1
|
Kilb MF, Engemann VI, Siddique A, Stark RW, Schmitz K. Immobilisation of CXCL8 gradients in microfluidic devices for migration experiments. Colloids Surf B Biointerfaces 2020; 198:111498. [PMID: 33302150 DOI: 10.1016/j.colsurfb.2020.111498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 11/29/2022]
Abstract
The release of inflammatory chemokines leads to the formation of chemokine gradients that result in the directed migration of immune cells to the site of injury. In this process, cells respond to soluble gradients (chemotaxis) as well as to immobilised gradients (haptotaxis). Surface-bound chemokine gradients are mostly presented by endothelial cells and supported by glycosaminoglycans (GAGs), such as heparan sulfate, involving the GAG binding site of chemokines. Microfluidic devices have been used to analyse cell migration along soluble chemokine gradients, as these devices allow the generation of stable gradients with resolutions in the range of microns. To immobilise well-controlled soluble gradients of interleukin-8 (CXCL8), an inflammatory chemokine, we developed a simple procedure using a heparin-coated PDMS-microfluidic device. We used these immobilised gradients for migration experiments with CXCL8-responsive THP-1 cells and confirmed directed cell migration. This setup might be useful for the examination of factors that may alter chemotaxis and haptotaxis as well as synergistic and antagonistic effects of other soluble and immobilised chemokines.
Collapse
Affiliation(s)
- Michelle F Kilb
- Technical University of Darmstadt, Clemens-Schöpf-Institute of Organic Chemistry and Biochemistry, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Victoria I Engemann
- Technical University of Darmstadt, Clemens-Schöpf-Institute of Organic Chemistry and Biochemistry, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Asma Siddique
- Technical University of Darmstadt, Institute of Materials Science, Physics of Surfaces, Alarich-Weiss-Straße 16, 64287. Darmstadt, Germany
| | - Robert W Stark
- Technical University of Darmstadt, Institute of Materials Science, Physics of Surfaces, Alarich-Weiss-Straße 16, 64287. Darmstadt, Germany
| | - Katja Schmitz
- Technical University of Darmstadt, Clemens-Schöpf-Institute of Organic Chemistry and Biochemistry, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany.
| |
Collapse
|
2
|
Jia Y, Anwaar S, Li L, Yin Z, Ye Z, Huang Z. A new target for the treatment of inflammatory bowel disease: Interleukin-37. Int Immunopharmacol 2020; 83:106391. [PMID: 32208166 DOI: 10.1016/j.intimp.2020.106391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/22/2020] [Accepted: 03/08/2020] [Indexed: 12/19/2022]
Abstract
Interleukin (IL)-37 belongs to the IL-1 cytokine family. It has anti-inflammatory effects on numerous autoimmune diseases such as asthma, psoriasis, inflammatory bowel disease (IBD), systemic lupus erythematosus (SLE), multiple sclerosis (MS) and rheumatoid arthritis (RA). Mechanistically, IL-37 plays an anti-inflammatory role by regulating the expression of inflammatory factors in two ways: binding extracellular receptors IL-18R or transferring into the nucleus with Smad3. IBD is a kind of idiopathic intestinal inflammatory disease with unknown etiology and pathogenesis. Recent researches had proved that IL-37 is negatively involved in the pathogenesis and development of IBD. Among various inflammatory diseases, IL-37 has been shown to regulate inflammatory development by acting on various immune cells such as neutrophils, macrophages (Mϕ), dendritic cells (DCs), T cells and intestinal epithelial cells. This review summarizes the biological role of IL-37, and its immunoregulatory effects on the immune cells, especially anti-inflammatory function in both human and experimental models of IBD.
Collapse
Affiliation(s)
- Yuning Jia
- Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Shoaib Anwaar
- Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Linyun Li
- Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Zhihua Yin
- Shenzhen City Futian Qu Rheumatology Specialist Hospital, Shenzhen 518089, China
| | - Zhizhon Ye
- Shenzhen City Futian Qu Rheumatology Specialist Hospital, Shenzhen 518089, China.
| | - Zhong Huang
- Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Health Science Center, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
3
|
Boneschansker L, Jorgensen J, Ellett F, Briscoe DM, Irimia D. Convergent and Divergent Migratory Patterns of Human Neutrophils inside Microfluidic Mazes. Sci Rep 2018; 8:1887. [PMID: 29382882 PMCID: PMC5789854 DOI: 10.1038/s41598-018-20060-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 12/19/2017] [Indexed: 12/30/2022] Open
Abstract
Neutrophils are key cellular components of the innate immune response and characteristically migrate from the blood towards and throughout tissues. Their migratory process is complex, guided by multiple chemoattractants released from injured tissues and microbes. How neutrophils integrate the various signals in the tissue microenvironment and mount effective responses is not fully understood. Here, we employed microfluidic mazes that replicate features of interstitial spaces and chemoattractant gradients within tissues to analyze the migration patterns of human neutrophils. We find that neutrophils respond to LTB4 and fMLF gradients with highly directional migration patterns and converge towards the source of chemoattractant. We named this directed migration pattern convergent. Moreover, neutrophils respond to gradients of C5a and IL-8 with a low-directionality migration pattern and disperse within mazes. We named this alternative migration pattern divergent. Inhibitors of MAP kinase and PI-3 kinase signaling pathways do not alter either convergent or divergent migration patterns, but reduce the number of responding neutrophils. Overlapping gradients of chemoattractants conserve the convergent and divergent migration patterns corresponding to each chemoattractant and have additive effects on the number of neutrophils migrating. These results suggest that convergent and divergent neutrophil migration-patterns are the result of simultaneous activation of multiple signaling pathways.
Collapse
Affiliation(s)
- Leo Boneschansker
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA.,Transplant Research Program and The Division of Nephrology, Department of Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Julianne Jorgensen
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA
| | - Felix Ellett
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA
| | - David M Briscoe
- Transplant Research Program and The Division of Nephrology, Department of Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Daniel Irimia
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA.
| |
Collapse
|
4
|
Roy J, Mazzaferri J, Filep JG, Costantino S. A Haptotaxis Assay for Neutrophils using Optical Patterning and a High-content Approach. Sci Rep 2017; 7:2869. [PMID: 28588217 PMCID: PMC5460230 DOI: 10.1038/s41598-017-02993-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 04/21/2017] [Indexed: 12/30/2022] Open
Abstract
Neutrophil recruitment guided by chemotactic cues is a central event in host defense against infection and tissue injury. While the mechanisms underlying neutrophil chemotaxis have been extensively studied, these are just recently being addressed by using high-content approaches or surface-bound chemotactic gradients (haptotaxis) in vitro. Here, we report a haptotaxis assay, based on the classic under-agarose assay, which combines an optical patterning technique to generate surface-bound formyl peptide gradients as well as an automated imaging and analysis of a large number of migration trajectories. We show that human neutrophils migrate on covalently-bound formyl-peptide gradients, which influence the speed and frequency of neutrophil penetration under the agarose. Analysis revealed that neutrophils migrating on surface-bound patterns accumulate in the region of the highest peptide concentration, thereby mimicking in vivo events. We propose the use of a chemotactic precision index, gyration tensors and neutrophil penetration rate for characterizing haptotaxis. This high-content assay provides a simple approach that can be applied for studying molecular mechanisms underlying haptotaxis on user-defined gradient shape.
Collapse
Affiliation(s)
- Joannie Roy
- Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada.,Biomedical Engineering Institute, University of Montreal, Montreal, Quebec, Canada
| | - Javier Mazzaferri
- Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - János G Filep
- Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada.,Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Santiago Costantino
- Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada. .,Biomedical Engineering Institute, University of Montreal, Montreal, Quebec, Canada. .,Department of Ophthalmology, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|