1
|
Zhang K, Huang H, Zhao Y, Zhen Q, Shi D, Chen J, Chen X. Pullulan dialdehyde cross-linked dual-action adhesive with high adhesion to lung tissue and the capability of pH-responsive drug release. Carbohydr Polym 2025; 348:122906. [PMID: 39567140 DOI: 10.1016/j.carbpol.2024.122906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024]
Abstract
To address the main challenges for thoracoscopic lung cancer surgery, including persistent pulmonary air leaks and cancer recurrence, this study developed an in-situ adhesive that can effectively adhere to the lung and release the anticancer drug in response to pH. The adhesive was formulated using hydrophobically modified cold-water fish skin gelatin (hm-CFG) and cross-linking agent pullulan dialdehyde (PDA), in which succinic dihydrazide-modified doxorubicin (SDH-DOX) can be incorporated. Utilizing PDA could improve both cohesion and interfacial adhesion, while also offering drug-loading sites through the aldehyde groups that were not involved in cross-linking. The optimal adhesive formulation was 9C10-CFG/PDA (30 w/v% 9 mol% decanal modified CFG/20 w/v% PDA). The 9C10-CFG/PDA adhesive exhibited suitable cohesive strength, good mechanical flexibility (tensile strain over 170 %), and strong interface adhesion. The burst strength of 9C10-CFG/PDA adhesive (131.5 ± 22.2 mm Hg) was almost 6-fold higher than that of commercial fibrin sealant. In a rat pneumothorax model, 9C10-CFG/PDA adhesive displayed favorable wound-sealing properties, as evidenced by CT imaging and restored rat behavior. When combined with the anticancer drug, SDH-DOX@Adhesive could release the drug in response to pH more gradually than DOX@Adhesive. This dual-action adhesive is anticipated to mitigate post-surgical occurrences of lung air leaks and cancer recurrence.
Collapse
Affiliation(s)
- Ke Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Hui Huang
- Department of Orthopaedic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214031, China
| | - Yilin Zhao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Qinghao Zhen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Dongjian Shi
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xi Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Yee YC, Mori T, Ito S, Taguchi T, Katayama Y. Impact of hydrophobic modification on biocompatibility of Alaska pollock gelatin microparticles. ANAL SCI 2024; 40:2053-2061. [PMID: 39120821 DOI: 10.1007/s44211-024-00643-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024]
Abstract
This study investigates the impact of hydrophobic modification on the immunogenicity, cytotoxicity, and inflammatory response of Alaska pollock gelatin (ApGltn) microparticles (MPs). Gelatin, known for its inherent biocompatibility, was modified with decyl group (C10) to explore potential alterations in its interaction with the immune system. Immunogenicity was evaluated through the measurement of material-specific IgM and IgG responses, indicating no significant increase post-modification. Cytotoxicity against Caco-2 cell lines and NF-κB-mediated LPS-induced inflammation were also assessed, revealing no exacerbation by the modified MPs. Furthermore, C10 modification with different types of linkage such as secondary amine and amide structure did not influence immune reactivity. These findings suggest that C10 modification maintains the non-immunogenicity and biocompatibility of gelatin MPs, supporting their potential use in biomedical applications.
Collapse
Affiliation(s)
- Ying Chuin Yee
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takeshi Mori
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Shima Ito
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Tetsushi Taguchi
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| | - Yoshiki Katayama
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Centre for Advanced Medicine Open Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Rd., Chung Li, 32023, Taiwan, ROC.
| |
Collapse
|
3
|
Ono T, Suzuki T, Nagoshi N, Masugi Y, Maeda K, Hashimoto S, Watanabe S, Iwamoto T, Taguchi T, Nakamura M. Alaska Pollock-derived Gelatin Sealant has Higher Sealing Strength than, and Comparable Biocompatibility with, Fibrin Sealant in Porcine and Rat Dural Injury Models. Spine (Phila Pa 1976) 2024; 49:E200-E207. [PMID: 38475667 DOI: 10.1097/brs.0000000000004985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024]
Abstract
STUDY DESIGN Burst strength study in porcine dural models and functional and histological study in rat dural models. OBJECTIVE This study aimed to investigate the sealing strength and biocompatibility of Alaska pollock-derived gelatin (ApGltn) and fibrin sealants in disrupted dural injuries. SUMMARY OF BACKGROUND DATA Disruption of the dura mater occurs during spine surgery, leading to cerebrospinal fluid leakage. Fibrin sealant is usually applied to ruptured sites; however, it lacks sealing strength. A novel biocompatible sealant composed of ApGltn was recently demonstrated to have good burst strength and biocompatibility in the porcine aorta. METHODS Ten porcine dura maters with central holes were covered with ApGltn and fibrin sealants (five samples per group). The maximum burst strength of each sealant was measured, and histological examination was performed after burst testing. Twenty-seven dura maters of male Wistar rats were used for functional and histopathological evaluations. The rats were treated with three surgical interventions: defect + ApGltn sealant; defect + fibrin sealant; defect alone (nine rats per group). Macroscopic confirmation of the sealant, hindlimb motor function analysis, and histopathological examination were performed at two, four, and eight weeks after the procedure. RESULTS The maximum burst strength of the ApGltn sealant was ~4.4 times higher than that of the fibrin sealant (68.1±12.1 vs . 15.6±8.7 mmHg; P <0.001). Histological examination confirmed that the ApGltn sealant showed tight adhesion to the dural surface, whereas a gap was observed between the fibrin sealant and the dura mater. In the rat model, the ApGltn sealant resulted in spinal function and dural histological findings similar to those of the fibrin sealant. CONCLUSION The ApGltn sealant had a higher sealing strength than, and comparable effect on dura regeneration with, the fibrin sealant.
Collapse
Affiliation(s)
- Takumi Ono
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Taku Suzuki
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Narihito Nagoshi
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Yohei Masugi
- Division of Diagnostic Pathology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Kosuke Maeda
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Shogo Hashimoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Shiharu Watanabe
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Namiki, Tsukuba, Japan
| | - Takuji Iwamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Tetsushi Taguchi
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Namiki, Tsukuba, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| |
Collapse
|
4
|
Ito T, Mizuta R, Ito S, Taguchi T. Robust aortic media adhesion using hydrophobically modified Alaska pollock gelatin-based adhesive for aortic dissections. J Biomed Mater Res B Appl Biomater 2024; 112:e35361. [PMID: 38247245 DOI: 10.1002/jbm.b.35361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/11/2023] [Accepted: 11/29/2023] [Indexed: 01/23/2024]
Abstract
Type-A aortic dissection is an acute injury involving the delamination of the aorta at the parts of the aortic media. Aldehyde crosslinker-containing glues have been used to adhere to the media of the dissected aorta before joining an artificial graft. These glues effectively adhere to the aortic media; however, they show low biocompatibility due to the release of aldehyde compounds. In this study, we report innovative adhesives based on hydrophobically modified Alaska pollock gelatin (hm-ApGltn) with different alkyl or cholesteryl (Chol) groups that adhere to the media of the dissected aorta by combining hm-ApGltns with a biocompatible crosslinker, pentaerythritol poly(ethylene glycol) ether tetrasuccinimidyl glutarate. The modification of alkyl or Chol groups contributed to enhanced adhesion strength between porcine aortic media. The adhesion strength increased with increasing modification ratios of alkyl groups from propanoyl to dodecanoyl groups and then decreased at a modification ratio of ~20 mol %. Porcine aortic media adhered using 7.5Chol-ApGltn adhesive showed stretchability even when expanded and shrunk vertically by 25% at least five times. Hm-ApGltn adhesives subcutaneously injected into the backs of mice showed no severe inflammation and were degraded during the implantation period. These results indicated that hm-ApGltn adhesives have potential applications in type-A aortic dissection.
Collapse
Affiliation(s)
- Temmei Ito
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Japan
| | - Ryo Mizuta
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Japan
| | - Shima Ito
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Japan
| | - Tetsushi Taguchi
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Japan
| |
Collapse
|
5
|
Ishikawa S, Kamata H, Chung UI, Sakai T. Tissue-Adhesive Hydrogel Spray System for Live Cell Immobilization on Biological Surfaces. ACS APPLIED BIO MATERIALS 2023; 6:4613-4619. [PMID: 37467040 DOI: 10.1021/acsabm.3c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Gelatin hydrogels are used as three-dimensional cell scaffolds and can be prepared using various methods. One widely accepted approach involves crosslinking gelatin amino groups with poly(ethylene glycol) (PEG) modified with N-hydroxysuccinimide ester (PEG-NHS). This method enables the encapsulation of live cells within the hydrogels and also facilitates the adhesion of the hydrogel to biological tissues by crosslinking their surface amino groups. Consequently, these hydrogels are valuable tools for immobilizing cells that secrete beneficial substances in vivo. However, the application of gelatin hydrogels is limited due to the requirement for several minutes to solidify under conditions of neutral pH and polymer concentrations suitable for live cells. This limitation makes it impractical for use with biological tissues, which have complex shapes or inclined surfaces, restricting its application to semi-closed spaces. In this study, we propose a tissue-adhesive hydrogel that can be sprayed and immobilized with live cells on biological tissue surfaces. This hydrogel system combines two components: (1) gelatin/PEG-NHS hydrogels and (2) instantaneously solidifying PEG hydrogels. The sprayed hydrogel solidified within 5 s after dispensing while maintaining the adhesive properties of the PEG-NHS component. The resulting hydrogels exhibited protein permeability, and the viability of encapsulated human mesenchymal stem/stromal cells (hMSCs) remained above 90% for at least 7 days. This developed hydrogel system represents a promising approach for immobilizing live cells on tissue surfaces with complex shapes.
Collapse
Affiliation(s)
- Shohei Ishikawa
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Hiroyuki Kamata
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Ung-Il Chung
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takamasa Sakai
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
6
|
Komatsu H, Watanabe S, Ito S, Nagasaka K, Nishiguchi A, Taguchi T. Improved Swelling Property of Tissue Adhesive Hydrogels Based on α-Cyclodextrin/Decyl Group-Modified Alaska Pollock Gelatin Inclusion Complexes. Macromol Biosci 2023; 23:e2300097. [PMID: 37102468 DOI: 10.1002/mabi.202300097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Indexed: 04/28/2023]
Abstract
Adhesives/sealants are used after suturing to prevent leakage of cerebrospinal fluid from an anastomotic site. Commercial adhesives/sealants have been used to close the cerebral dura. However, swelling of the cured adhesives/sealants induces increased intracranial pressure and decreases the strength of the seal. In the present study, tissue adhesive hydrogels with improved swelling property using inclusion complex composed of α-cyclodextrin (αCD) and decyl group (C10)-modified Alaska pollock-derived gelatin (C10-ApGltn) with a high degree of substitution (DS) (>20 mol%) are developed. Viscosity of C10-ApGltn with a high DS solution remarkably decreased by the addition of αCD. The resulting αCD/C10-ApGltn adhesive hydrogel composed of αCD/C10-ApGltn inclusion complexes and poly(ethylene glycol) (PEG)-based crosslinker showed improved swelling property after immersion in saline. Also, the resulting adhesive has a significantly higher burst strength than fibrin-based adhesives and is as strong as a PEG-based adhesive. Quantitative analysis of αCD revealed that the improved swelling property of the resulting adhesive hydrogels is induced by the release of αCD from cured adhesive, and the subsequent assembly of decyl groups in the saline. These results suggest that adhesives developed using the αCD/C10-ApGltn inclusion complex can be useful for closing the cerebral dura mater.
Collapse
Affiliation(s)
- Hiyori Komatsu
- Graduate School of Science and Technology, Degree Programs in Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Shiharu Watanabe
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Shima Ito
- Graduate School of Science and Technology, Degree Programs in Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Kazuhiro Nagasaka
- Graduate School of Science and Technology, Degree Programs in Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Akihiro Nishiguchi
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Tetsushi Taguchi
- Graduate School of Science and Technology, Degree Programs in Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
7
|
Nagasaka K, Watanabe S, Ito S, Ichimaru H, Nishiguchi A, Otsuka H, Taguchi T. Enhanced burst strength of catechol groups-modified Alaska pollock-derived gelatin-based surgical adhesive. Colloids Surf B Biointerfaces 2022; 220:112946. [DOI: 10.1016/j.colsurfb.2022.112946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/27/2022]
|
8
|
Li C, Duan W, Zhu Y, Li G, Gao M, Weng Z, Zhu Y, Bu Y. Cohesion Design-Led Tough Sealants with Controllably Dissolvable Properties. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34415-34426. [PMID: 35857427 DOI: 10.1021/acsami.2c08328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Leakage is a common complication of surgeries and injuries, causing pain and increasing the economic burden on patients. Although there are commercially available sealants for leakage prevention, few of them are entirely satisfactory due to disease transmission, high cost, and poor biocompatibility. In addition, none of them can be controllably removed for further healthcare. In this paper, by using cohesion design, a sealant based on amino-modified gelatin (AG) and bi-polyethylene glycol N-hydroxysuccinimide active ester (Bi-PEG-SS) was fabricated. To increase the bursting pressure, the cohesion strength was enhanced by increasing the cross-linking density of the sealant. To endow the sealant with controllably dissolvable properties, the smart succinic ester units were introduced into the cohesion network. Both the in vitro and in vivo experiments showed that this sealant processed high bursting pressure with efficient hemorrhage control. Moreover, no side effects were observed after 7 days of in vivo sealing, including little inflammation and fibrogenesis. These results, together with the easy availability of the raw materials, revealed that this sealant might be a promising alternative for leakage sealing.
Collapse
Affiliation(s)
- Chaowei Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Wanglin Duan
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ye Zhu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Guanying Li
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an 710061, China
| | - Min Gao
- Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yuan Zhu
- Department of Gynecology, The Affiliated Maternal and Child Healthcare Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
- Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, China
| | - Yazhong Bu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an 710061, China
| |
Collapse
|
9
|
Bu Y, Pandit A. Cohesion mechanisms for bioadhesives. Bioact Mater 2022; 13:105-118. [PMID: 35224295 PMCID: PMC8843969 DOI: 10.1016/j.bioactmat.2021.11.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023] Open
Abstract
Due to the nature of non-invasive wound closure, the ability to close different forms of leaks, and the potential to immobilize various devices, bioadhesives are altering clinical practices. As one of the vital factors, bioadhesives' strength is determined by adhesion and cohesion mechanisms. As well as being essential for adhesion strength, the cohesion mechanism also influences their bulk functions and the way the adhesives can be applied. Although there are many published reports on various adhesion mechanisms, cohesion mechanisms have rarely been addressed. In this review, we have summarized the most used cohesion mechanisms. Furthermore, the relationship of cohesion strategies and adhesion strategies has been discussed, including employing the same functional groups harnessed for adhesion, using combinational approaches, and exploiting different strategies for cohesion mechanism. By providing a comprehensive insight into cohesion strategies, the paper has been integrated to offer a roadmap to facilitate the commercialization of bioadhesives.
Collapse
Affiliation(s)
- Yazhong Bu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
- CÚRAM, SFI Research Centre for Medical Devices National University of Ireland, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices National University of Ireland, Galway, Ireland
| |
Collapse
|
10
|
Hu B, Bao G, Xu X, Yang K. The Topical Hemostatic Materials for Coagulopathy. J Mater Chem B 2022; 10:1946-1959. [DOI: 10.1039/d1tb02523f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Medical sciences have witnessed significant progresses in hemostatic materials which have saved lives by supporting natural hemostatic ability. However, for the treatment of coagulopathy, where natural hemostatic ability is dysfunctional,...
Collapse
|
11
|
Mizuno Y, Watanabe S, Katano M, Yanagihara T, Maki N, Sato Y, Taguchi T. Comparative study of hydrophobically modified gelatin-based sealant with commercially available sealants. J Biomed Mater Res A 2021; 110:909-915. [PMID: 34866336 DOI: 10.1002/jbm.a.37339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/08/2021] [Accepted: 11/19/2021] [Indexed: 11/06/2022]
Abstract
Air leakage is one of the major complications related to pulmonary surgeries. To reduce this complication, we developed a decyl group (C10)-modified Alaska pollock gelatin (ApGltn) (C10-ApGltn) sealant and evaluated its practical performance against commercially available sealants, Beriplast® and DuraSeal®. C10-ApGltn was synthesized by reductive amination of the amino groups in ApGltn with decanal. C10-ApGltn was crosslinked with a poly(ethylene glycol)-based crosslinker to form a tissue sealant. The crosslinking time of the C10-ApGltn sealant was fast enough for curing on tissue and application as a spray system. Although the percent swelling of C10-ApGltn and DuraSeal was significantly greater than Beriplast, C10-ApGltn and DuraSeal exhibited excellent tissue sealing properties on pleura tissue under a long-term moist condition. Additionally, C10-ApGltn and DuraSeal did not cause severe inflammatory responses in a rat subcutaneous example. Therefore, C10-ApGltn sealant had comparable tissue sealing properties to DuraSeal under a moist condition, indicating the potential of C10-ApGltn sealant for pulmonary surgeries.
Collapse
Affiliation(s)
- Yosuke Mizuno
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, Japan.,Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, Ibaraki, Japan
| | - Shiharu Watanabe
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, Ibaraki, Japan
| | - Mayumi Katano
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, Ibaraki, Japan
| | | | - Naoki Maki
- Department of Thoracic Surgery, University of Tsukuba, Ibaraki, Japan
| | - Yukio Sato
- Department of Thoracic Surgery, University of Tsukuba, Ibaraki, Japan
| | - Tetsushi Taguchi
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, Japan.,Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, Ibaraki, Japan
| |
Collapse
|
12
|
Mizuno Y, Taguchi T. Fish Gelatin-Based Absorbable Dural Sealant with Anti-inflammatory Properties. ACS Biomater Sci Eng 2021; 7:4991-4998. [PMID: 34596382 DOI: 10.1021/acsbiomaterials.1c00734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cerebrospinal fluid (CSF) leakage from the dura mater during craniotomy is a common complication, which is associated with infection, meningitis, pneumocephalus, and delayed wound healing. In the present study, we developed an absorbable fish gelatin-based anti-inflammatory sealant for dura mater sealing to prevent CSF leakage. Gelatin derived from Alaska pollock (ApGltn) was modified with α-linolenic acid (ALA), an omega-3 fatty acid that exhibits anti-inflammatory properties, and cross-linked with a poly(ethylene glycol)-based cross-linker to develop ALA-ApGltn sealant (ALA-Seal). ALA-Seal demonstrated a higher storage modulus and tangent delta (tan δ) compared with those of the original ApGltn sealant (Org-Seal). The swelling ratio of ALA-Seal was markedly lower than that of DuraSeal, a commercially available dural sealant. Ex vivo burst strength measurements using porcine dura mater indicated that there was no significant difference between DuraSeal and ALA-Seal, despite ALA-Seal having an order of magnitude lower storage modulus. The anti-inflammatory properties of ALA-Seal, evaluated using brain microglial cells, were considerably higher than those of DuraSeal and Org-Seal, with a minimal adverse effect on cell viability. Therefore, compared to DuraSeal, ALA-Seal is a potential dural sealant with a lower swelling ratio, similar burst strength, and higher anti-inflammatory properties, which may prevent CSF leakage.
Collapse
Affiliation(s)
- Yosuke Mizuno
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.,Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tetsushi Taguchi
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.,Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
13
|
Chen X, Taguchi T. Enhanced skin adhesive property of α-cyclodextrin/nonanyl group-modified poly(vinyl alcohol) inclusion complex film. Carbohydr Polym 2021; 263:117993. [PMID: 33858580 DOI: 10.1016/j.carbpol.2021.117993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/19/2021] [Accepted: 03/24/2021] [Indexed: 01/02/2023]
Abstract
For skin contact medical devices, realizing a strong contact with skin is essential to precisely detect human biological information and enable human-machine interaction. In this study, we aimed to fabricate and characterize an inclusion complex film (ICF) for skin adhesion using α-cyclodextrin (α-CD) and nonanyl group-modified PVA (C9-PVA) under wet conditions. Based on the water insolubility of C9-PVA and the inclusion ability of α-CD for alkyl groups, α-CD/C9-PVA ICF was prepared. Among the prepared ICFs, α-CD/2.5C9-PVA (w/w = 0.5) ICF showed the highest bonding strength and T-peeling strength to porcine skin. Furthermore, α-CD/2.5C9-PVA (w/w = 0.5) ICF had better water vapor transmission rate than that of commercial tapes. In addition, the ion permeability test revealed that α-CD/2.5C9-PVA (w/w = 0.5) ICF exhibited excellent Na and Cl ion permeability. These results demonstrated that the multi-functional α-CD/2.5C9-PVA (w/w = 0.5) ICF can be a promising adhesive for skin contact medical devices.
Collapse
Affiliation(s)
- Xi Chen
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Tetsushi Taguchi
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| |
Collapse
|
14
|
Yanagihara T, Maki N, Wijesinghe AI, Sato S, Saeki Y, Kitazawa S, Yamaoka M, Kobayashi N, Kikuchi S, Goto Y, Ichimura H, Watnabe S, Taguchi T, Sato Y. Efficacy of Alaska pollock gelatin sealant for pulmonary air leakage in porcine models. Ann Thorac Surg 2021; 113:1641-1647. [PMID: 34102175 DOI: 10.1016/j.athoracsur.2021.05.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/22/2021] [Accepted: 05/06/2021] [Indexed: 11/01/2022]
Abstract
BACKGROUND Postoperative prolonged air leakage is a frequent complication following lung resection. We have developed a new sealant based on a hydrophobically modified Alaska pollock-derived gelatin (ApGltn) sealant. The purpose of this study was to evaluate the adhesive strength of the ApGltn sealant in comparison with a fibrin sealant using a new spray system in ex vivo and in vivo models. METHODS Pleural defects in ex vivo and in vivo porcine models were created, to which the ApGltn sealant or the fibrin sealant was applied. The pressure resistance was assessed with a stepwise increase in airway pressure to confirm air leakage from the sealing site. Tissue samples covered with each sealant were obtained for histologic assessment. RESULTS In the ex vivo experiment, the leak pressures of the ApGltn sealant were significantly greater than those of the fibrin sealant (102.94 ± 15.6 cmH2O and 28.37 ± 5.1 cmH2O, respectively) (p < 0.01). In the in vivo experiment, the leak pressures of the ApGltn sealant were also significantly greater than those of the fibrin sealant (68.82 ± 18.04 cmH2O and 43.33 ± 7.13 cmH2O, respectively) (p = 0.043). The histologic examination confirmed that the ApGltn sealant adhered tightly to both the pleura and the surface of the pleural defect. CONCLUSIONS The ApGltn sealant has sufficiently high adhesive quality in ex vivo and in vivo porcine lungs, which could be considered suitable and effective for use in the prevention of air leakage from the lungs.
Collapse
Affiliation(s)
- Takahiro Yanagihara
- University of Tsukuba, Faculty of Medicine, Department of Thoracic Surgery, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Naoki Maki
- University of Tsukuba, Faculty of Medicine, Department of Thoracic Surgery, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - A I Wijesinghe
- University of Tsukuba, Faculty of Medicine, Department of Thoracic Surgery, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Shoko Sato
- University of Tsukuba, Faculty of Medicine, Department of Thoracic Surgery, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Yusuke Saeki
- University of Tsukuba, Faculty of Medicine, Department of Thoracic Surgery, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Shinsuke Kitazawa
- University of Tsukuba, Faculty of Medicine, Department of Thoracic Surgery, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Masatoshi Yamaoka
- University of Tsukuba, Faculty of Medicine, Department of Thoracic Surgery, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Naohiro Kobayashi
- University of Tsukuba, Faculty of Medicine, Department of Thoracic Surgery, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Shinji Kikuchi
- University of Tsukuba, Faculty of Medicine, Department of Thoracic Surgery, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Yukinobu Goto
- University of Tsukuba, Faculty of Medicine, Department of Thoracic Surgery, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Hideo Ichimura
- University of Tsukuba, Faculty of Medicine, Department of Thoracic Surgery, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Shiharu Watnabe
- National Institute for Materials Science, Research Center for Functional Materials, Polymer-Bio Field, 1-1 Namiki, Tsukuba, Ibaraki, Japan
| | - Tetsushi Taguchi
- National Institute for Materials Science, Research Center for Functional Materials, Polymer-Bio Field, 1-1 Namiki, Tsukuba, Ibaraki, Japan
| | - Yukio Sato
- University of Tsukuba, Faculty of Medicine, Department of Thoracic Surgery, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
15
|
Chen X, Taguchi T. Bonding a titanium plate and soft tissue interface by using an adhesive bone paste composed of α-tricalcium phosphate and α-cyclodextrin/nonanyl group-modified poly(vinyl alcohol) inclusion complex. Colloids Surf B Biointerfaces 2021; 203:111757. [PMID: 33862571 DOI: 10.1016/j.colsurfb.2021.111757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
Adhesive bone pastes for dental implants and soft tissue interfaces were developed using α-tricalcium phosphate (α-TCP) and α-cyclodextrin (α-CD)/nonanyl group-modified poly(vinyl alcohol) (C9-PVA) inclusion complex solution (ICS). The thixotropic solution of α-CD/C9-PVA ICS was prepared by mixing α-CD and C9-PVA in deionized water. The α-CD/C9-PVA bone paste led to the highest bonding and shear adhesion between commercial pure titanium plates and soft tissue like collagen casing. Moreover, the compressive strength of these pastes reached 14.1 ± 3.8 MPa within 24 h incubation. Young's modulus of the α-CD/C9-PVA bone paste was lower than that of commercial calcium phosphate paste. Furthermore, the surface of α-CD/C9-PVA bone paste demonstrated excellent cell adhesion for cultured L929 fibroblast cells. Overall, the α-CD/C9-PVA bone paste can likely be effectively used to adhere dental implant abutments and soft tissue interfaces.
Collapse
Affiliation(s)
- Xi Chen
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Tetsushi Taguchi
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| |
Collapse
|
16
|
Chen X, Taguchi T. Enhanced skin adhesive property of electrospun α-cyclodextrin/nonanyl group-modified poly(vinyl alcohol) inclusion complex fiber sheet. RSC Adv 2021; 11:8759-8766. [PMID: 35423382 PMCID: PMC8695218 DOI: 10.1039/d1ra00422k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/18/2021] [Indexed: 11/27/2022] Open
Abstract
Many medical tapes on the market lack sufficient adhesive strength and breathability. Owing to its high biocompatibility, poly(vinyl alcohol) (PVA), a synthetic polymer, has attracted attention in the medical field. In this study, we aimed to prepare an inclusion complex fiber (ICFiber) using α-cyclodextrin (α-CD) and nonanyl-group-modified PVA (C9-PVA) for skin adhesion with improved performance. By changing the concentration of α-CD, six microfiber sheets were fabricated by electrospinning the α-CD/2.3C9-PVA inclusion complex solutions. The bonding strength and energy of the ICFiber sheets on the porcine skin were evaluated. Among the tested ICFiber sheets, the ICFiber-3 (molar ratio of α-CD/C9 groups was 0.612) sheet showed high tensile strength and break strain. The bonding strength and energy of ICFiber-3 sheet on porcine skin were 1.10 ± 0.11 N and 5.07 ± 0.94 J m-2, respectively, in the presence of water. In addition, ICFiber-3 sheet showed a better water vapor transmission rate (0.95 ± 0.02 mL per day) than commercial tapes. These results demonstrate that the α-CD/2.3C9-PVA ICFiber sheet is a promising adhesive for wearable medical devices.
Collapse
Affiliation(s)
- Xi Chen
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science 1-1 Namiki, Tsukuba Ibaraki 305-0044 Japan
| | - Tetsushi Taguchi
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science 1-1 Namiki, Tsukuba Ibaraki 305-0044 Japan
| |
Collapse
|
17
|
Ichimaru H, Mizuno Y, Chen X, Nishiguchi A, Taguchi T. Prevention of pulmonary air leaks using a biodegradable tissue-adhesive fiber sheet based on Alaska pollock gelatin modified with decanyl groups. Biomater Sci 2021; 9:861-873. [PMID: 33236729 DOI: 10.1039/d0bm01302a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tissue adhesives have been widely used in surgery to treat pulmonary air leaks. However, conventional adhesives have poor interfacial strength under wet conditions. To overcome this clinical problem, we modified Alaska pollock-derived gelatin to include decanyl (C10) groups (C10-ApGltn) and used electrospinning to create a tissue-adhesive fiber sheet (AdFS). C10-AdFS showed higher burst strength when adhering to porcine pleura compared with a sheet of original ApGltn (Org-ApGltn). Hematoxylin-eosin-stained sections after burst experiments reveal that a dense C10-AdFS layer remained on the surface of the porcine pleura. The effect of the degree of C10 modification of ApGltn on the burst strength was evaluated. ApGltn with a C10 modification ratio of 13 mol% amino groups (13C10-AdFS) exhibited the highest burst strength. Furthermore, from ex vivo experiments with extracted rat lung, 13C10-AdFS exhibited a higher burst strength (41 cm H2O) than Org-AdFS. The decanyl groups in 13C10-AdFS interacted with the hydrophobic proteins and the lipid bilayers of the cells, resulting in the high interfacial strength between 13C10-AdFS and the pleura. Moreover, 13C10-AdFS samples implanted subcutaneously in the backs of rats were completely degraded within 21 days without any severe inflammation. These results show that 13C10-AdFS is a promising adhesive material for the treatment of pulmonary air leaks.
Collapse
Affiliation(s)
- Hiroaki Ichimaru
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | | | | | | | | |
Collapse
|
18
|
Mizuta R, Mizuno Y, Chen X, Kurihara Y, Taguchi T. Evaluation of an octyl group-modified Alaska pollock gelatin-based surgical sealant for prevention of postoperative adhesion. Acta Biomater 2021; 121:328-338. [PMID: 33326886 DOI: 10.1016/j.actbio.2020.12.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Postoperative adhesion can lead to an increase in the number of surgeries required, longer operation times, and high medical costs, resulting in the quality of life of the patient being lowered. To address these clinical problems, we developed a surgical sealant with anti-adhesion properties for the prevention of postoperative adhesion following application to the large intestine surface. The developed sealant was composed of octyl (C8) group-modified Alaska pollock-derived gelatin (C8-ApGltn) and a poly(ethylene)glycol-based 4-armed crosslinker (4S-PEG) (C8-ApGltn/4S-PEG sealant). Hydrophobic modification of the ApGltn molecule with C8 groups effectively enhanced both the burst strength on the large intestine surface and the bulk modulus. An in vitro anti-adhesion test indicated that cured C8-ApGltn/4S-PEG sealant adhered to the large intestine surface showed low adhesive strength compared with commercial anti-adhesion film. Besides, cured C8-ApGltn/4S-PEG sealant effectively inhibited albumin permeation and penetration of L929 fibroblasts. In vivo experiments using a rat peritoneal anti-adhesion model showed that C8-ApGltn/4S-PEG sealant acted as a sealing barrier on the target cecum surface and also provided an anti-adhesion barrier to prevent postoperative adhesion between the peritoneum and cecum. C8-ApGltn/4S-PEG sealant showed sufficient cytocompatibility and biodegradability and therefore has potential for use in gastroenterological surgery.
Collapse
Affiliation(s)
- Ryo Mizuta
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan; Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yosuke Mizuno
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan; Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Xi Chen
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yukari Kurihara
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tetsushi Taguchi
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan; Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| |
Collapse
|
19
|
Ichimaru H, Taguchi T. Improved tissue adhesion property of a hydrophobically modified Alaska pollock derived gelatin sheet by UV treatment. Int J Biol Macromol 2021; 172:580-588. [PMID: 33476616 DOI: 10.1016/j.ijbiomac.2021.01.085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 12/15/2022]
Abstract
Tissue adhesives have been developed for sealing tissue damaged in surgery. Among these, sheet-type adhesives require a relatively long time to adhere to biological tissue under wet conditions. To address this clinical problem, we fabricated a tissue-adhesive fiber sheet (AdFS) based on decanyl group (C10) modified Alaska pollock-derived gelatin (C10-ApGltn) using electrospinning. Ultraviolet (UV) irradiation of the AdFS was performed to increase the affinity between the AdFS and wet biological tissue by introducing hydrophilic functional groups. The UV irradiated AdFS (UV-C10-AdFS) strongly adhered to porcine pleura within 2 min under wet conditions and showed higher burst strength compared with the original ApGltn (Org-ApGltn) sheet. Hematoxylin-eosin stained sections revealed that a dense UV-C10-AdFS layer remained on the surface of the porcine pleura even after burst strength measurement. Moreover, UV-C10-AdFS has excellent cytocompatibility and efficiently supports the growth of L929 cells. UV-C10-AdFS is a promising adhesive material for sealing wet biological tissue.
Collapse
Affiliation(s)
- Hiroaki Ichimaru
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan; Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tetsushi Taguchi
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan; Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| |
Collapse
|
20
|
Mizuno Y, Watanabe S, Taguchi T. Tissue-sealing and anti-adhesion properties of an in situ hydrogel of hydrophobically-modified Alaska pollock-derived gelatin. Int J Biol Macromol 2020; 163:2365-2373. [DOI: 10.1016/j.ijbiomac.2020.09.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/31/2020] [Accepted: 09/12/2020] [Indexed: 12/17/2022]
|
21
|
Mizuno Y, Taguchi T. Anti-Inflammatory and Tissue Adhesion Properties of an α-Linolenic Acid-Modified Gelatin-Based In Situ Hydrogel. ACS APPLIED BIO MATERIALS 2020; 3:6204-6213. [PMID: 35021753 DOI: 10.1021/acsabm.0c00737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Poly unsaturated fatty acids (PUFAs)-natural chemicals derived from fish and nuts-have anti-inflammatory and antioxidative properties that are attributed to the inhibition of inflammatory pathways and the radical scavenging activity of their double bonds. In this study, Alaska pollock-derived gelatin (ApGltn), which has a low sol-gel transition temperature, was modified with α-linolenic acid (ALA) to obtain ALA-ApGltn, which was subsequently cross-linked to give a hydrogel (ALA-gel). Although the elastic modulus of ALA-gel and nonmodified ApGltn gel (Org-gel) was almost the same, ALA-gel exhibited a higher tan δ as well as a lower swelling ratio and enzymatic degradation rate than Org-gel. Moreover, ALA-gel showed enhanced tissue adhesive strength compared with a commercial fibrin adhesive. The concentration of a tumor necrosis factor (TNF)-α secreted from macrophage-like cells and the intracellular mitochondrial activity indicated that ALA-ApGltn exerted anti-inflammatory effects and maintained cell viability compared with the higher toxicity nonconjugated ALA. In addition, ALA-gel demonstrated suppressed formation of lamellipodia and secretion of TNF-α. ALA-gel therefore has potential as an adhesive biomaterial for wound sealing and treating burn injuries.
Collapse
Affiliation(s)
- Yosuke Mizuno
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.,Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tetsushi Taguchi
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.,Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
22
|
Chen X, Nishiguchi A, Taguchi T. Adhesive Submucosal Injection Material Based on the Nonanal Group-Modified Poly(vinyl alcohol)/α-Cyclodextrin Inclusion Complex for Endoscopic Submucosal Dissection. ACS APPLIED BIO MATERIALS 2020; 3:4370-4379. [DOI: 10.1021/acsabm.0c00384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xi Chen
- Polymer-Bio Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Akihiro Nishiguchi
- Polymer-Bio Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tetsushi Taguchi
- Polymer-Bio Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
23
|
Nishiguchi A, Kurihara Y, Taguchi T. Hemostatic, Tissue-Adhesive Colloidal Wound Dressing Functionalized by UV Irradiation. ACS APPLIED BIO MATERIALS 2020; 3:1705-1711. [DOI: 10.1021/acsabm.0c00015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Akihiro Nishiguchi
- Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yukari Kurihara
- Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tetsushi Taguchi
- Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
24
|
Chen X, Taguchi T. Enhanced Skin Adhesive Property of Hydrophobically Modified Poly(vinyl alcohol) Films. ACS OMEGA 2020; 5:1519-1527. [PMID: 32010825 PMCID: PMC6990645 DOI: 10.1021/acsomega.9b03305] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 12/18/2019] [Indexed: 05/05/2023]
Abstract
Hydrophobically modified poly(vinyl alcohol) (hm-PVA) films with various alkyl chain lengths were prepared. Their surface/mechanical properties, cytocompatibility, and porcine skin adhesion strength were evaluated. hm-PVAs had 10 °C higher glass transition temperature than poly(vinyl alcohol) (PVA) (33.4 ± 2.5 °C). The water contact angle of the hm-PVA films increased with alkyl chain length and/or hydrophobic group modification ratio. The tensile strength of the hm-PVA films decreased with increasing alkyl chain length and/or hydrophobic group modification ratio. hm-PVA with short chain lengths (4 mol % propanal-modified PVA; 4C3-PVA) had low cytotoxicity compared with long alkyl chain length hm-PVAs (4 mol % hexanal and nonanal-modified PVA; 4C6-PVA and 4C9-PVA). The 4C3-PVA film had the highest porcine skin adhesion strength. Thus, the 4C3-PVA film is promising as an adhesive for wearable medical devices.
Collapse
Affiliation(s)
- Xi Chen
- Graduate
School of Pure and Applied Sciences, University
of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Biomaterials
Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tetsushi Taguchi
- Graduate
School of Pure and Applied Sciences, University
of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Biomaterials
Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- E-mail: . Phone: +81-29-851-4498. Fax: +81-29-860-4752
| |
Collapse
|
25
|
Design of bio-inspired adhesive surface composed of hexanoyl group-modified gelatin and silicon nanowire. Colloids Surf B Biointerfaces 2019; 178:111-119. [DOI: 10.1016/j.colsurfb.2019.02.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/06/2018] [Accepted: 02/27/2019] [Indexed: 11/18/2022]
|
26
|
Yamaoka M, Maki N, Wijesinghe A, Sato S, Yanagihara T, Kobayashi N, Kikuchi S, Goto Y, Taguchi T, Sato Y. Novel Alaska Pollock Gelatin Sealant Shows High Adhesive Quality and Conformability. Ann Thorac Surg 2019; 107:1656-1662. [DOI: 10.1016/j.athoracsur.2018.11.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/06/2018] [Accepted: 11/29/2018] [Indexed: 12/29/2022]
|
27
|
Mizuno Y, Taguchi T. Promotion of Cell Migration into a Hydrophobically modified Alaska Pollock Gelatin‐Based Hydrogel. Macromol Biosci 2019; 19:e1900083. [DOI: 10.1002/mabi.201900083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/26/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Yosuke Mizuno
- Graduate School of Pure and Applied SciencesUniversity of Tsukuba 1–1–1 Tennodai Tsukuba Ibaraki 305–8577 Japan
| | - Tetsushi Taguchi
- Graduate School of Pure and Applied SciencesUniversity of Tsukuba 1–1–1 Tennodai Tsukuba Ibaraki 305–8577 Japan
- Biomaterials FieldResearch Center for Functional MaterialsNational Institute for Materials Science 1–1 Namiki Tsukuba Ibaraki 305–0044 Japan
| |
Collapse
|
28
|
Mizuta R, Taguchi T. Hemostatic properties of in situ gels composed of hydrophobically modified biopolymers. J Biomater Appl 2018; 33:315-323. [DOI: 10.1177/0885328218790313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Hemorrhaging often occurs during cardiac surgery, and postoperative bleeding is associated with medical complications or even death. Medical complications resulting from hemorrhaging can lead to longer hospital stays, thus increasing costs. Hemostatic agents are the main treatment for bleeding. In the present study, hemostatic agents composed of aldehyde groups and hydrophobically modified with hyaluronic acid (ald-hm-HyA) and hydrophobically modified gelatin (hm-ApGltn) were developed and their hemostatic effects were evaluated. These modified hemostatic agents formed more stable blood clots compared with the nonhydrophobically modified HyA-based hemostatic agent. The bulk strength of the whole blood clot using the aldehyde and stearoyl group-modified hyaluronic acid (ald-C18-HyA)/hm-ApGltn-based hemostatic agent was higher than that of the aldehyde group only modified HyA (ald-HyA)/hm-ApGltn-based hemostatic agent. Rheological experiments using α-cyclodextrin showed that hydrophobic modification of HyA with C18 groups effectively enhanced anchoring to the red blood cell surface. Therefore, the ald-hm-HyA/hm-ApGltn-based hemostatic agent has potential applications in cardiac surgery.
Collapse
Affiliation(s)
- Ryo Mizuta
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Tetsushi Taguchi
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| |
Collapse
|
29
|
Mizuno Y, Mizuta R, Hashizume M, Taguchi T. Enhanced sealing strength of a hydrophobically-modified Alaska pollock gelatin-based sealant. Biomater Sci 2017; 5:982-989. [DOI: 10.1039/c6bm00829a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel tissue sealant composed of hydrophobically-modified Alaska pollock gelatin and polyethylene glycol-based crosslinker showed higher sealing effect than commercially available tissue sealant.
Collapse
Affiliation(s)
- Y. Mizuno
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
- Polymeric Biomaterials Group
| | - R. Mizuta
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
- Polymeric Biomaterials Group
| | - M. Hashizume
- Faculty of Engineering
- Tokyo University of Science
- Shinjuku
- Japan
| | - T. Taguchi
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
- Polymeric Biomaterials Group
| |
Collapse
|