scientific reports concerning PEM potential in drug administration can be found. In fact, PEM coatings are currently recognized as important tools for functionalizing implantable scaffolds; however, only a small amount of attention has been given to PEMs as drug delivery materials. Scientific reports on PEMs reveal two dominant reasons for the limited usability of multilayers in pharmaceutical technology: complex and expensive preparation techniques as well as high sensitivity of interacting polyelectrolytes to the varieties of internal and external factors. The aim of this work was to analyze the latest approaches, concerning the potential of PEMs in pharmacy, chemical technology, and (primarily) tissue engineering, with special attention given to possible polymer combinations, technological parameters, and physicochemical characteristics, such as hydrophilicity, adhesive and swelling properties, and internal/external structures of the systems formed. Careful recognition of the above factors is crucial in the development of PEM-based drug delivery materials.
Collapse
|
11
|
Joshi J, Homburg SV, Ehrmann A. Atomic Force Microscopy (AFM) on Biopolymers and Hydrogels for Biotechnological Applications-Possibilities and Limits. Polymers (Basel) 2022; 14:1267. [PMID: 35335597 PMCID: PMC8949482 DOI: 10.3390/polym14061267] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 02/01/2023] Open
Abstract
Atomic force microscopy (AFM) is one of the microscopic techniques with the highest lateral resolution. It can usually be applied in air or even in liquids, enabling the investigation of a broader range of samples than scanning electron microscopy (SEM), which is mostly performed in vacuum. Since it works by following the sample surface based on the force between the scanning tip and the sample, interactions have to be taken into account, making the AFM of irregular samples complicated, but on the other hand it allows measurements of more physical parameters than pure topography. This is especially important for biopolymers and hydrogels used in tissue engineering and other biotechnological applications, where elastic properties, surface charges and other parameters influence mammalian cell adhesion and growth as well as many other effects. This review gives an overview of AFM modes relevant for the investigations of biopolymers and hydrogels and shows several examples of recent applications, focusing on the polysaccharides chitosan, alginate, carrageenan and different hydrogels, but depicting also a broader spectrum of materials on which different AFM measurements are reported in the literature.
Collapse
Affiliation(s)
- Jnanada Joshi
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Sarah Vanessa Homburg
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| |
Collapse
|
12
|
The effect of polyacid on the physical and biological properties of chitosan based layer-by-layer films. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Shibraen MH, Ibrahim OM, Asad RA, Yang S, El-Aassar M. Interpenetration of metal cations into polyelectrolyte-multilayer-films via layer-by-layer assembly: Selective antibacterial functionality of cationic guar gum/ polyacrylic acid- Ag+ nanofilm against resistant E. coli. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125921] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Antibacterial Behavior of Chitosan-Sodium Hyaluronate-PEGDE Crosslinked Films. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chitosan is a natural polymer that can sustain not only osteoblast adhesion and proliferation for bone regeneration purposes, but it is also claimed to exhibit antibacterial properties towards several Gram-positive and Gram-negative bacteria. In this study, chitosan was modified with sodium hyaluronate, crosslinked with polyethylene glycol diglycidyl ether (PEGDE) and both osteoblast cytotoxicity and antibacterial behavior studied. The presence of sodium hyaluronate and PEGDE on chitosan was detected by FTIR, XRD, and XPS. Chitosan (CHT) films with sodium hyaluronate crosslinked with PEGDE showed a better thermal stability than pristine hyaluronate. In addition, osteoblast cytocompatibility improved in films containing sodium hyaluronate. However, none of the films exhibit antimicrobial activity against Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus while exhibiting low to mild activity against Salmonella typhimurion.
Collapse
|
15
|
Rocha Neto JBM, Lima GG, Fiamingo A, Germiniani LGL, Taketa TB, Bataglioli RA, da Silveira GAT, da Silva JVL, Campana-Filho SP, Oliveira ON, Beppu MM. Controlling antimicrobial activity and drug loading capacity of chitosan-based layer-by-layer films. Int J Biol Macromol 2021; 172:154-161. [PMID: 33428951 DOI: 10.1016/j.ijbiomac.2020.12.218] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022]
Abstract
We report on layer-by-layer (LbL) films of chitosans (CHI) and hyaluronic acid (HA) whose properties could be controlled by employing chitosans with different degrees of deacetylation (DD¯ ≈ 85%; 65%; 40%) and high average molecular weight (ca. 106 g/mol). In spite of their high molecular weight, these chitosans are soluble within a wide pH range, including physiological pH. HA/CHI LbL films produced from polymer solutions at pH 4.5 were thinner, smoother, more hydrophilic than those prepared at pH 7.2. This is attributed to the more extended conformation adopted by chitosan due to its very high charge density at low pH, favoring a compact chain packing during the film formation and resulting in lower film thickness and roughness. The smoother HA/CHI LbL films obtained at pH 4.5 were effective against Escherichia coli, while the thicker, rougher LbL films fabricated at pH 7.2 could be used in the controlled released of Rose Bengal dye. In summary, the tuning of only two parameters, i.e. solution pH and DD¯ of chitosans, provides access to a library of HA/CHI LbL films for tailored, diversified applications.
Collapse
Affiliation(s)
- J B M Rocha Neto
- School of Chemical Engineering, University of Campinas, 13083-852 Campinas, Brazil; Nucleus of Three-Dimensional Technologies (NT3D), Renato Archer Information Technology Center - CTI, 13069-901 Campinas, Brazil.
| | - G G Lima
- School of Chemical Engineering, University of Campinas, 13083-852 Campinas, Brazil
| | - A Fiamingo
- São Carlos Institute of Chemistry, University of São Paulo, 13566-590 São Carlos, Brazil
| | - L G L Germiniani
- School of Chemical Engineering, University of Campinas, 13083-852 Campinas, Brazil
| | - T B Taketa
- School of Chemical Engineering, University of Campinas, 13083-852 Campinas, Brazil
| | - R A Bataglioli
- School of Chemical Engineering, University of Campinas, 13083-852 Campinas, Brazil
| | - G A T da Silveira
- School of Chemical Engineering, University of Campinas, 13083-852 Campinas, Brazil
| | - J V L da Silva
- Nucleus of Three-Dimensional Technologies (NT3D), Renato Archer Information Technology Center - CTI, 13069-901 Campinas, Brazil
| | - S P Campana-Filho
- São Carlos Institute of Chemistry, University of São Paulo, 13566-590 São Carlos, Brazil
| | - O N Oliveira
- São Carlos Institute of Physics, University of São Paulo, 13566-590 São Carlos, Brazil
| | - M M Beppu
- School of Chemical Engineering, University of Campinas, 13083-852 Campinas, Brazil.
| |
Collapse
|
16
|
Escobar A, Muzzio N, Moya SE. Antibacterial Layer-by-Layer Coatings for Medical Implants. Pharmaceutics 2020; 13:E16. [PMID: 33374184 PMCID: PMC7824561 DOI: 10.3390/pharmaceutics13010016] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 11/18/2022] Open
Abstract
The widespread occurrence of nosocomial infections and the emergence of new bacterial strands calls for the development of antibacterial coatings with localized antibacterial action that are capable of facing the challenges posed by increasing bacterial resistance to antibiotics. The Layer-by-Layer (LbL) technique, based on the alternating assembly of oppositely charged polyelectrolytes, can be applied for the non-covalent modification of multiple substrates, including medical implants. Polyelectrolyte multilayers fabricated by the LbL technique have been extensively researched for the development of antibacterial coatings as they can be loaded with antibiotics, antibacterial peptides, nanoparticles with bactericide action, in addition to being capable of restricting adhesion of bacteria to surfaces. In this review, the different approaches that apply LbL for antibacterial coatings, emphasizing those that can be applied for implant modification are presented.
Collapse
Affiliation(s)
- Ane Escobar
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182 C, 20014 Donostia-San Sebastian, Spain;
| | - Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA;
| | - Sergio Enrique Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182 C, 20014 Donostia-San Sebastian, Spain;
| |
Collapse
|
17
|
Probing axial metal distribution on biopolymer-based layer-by-layer films for antimicrobial use. Colloids Surf B Biointerfaces 2020; 199:111505. [PMID: 33373842 DOI: 10.1016/j.colsurfb.2020.111505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/09/2020] [Accepted: 11/30/2020] [Indexed: 01/01/2023]
Abstract
This study presents the axial molar composition of polysaccharide-based polyelectrolyte multilayer (PEM) films loaded with silver ions for antimicrobial applications. Individual polymers (chitosan, hyaluronan or alginate) and silver composition were determined using X-Ray Photoelectron Spectroscopy coupled with C60+ cluster ion sputtering technique, while the influence of silver loading on film topography was assessed using Atomic Force Microscopy. Despite the use of the layer-by-layer approach for film assembly, these PEM films present a non-stratified, nanoblend-like, polymer composition, with a nearly uniform metal distribution over the axial direction. Results also show surface antimicrobial activity towards Staphylococcus aureus bacteria and Candida albicans fungi over 20 h for hyaluronan/chitosan PEM, which is associated with its higher silver loading capacity. The interplay of bulk film composition and surface properties may provide valuable insights for engineering advanced materials with controlled spatio-temporal behavior.
Collapse
|
18
|
Hyaluronic acid and antimicrobial peptide-modified gold/silver hybrid nanocages to combat bacterial multidrug resistance. Int J Pharm 2020; 586:119505. [DOI: 10.1016/j.ijpharm.2020.119505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/16/2020] [Accepted: 06/01/2020] [Indexed: 01/20/2023]
|
19
|
Zhang J, Zhao IS, Yu OY, Li Q, Mei ML, Zhang C, Chu CH. Layer-by-layer self-assembly polyelectrolytes loaded with cyclic adenosine monophosphate enhances the osteo/odontogenic differentiation of stem cells from apical papilla. J Biomed Mater Res A 2020; 109:207-218. [PMID: 32441418 DOI: 10.1002/jbm.a.37017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 04/02/2020] [Accepted: 04/19/2020] [Indexed: 12/26/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) is a second messenger involved in the dental regeneration. However, efficient long-lasting delivery of cAMP that is sufficient to mimic the in vivo microenvironment remains a major challenge. Here, cAMP was loaded in stem cells from apical papilla (SCAPs) using layer-by-layer self-assembly with gelatin and alginate polyelectrolytes (LBL-cAMP-SCAPs). LBL-cAMP-SCAPs expressed cAMP and increased the phosphorylation level of cAMP-response element-binding protein (CREB) which were evaluated by immunofluorescence and western blotting (WB). Enzyme-linked immunosorbent assay (ELISA) demonstrated that a sustained release of cAMP and vascular endothelial growth factor (VEGF) were present up to 14 days. Scanning electron microscopy (SEM) found LBL-coated SCAPs exhibited a spheroid-like morphology. CCK8 and live/dead staining showed that LBL treatment had no significant effect on cell proliferation and viability. LBL-cAMP-SCAPs enhanced mineralized nodule formation and up-regulated the mRNA levels of the osteogenesis-related genes, as well as related transcription factor-2 protein level which were revealed by Alizarin red staining, RT-PCR and WB, respectively. In conclusion, LBL self-assembly loaded with cAMP promoted the osteo/odontogenic differentiation of SCAPs, thereby providing a potential strategy for bioactive molecular delivery in dental regeneration.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Oral Disease Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China.,Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Irene ShuPing Zhao
- School of Stomatology, Shenzhen University Health Science Center, Shenzhen, China
| | - Ollie YiRu Yu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - QuanLi Li
- Key Laboratory of Oral Disease Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - May Lei Mei
- Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - ChengFei Zhang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Silva D, de Sousa HC, Gil MH, Santos LF, Moutinho GM, Salema-Oom M, Alvarez-Lorenzo C, Serro AP, Saramago B. Diclofenac sustained release from sterilised soft contact lens materials using an optimised layer-by-layer coating. Int J Pharm 2020; 585:119506. [PMID: 32512224 DOI: 10.1016/j.ijpharm.2020.119506] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 11/25/2022]
Abstract
A layer-by-layer (LbL) coating was designed using ionic polysaccharides (chitosan, sodium alginate, sodium hyaluronate) and genipin (crosslinker), to sustain the release of diclofenac sodium salt (DCF) from soft contact lens (SCL) materials. The coating was hydrophilic, biocompatible, non-toxic, reduced bacterial growth and had minor effects on the physical properties of the material, such as wettability, ionic permeability, refractive index and transmittance, which remained within the recommended values for SCLs. The coating was applied on a silicone-based hydrogel and on commercial SofLens and Purevision SCLs. The coating attenuated the initial drug burst and extended the therapeutic period for, at least, two weeks. Relevantly, the problems of sterilizing drug loaded SCLs coated with biopolymers, using classic methods that involve high temperature or radiation, were successfully solved through high hydrostatic pressure (HHP) sterilization.
Collapse
Affiliation(s)
- Diana Silva
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Hermínio C de Sousa
- Univ Coimbra, CIEPQPF, FCTUC, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| | - Maria Helena Gil
- Univ Coimbra, CIEPQPF, FCTUC, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| | - Luís F Santos
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Guilhermina Martins Moutinho
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal
| | - Madalena Salema-Oom
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ana Paula Serro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal
| | - Benilde Saramago
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
21
|
Taketa TB, Rocha Neto JBM, Dos Santos DM, Fiamingo A, Beppu MM, Campana-Filho SP, Cohen RE, Rubner MF. Tracking Sulfonated Polystyrene Diffusion in a Chitosan/Carboxymethyl Cellulose Layer-by-Layer Film: Exploring the Internal Architecture of Nanocoatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4985-4994. [PMID: 32316733 DOI: 10.1021/acs.langmuir.0c00544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Since chitosan presents the ability to interact with a wide range of molecules, it has been one of the most popular natural polymers for the construction of layer-by-layer thin films. In this study, depth-profiling X-ray photoelectron spectroscopy (XPS) was employed to track the diffusion of sulfonated polystyrene (SPS) in carboxymethyl cellulose/chitosan (CMC/Chi) multilayers. Our findings suggest that the CMC/Chi film does not constitute an electrostatic barrier sufficient to block diffusion of SPS, and that diffusion can be controlled by adjusting the diffusion time and the molecular weight of the polymers that compose the CMC/Chi system. In addition to monitoring the diffusion, it was also possible to observe a process of preferential interaction between Chi and SPS. Thus, the nitrogen N 1s peak, due to functional groups found exclusively in chitosan chains, was the key factor to identifying the molecular interactions involving chitosan and the different polyanions. Accordingly, the presence of a strong polyanion such as SPS shifts the N 1s peak to a higher level of binding energy. Such results highlight that understanding the fundamentals of polymer interactions is a major step to fine-tuning the internal architecture of LbL structures for specific applications (e.g., drug release).
Collapse
Affiliation(s)
- Thiago B Taketa
- School of Chemical Engineering, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | | | - Danilo M Dos Santos
- Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, São Paulo 13566-590, Brazil
| | - Anderson Fiamingo
- Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, São Paulo 13566-590, Brazil
| | - Marisa M Beppu
- School of Chemical Engineering, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | | | - Robert E Cohen
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael F Rubner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
22
|
Polycationic condensed tannin/polysaccharide-based polyelectrolyte multilayers prevent microbial adhesion and proliferation. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109677] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Rocha Neto JBM, Gomes Neto RJ, Bataglioli RA, Taketa TB, Pimentel SB, Baratti MO, Costa CAR, Carvalho HF, Beppu MM. Engineering the surface of prostate tumor cells and hyaluronan/chitosan multilayer films to modulate cell-substrate adhesion properties. Int J Biol Macromol 2020; 158:197-207. [PMID: 32360468 DOI: 10.1016/j.ijbiomac.2020.04.136] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/05/2020] [Accepted: 04/18/2020] [Indexed: 12/24/2022]
Abstract
This paper explores different film assembly conditions of the polyelectrolyte solutions of hyaluronan (HA) and chitosan (CHI), as well as both substrate and cell surface modifications, to investigate PC3 cells adhesion properties. UV-Visible, AFM-IR and Zeta potential techniques indicate that the solution ionic strength is a relevant parameter to modulate the free carboxylic groups of HA on the film surface. In addition, capacitive coupling measurements suggest that assembly conditions that favor surface charge mobility inhibit cell adhesion due to polymer rearrangements that support non-specific electrostatic interactions of positively charged CHI residues and the negatively charged cell moieties, rather than specific CD44-hyaluronan interactions. Moreover, the PC3 cells treatment with hyaluronidase and anti-CD44 antibody also highlighted the importance of CD44 binding site availability on the tumor cell adhesion properties. Finally, the conjugation of wheat germ agglutinin on the film surface proved to be a suitable strategy to boost the PC3 cell adhesion properties. Our results reveal the remarkable capacity of HA/CHI films to modulate cell-substrate properties, which pave the road for the development of surfaces suitable for several applications based on biosensing.
Collapse
Affiliation(s)
- J B M Rocha Neto
- School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Campinas 13083-852, São Paulo, Brazil.
| | - R J Gomes Neto
- School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Campinas 13083-852, São Paulo, Brazil
| | - R A Bataglioli
- School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Campinas 13083-852, São Paulo, Brazil
| | - T B Taketa
- School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Campinas 13083-852, São Paulo, Brazil
| | - S B Pimentel
- Institute of Biology, Department of Cell Biology, University of Campinas, Campinas 13083-970, São Paulo, Brazil
| | - M O Baratti
- Institute of Biology, Department of Cell Biology, University of Campinas, Campinas 13083-970, São Paulo, Brazil
| | - C A R Costa
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, São Paulo, Brazil
| | - H F Carvalho
- Institute of Biology, Department of Cell Biology, University of Campinas, Campinas 13083-970, São Paulo, Brazil
| | - M M Beppu
- School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Campinas 13083-852, São Paulo, Brazil.
| |
Collapse
|
24
|
Fractal analysis of the formation process and morphologies of hyaluronan/chitosan nanofilms in layer-by-layer assembly. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
A simple surface biofunctionalization strategy to inhibit the biofilm formation by Staphylococcus aureus on solid substrates. Colloids Surf B Biointerfaces 2019; 183:110432. [DOI: 10.1016/j.colsurfb.2019.110432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/18/2019] [Accepted: 08/07/2019] [Indexed: 11/16/2022]
|
26
|
Sydow S, Aniol A, Hadler C, Menzel H. Chitosan-Azide Nanoparticle Coating as a Degradation Barrier in Multilayered Polyelectrolyte Drug Delivery Systems. Biomolecules 2019; 9:biom9100573. [PMID: 31590366 PMCID: PMC6843188 DOI: 10.3390/biom9100573] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/05/2019] [Accepted: 09/22/2019] [Indexed: 11/16/2022] Open
Abstract
Therapeutics, proteins or drugs, can be encapsulated into multilayer systems prepared from chitosan (CS)/tripolyphosphat (TPP) nanogels and polyanions. Such multilayers can be built-up by Layer-by-Layer (LbL) deposition. For use as drug-releasing implant coating, these multilayers must meet high requirements in terms of stability. Therefore, photochemically crosslinkable chitosan arylazide (CS–Az) was synthesized and nanoparticles were generated by ionotropic gelation with TPP. The particles were characterized with regard to particle size and stability and were used to form the top-layer in multilayer films consisting of CS–TPP and three different polysaccharides as polyanions, namely alginate, chondroitin sulfate or hyaluronic acid, respectively. Subsequently, photo-crosslinking was performed by irradiation with UV light. The stability of these films was investigated under physiological conditions and the influence of the blocking layer on layer thickness was investigated by ellipsometry. Furthermore, the polyanion and the degree of acetylation (DA) of chitosan were identified as additional parameters that influence the film structure and stability. Multilayer systems blocked with the photo-crosslinked chitosan arylazide showed enhanced stability against degradation.
Collapse
Affiliation(s)
- Steffen Sydow
- Institute for Technical Chemistry, Braunschweig University of Technology, 38106 Braunschweig, Germany.
| | - Armin Aniol
- Institute for Technical Chemistry, Braunschweig University of Technology, 38106 Braunschweig, Germany.
| | - Christoph Hadler
- Institute for Technical Chemistry, Braunschweig University of Technology, 38106 Braunschweig, Germany.
| | - Henning Menzel
- Institute for Technical Chemistry, Braunschweig University of Technology, 38106 Braunschweig, Germany.
| |
Collapse
|
27
|
|
28
|
Sydow S, de Cassan D, Hänsch R, Gengenbach TR, Easton CD, Thissen H, Menzel H. Layer-by-layer deposition of chitosan nanoparticles as drug-release coatings for PCL nanofibers. Biomater Sci 2019; 7:233-246. [DOI: 10.1039/c8bm00657a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Modified PCL fiber mat with fluorescently labeled CS-TPP nanoparticle system via LbL dip coating.
Collapse
Affiliation(s)
- Steffen Sydow
- Institute for Technical Chemistry
- Braunschweig University of Technology
- Braunschweig
- Germany
| | - Dominik de Cassan
- Institute for Technical Chemistry
- Braunschweig University of Technology
- Braunschweig
- Germany
| | - Robert Hänsch
- Institute of Plant Biology
- Braunschweig University of Technology
- Braunschweig
- Germany
| | | | | | | | - Henning Menzel
- Institute for Technical Chemistry
- Braunschweig University of Technology
- Braunschweig
- Germany
| |
Collapse
|
29
|
Antibacterial layer-by-layer coatings to control drug release from soft contact lenses material. Int J Pharm 2018; 553:186-200. [DOI: 10.1016/j.ijpharm.2018.10.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 11/15/2022]
|
30
|
Influence of pH and ionic strength on the antibacterial effect of hyaluronic acid/chitosan films assembled layer-by-layer. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Acevedo-Fani A, Soliva-Fortuny R, Martín-Belloso O. Photo-protection and controlled release of folic acid using edible alginate/chitosan nanolaminates. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2017.03.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Martín ML, Pfaffen V, Valenti LE, Giacomelli CE. Albumin biofunctionalization to minimize the Staphylococcus aureus adhesion on solid substrates. Colloids Surf B Biointerfaces 2018; 167:156-164. [DOI: 10.1016/j.colsurfb.2018.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/27/2018] [Accepted: 04/02/2018] [Indexed: 12/11/2022]
|
33
|
Rigo S, Cai C, Gunkel‐Grabole G, Maurizi L, Zhang X, Xu J, Palivan CG. Nanoscience-Based Strategies to Engineer Antimicrobial Surfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700892. [PMID: 29876216 PMCID: PMC5979626 DOI: 10.1002/advs.201700892] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/08/2018] [Indexed: 05/14/2023]
Abstract
Microbial contamination and biofilm formation of medical devices is a major issue associated with medical complications and increased costs. Consequently, there is a growing need for novel strategies and exploitation of nanoscience-based technologies to reduce the interaction of bacteria and microbes with synthetic surfaces. This article focuses on surfaces that are nanostructured, have functional coatings, and generate or release antimicrobial compounds, including "smart surfaces" producing antibiotics on demand. Key requirements for successful antimicrobial surfaces including biocompatibility, mechanical stability, durability, and efficiency are discussed and illustrated with examples of the recent literature. Various nanoscience-based technologies are described along with new concepts, their advantages, and remaining open questions. Although at an early stage of research, nanoscience-based strategies for creating antimicrobial surfaces have the advantage of acting at the molecular level, potentially making them more efficient under specific conditions. Moreover, the interface can be fine tuned and specific interactions that depend on the location of the device can be addressed. Finally, remaining important challenges are identified: improvement of the efficacy for long-term use, extension of the application range to a large spectrum of bacteria, standardized evaluation assays, and combination of passive and active approaches in a single surface to produce multifunctional surfaces.
Collapse
Affiliation(s)
- Serena Rigo
- Chemistry DepartmentUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
| | - Chao Cai
- Beijing National Laboratory for Molecular SciencesLaboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesZhongguangcun North First Street 2100190BeijingP. R. China
| | | | - Lionel Maurizi
- Chemistry DepartmentUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
| | - Xiaoyan Zhang
- Chemistry DepartmentUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
| | - Jian Xu
- Beijing National Laboratory for Molecular SciencesLaboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesZhongguangcun North First Street 2100190BeijingP. R. China
| | - Cornelia G. Palivan
- Chemistry DepartmentUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
| |
Collapse
|
34
|
Hernandez-Montelongo J, Corrales Ureña Y, Machado D, Lancelloti M, Pinheiro M, Rischka K, Lisboa-Filho P, Cotta M. Electrostatic immobilization of antimicrobial peptides on polyethylenimine and their antibacterial effect against Staphylococcus epidermidis. Colloids Surf B Biointerfaces 2018; 164:370-378. [DOI: 10.1016/j.colsurfb.2018.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/29/2018] [Accepted: 02/02/2018] [Indexed: 12/22/2022]
|
35
|
Belbekhouche S, Mansour O, Carbonnier B. Promising sub-100 nm tailor made hollow chitosan/poly(acrylic acid) nanocapsules for antibiotic therapy. J Colloid Interface Sci 2018; 522:183-190. [PMID: 29601960 DOI: 10.1016/j.jcis.2018.03.061] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 10/17/2022]
Abstract
Herein, we report on the preparation of ultra-low sized (<100 nm in diameter) biodegradable polymeric capsules for potential applications as nanocontainers in antibiotic therapy. Hollow nanospheres based on the chitosan/poly(acrylic acid) pair are elaborated via (i) the layer-by-layer technique using gold nanoparticles (20 and 60 nm in size) as sacrificial templates, (ii) loading with amoxicillin, a betalactam antibiotic, and (iii) removal of the gold core via cyanide-assisted hydrolysis. Size, dispersity and concentration of the resulting nanocapsules are easily tuned by the nanoparticle templates, while wall thickness is controlled by the number of polyelectrolyte bilayers. Electrostatic interactions between the protonated amine groups of chitosan and the carboxyl groups of poly(acrylic acid) act as the driving attraction force allowing easy and fast design of robust and well-ordered multilayer films. Successful hydrolysis of the gold core is evidenced by time-dependent monitoring of the gold spectroscopic signature (absorbance at 519 nm and 539 nm for the gold nanoparticles with 20 and 60 nm, respectively). Crosslinked capsules are also prepared through crosslinking of the chitosan chains with glutaraldehyde. Chitosan-based nanocapsules are finally evidenced to be promising drug delivery vehicles of amoxicillin trihydrate with tuneable properties such as entrapment efficiency in the range of 62-75% and 3.5-5.5% concerning the drug loading.
Collapse
Affiliation(s)
- S Belbekhouche
- Université Paris Est, ICMPE (UMR7182), CNRS, UPEC, F-94320 Thiais, France.
| | - O Mansour
- Université Paris Est, ICMPE (UMR7182), CNRS, UPEC, F-94320 Thiais, France
| | - B Carbonnier
- Université Paris Est, ICMPE (UMR7182), CNRS, UPEC, F-94320 Thiais, France.
| |
Collapse
|
36
|
Tripathy A, Pahal S, Mudakavi RJ, Raichur AM, Varma MM, Sen P. Impact of Bioinspired Nanotopography on the Antibacterial and Antibiofilm Efficacy of Chitosan. Biomacromolecules 2018; 19:1340-1346. [DOI: 10.1021/acs.biomac.8b00200] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Association of Alpha Tocopherol and Ag Sulfadiazine Chitosan Oleate Nanocarriers in Bioactive Dressings Supporting Platelet Lysate Application to Skin Wounds. Mar Drugs 2018; 16:md16020056. [PMID: 29425164 PMCID: PMC5852484 DOI: 10.3390/md16020056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 12/25/2022] Open
Abstract
Chitosan oleate was previously proposed to encapsulate in nanocarriers some poorly soluble molecules aimed to wound therapy, such as the anti-infective silver sulfadiazine, and the antioxidant α tocopherol. Because nanocarriers need a suitable formulation to be administered to wounds, in the present paper, these previously developed nanocarriers were loaded into freeze dried dressings based on chitosan glutamate. These were proposed as bioactive dressings aimed to support the application to wounds of platelet lysate, a hemoderivative rich in growth factors. The dressings were characterized for hydration capacity, morphological aspect, and rheological and mechanical behavior. Although chitosan oleate nanocarriers clearly decreased the mechanical properties of dressings, these remained compatible with handling and application to wounds. Preliminary studies in vitro on fibroblast cell cultures demonstrated good compatibility of platelet lysate with nanocarriers and bioactive dressings. An in vivo study on a murine wound model showed an accelerating wound healing effect for the bioactive dressing and its suitability as support of the platelet lysate application to wounds.
Collapse
|
38
|
Taketa TB, Dos Santos DM, Fiamingo A, Vaz JM, Beppu MM, Campana-Filho SP, Cohen RE, Rubner MF. Investigation of the Internal Chemical Composition of Chitosan-Based LbL Films by Depth-Profiling X-ray Photoelectron Spectroscopy (XPS) Analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1429-1440. [PMID: 29307187 DOI: 10.1021/acs.langmuir.7b04104] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chitosan-based thin films were assembled using the layer-by-layer technique, and the axial composition was accessed using X-ray photoelectron spectroscopy with depth profiling. Chitosan (CHI) samples possessing different degrees of acetylation ([Formula: see text]) and molecular weight ([Formula: see text]) produced via the ultrasound-assisted deacetylation reaction were used in this study along with two different polyanions, namely, sodium polystyrenesulfonate (PSS) and carboxymethylcellulose (CMC). When chitosan, a positively charged polymer in aqueous acid medium, was combined with a strong polyanion (PSS), the total positive charge of chitosan, directly related to its [Formula: see text], was the key factor affecting the film formation. However, for CMC/CHI films, the pH of the medium and [Formula: see text] of chitosan strongly affected the film structure and composition. Consequently, the structure and the axial composition of chitosan-based films can be finely adjusted by choosing the polyanion and defining the chitosan to be used according to its DA and [Formula: see text] for the desired application, as demonstrated by the antibacterial tests.
Collapse
Affiliation(s)
- Thiago B Taketa
- School of Chemical Engineering, University of Campinas , 13083-852 SP, Campinas, Brazil
| | - Danilo M Dos Santos
- São Carlos Institute of Chemistry, University of São Paulo , 13010-111 SP, São Paulo, Brazil
| | - Anderson Fiamingo
- São Carlos Institute of Chemistry, University of São Paulo , 13010-111 SP, São Paulo, Brazil
| | - Juliana M Vaz
- School of Chemical Engineering, University of Campinas , 13083-852 SP, Campinas, Brazil
| | - Marisa M Beppu
- School of Chemical Engineering, University of Campinas , 13083-852 SP, Campinas, Brazil
| | - Sérgio P Campana-Filho
- São Carlos Institute of Chemistry, University of São Paulo , 13010-111 SP, São Paulo, Brazil
| | | | | |
Collapse
|
39
|
Pahal S, Gakhar R, Raichur AM, Varma MM. Polyelectrolyte multilayers for bio-applications: recent advancements. IET Nanobiotechnol 2017; 11:903-908. [PMID: 29155388 PMCID: PMC8676474 DOI: 10.1049/iet-nbt.2017.0007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/09/2017] [Accepted: 07/17/2017] [Indexed: 11/25/2023] Open
Abstract
The synergistic relationship between structure and the bulk properties of polyelectrolyte multilayer (PEM) films has generated tremendous interest in their application for loading and release of bioactive species. Layer-by-layer assembly is the simplest, cost effective process for fabrication of such PEMs films, leading to one of the most widely accepted platforms for incorporating biological molecules with nanometre precision. The bulk reservoir properties of PEM films render them a potential candidate for applications such as biosensing, drug delivery and tissue engineering. Various biomolecules such as proteins, DNA, RNA or other desired molecules can be incorporated into the PEM stack via electrostatic interactions and various other secondary interactions such as hydrophobic interactions. The location and availability of the biological molecules within the PEM stack mediates its applicability in various fields of biomedical engineering such as programmed drug delivery. The development of advanced technologies for biomedical applications using PEM films has seen rapid progress recently. This review briefly summarises the recent successes of PEM being utilised for diverse bio-applications.
Collapse
Affiliation(s)
- Suman Pahal
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Ruchi Gakhar
- Department of Engineering Physics, University of Wisconsin, Madison, WI 53706, USA
| | - Ashok M Raichur
- Nanotechnology and Water Sustainability Unit, University of South Africa, Florida 1710, Johannesburg, South Africa
| | - Manoj M Varma
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
40
|
Roughness dynamic in surface growth: Layer-by-layer thin films of carboxymethyl cellulose/chitosan for biomedical applications. Biointerphases 2017; 12:04E401. [PMID: 28826223 DOI: 10.1116/1.4986057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Surfaces are responsible for important interactions of biomaterials since they create the interface with the biological environment and affect the response that the body will have to the material. Surface roughness and morphology have great impact on the material performance, affecting cell, bacterial, and biomolecular adhesion. Thin films of chitosan and carboxymethyl cellulose were produced by layer-by-layer deposition at different pH values and had their surface growth process studied throughout roughness measurements. Both polymers are nontoxic and biocompatible to the human biological system, with biomedical applications from tissue engineering to drug delivery. Growth exponents are presented, and it is suggested that fractal-based growth models are suitable for describing surface evolution and morphology of carboxymethyl cellulose/chitosan layer-by-layer thin film growth during deposition, primarily nonlinear models.
Collapse
|
41
|
Rammal H, Dubus M, Aubert L, Reffuveille F, Laurent-Maquin D, Terryn C, Schaaf P, Alem H, Francius G, Quilès F, Gangloff SC, Boulmedais F, Kerdjoudj H. Bioinspired Nanofeatured Substrates: Suitable Environment for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12791-12801. [PMID: 28301131 DOI: 10.1021/acsami.7b01665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Bone mimicking coatings provide a complex microenvironment in which material, through its inherent properties (such as nanostructure and composition), affects the commitment of stem cells into bone lineage and the production of bone tissue regulating factors required for bone healing and regeneration. Herein, a bioactive mineral/biopolymer composite made of calcium phosphate/chitosan and hyaluronic acid (CaP-CHI-HA) was elaborated using a versatile simultaneous spray coating of interacting species. The resulting CaP-CHI-HA coating was mainly constituted of bioactive, carbonated and crystalline hydroxyapatite with 277 ± 98 nm of roughness, 1 μm of thickness, and 2.3 ± 1 GPa of stiffness. After five days of culture, CaP-CHI-HA suggested a synergistic effect of intrinsic biophysical features and biopolymers on stem cell mechanobiology and nuclear organization, leading to the expression of an early osteoblast-like phenotype and the production of bone tissue regulating factors such as osteoprotegerin and vascular endothelial growth factor. More interestingly, amalgamation with biopolymers conferred to the mineral a bacterial antiadhesive property. These significant data shed light on the potential regenerative application of CaP-CHI-HA bioinspired coating in providing a suitable environment for stem cell bone regeneration and an ideal strategy to prevent implant-associated infections.
Collapse
Affiliation(s)
- H Rammal
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR-CAP Santé (FED 4231), Université de Reims Champagne Ardenne , 51100 Reims, France
- UFR d'Odontologie, Université de Reims Champagne Ardenne , 51100 Reims, France
| | - M Dubus
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR-CAP Santé (FED 4231), Université de Reims Champagne Ardenne , 51100 Reims, France
- UFR d'Odontologie, Université de Reims Champagne Ardenne , 51100 Reims, France
| | - L Aubert
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR-CAP Santé (FED 4231), Université de Reims Champagne Ardenne , 51100 Reims, France
- UFR de Pharmacie, Université de Reims Champagne Ardenne , 51100 Reims, France
| | - F Reffuveille
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR-CAP Santé (FED 4231), Université de Reims Champagne Ardenne , 51100 Reims, France
- UFR de Pharmacie, Université de Reims Champagne Ardenne , 51100 Reims, France
| | - D Laurent-Maquin
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR-CAP Santé (FED 4231), Université de Reims Champagne Ardenne , 51100 Reims, France
- UFR d'Odontologie, Université de Reims Champagne Ardenne , 51100 Reims, France
| | - C Terryn
- Plateforme d'Imagerie Cellulaire et Tissulaire (PICT), Université de Reims Champagne Ardenne , 51100 Reims, France
| | - P Schaaf
- INSERM, UMR-S 1121, "Biomatériaux et Bioingénierie", Fédération de médecine translationnelle de Strasbourg, Faculté de Chirurgie Dentaire, Université de Strasbourg , 67000 Strasbourg, France
- CNRS, Institut Charles Sadron UPR 22, Université de Strasbourg , 23 rue du Loess, 67034 Strasbourg Cedex, France
| | - H Alem
- CNRS, UMR 7198, Institut Jean Lamour (IJL), Université de Lorraine , 54500 Vandoeuvre Lès Nancy, France
| | - G Francius
- CNRS, UMR 7564, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), Université de Lorraine , 54500 Vandoeuvre Lès Nancy, France
| | - F Quilès
- CNRS, UMR 7564, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), Université de Lorraine , 54500 Vandoeuvre Lès Nancy, France
| | - S C Gangloff
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR-CAP Santé (FED 4231), Université de Reims Champagne Ardenne , 51100 Reims, France
- UFR de Pharmacie, Université de Reims Champagne Ardenne , 51100 Reims, France
| | - F Boulmedais
- CNRS, Institut Charles Sadron UPR 22, Université de Strasbourg , 23 rue du Loess, 67034 Strasbourg Cedex, France
| | - H Kerdjoudj
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR-CAP Santé (FED 4231), Université de Reims Champagne Ardenne , 51100 Reims, France
- UFR d'Odontologie, Université de Reims Champagne Ardenne , 51100 Reims, France
| |
Collapse
|
42
|
Hernandez-Montelongo J, Lucchesi E, Nascimento V, França C, Gonzalez I, Macedo W, Machado D, Lancellotti M, Moraes A, Beppu M, Cotta M. Antibacterial and non-cytotoxic ultra-thin polyethylenimine film. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:718-724. [DOI: 10.1016/j.msec.2016.10.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/28/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
|
43
|
Kamalipour J, Masoomi M, Khonakdar HA, Razavi SMR. Preparation and release study of Triclosan in polyethylene/Triclosan anti-bacterial blend. Colloids Surf B Biointerfaces 2016; 145:891-898. [DOI: 10.1016/j.colsurfb.2016.05.093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/28/2016] [Accepted: 05/30/2016] [Indexed: 10/21/2022]
|