1
|
Dispersion Performances and Fluorescent Behaviors of Naphthalic Anhydride Doped in Poly(acrylic acid) Frameworks for pH-Sensitive Ibuprofen Delivery via Fractal Evolution. Polymers (Basel) 2023; 15:polym15030596. [PMID: 36771896 PMCID: PMC9921450 DOI: 10.3390/polym15030596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The pH-responsive fluorescent P(1,8-naphthalic anhydride (NA)-acrylic acid (AA)) matrix was successfully prepared by a doping method using poly(acrylic acid) (PAA) as a pH-sensitive polymer and NA as a fluorescent tracer. The fluorescent behaviors of the used NA dispersed in PAA frameworks were demonstrated based on fractal features combined with various characterizations, such as small-angle X-ray scattering (SAXS) patterns, photoluminescence (PL) spectra, scanning electron microscope (SEM) images, thermogravimetry (TG) profiles, Fourier transform infrared (FT-IR) spectroscopy, and time-resolved decays. The effects of NA-doping on the representative fluorescent P(NA-AA) were investigated, in which the fluorescent performance of the doped NA was emphasized. The results indicated that aggregated clusters of the doped NA were gradually serious with an increase in NA doping amount or extension of NA doping time, accompanied by an increase in mass fractal dimension (Dm) values. Meanwhile, the doped NA presented stable fluorescent properties during the swelling-shrinking process of PAA. Ibuprofen (IBU) was used as a model drug, and fractal evolutions of the obtained P(NA-AA) along with the drug loading and releasing behaviors were evaluated via SAXS patterns, in which the drug-loaded P(NA-AA) presented surface fractal (Ds) characteristics, while the Dm value varied from 2.94 to 2.58 during sustained drug-release in pH 2.0, indicating occurrences of its structural transformation from dense to loose with extension of IBU-releasing time. Finally, the cytotoxicity and cellular uptake behaviors of the obtained P(NA-AA) were preliminarily explored. These demonstrations revealed that the resultant P(NA-AA) should be a potential intelligent-responsive drug carrier for targeted delivery.
Collapse
|
2
|
Bie BJ, Zhao XR, Yan JR, Ke XJ, Liu F, Yan GP. Dextran Fluorescent Probes Containing Sulfadiazine and Rhodamine B Groups. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196747. [PMID: 36235281 PMCID: PMC9571416 DOI: 10.3390/molecules27196747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022]
Abstract
Fluorescent imaging has been expanded, as a non-invasive diagnostic modality for cancers, in recent years. Fluorescent probes in the near-infrared window can provide high sensitivity, resolution, and signal-to-noise ratio, without the use of ionizing radiation. Some fluorescent compounds with low molecular weight, such as rhodamine B (RhB) and indocyanine green (ICG), have been used in fluorescent imaging to improve imaging contrast and sensitivity; however, since these probes are excreted from the body quickly, they possess significant restrictions for imaging. To find a potential solution to this, this work investigated the synthesis and properties of novel macromolecular fluorescent compounds. Herein, water-soluble dextran fluorescent compounds (SD-Dextran-RhB) were prepared by the attachment of RhB and sulfadiazine (SD) derivatives to dextran carrier. These fluorescent compounds were then characterized through IR, 1H NMR, 13C NMR, UV, GPC, and other methods. Assays of their cellular uptake and cell cytotoxicity and fluorescent imaging were also performed. Through this study, it was found that SD-Dextran-RhB is sensitive to acidic conditions and possesses low cell cytotoxicities compared to normal 293 cells and HepG2 and HeLa tumor cells. Moreover, SD-Dextran-RhB demonstrated good fluorescent imaging in HepG2 and HeLa cells. Therefore, SD-Dextran-RhB is suitable to be potentially applied as a probe in the fluorescent imaging of tumors.
Collapse
Affiliation(s)
- Bi-Jie Bie
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiao-Rui Zhao
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jia-Rui Yan
- Faculty of Science, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Xi-Jun Ke
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fan Liu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Correspondence: (F.L.); (G.-P.Y.); Tel./Fax: +86-27-6552-0576 (F.L.)
| | - Guo-Ping Yan
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Correspondence: (F.L.); (G.-P.Y.); Tel./Fax: +86-27-6552-0576 (F.L.)
| |
Collapse
|
3
|
Sayed SM, Jia HR, Jiang YW, Zhu YX, Ma L, Yin F, Hussain I, Khan A, Ma Q, Wu FG, Lu X. Photostable AIE probes for wash-free, ultrafast, and high-quality plasma membrane staining. J Mater Chem B 2021; 9:4303-4308. [PMID: 33908594 DOI: 10.1039/d1tb00049g] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Plasma membrane (PM), a fundamental building component of a cell, is responsible for a variety of cell functions and biological processes. However, it is still challenging to acquire its morphology and morphological variation information via an effective approach. Herein, we report a PM imaging study regarding an aggregation-induced emission luminogen (AIEgen) called tetraphenylethylene-naphthalimide+ (TPE-NIM+), which is derived from our previously reported tetraphenylethylene-naphthalimide (TPE-NIM). The designed AIEgen (TPE-NIM+) shows significant characteristics of ultrafast staining, high photostability, wash-free property, and long retention time at the PM, which can structurally be correlated with its positively charged quaternary amine and hydrophobic moiety. TPE-NIM+ is further applied for staining of different cell lines, proving its universal PM imaging capability. Most importantly, we demonstrate that TPE-NIM+ can clearly delineate the contours of densely packed living cells with high cytocompatibility. Therefore, TPE-NIM+ as a PM imaging reagent superior to currently available commercial PM dyes shall find a number of applications in the biological/biomedical fields and even beyond.
Collapse
Affiliation(s)
- Sayed Mir Sayed
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Yao-Wen Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Liang Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Feifei Yin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Imtiaz Hussain
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Arshad Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Qian Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Xiaolin Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| |
Collapse
|
4
|
Gemeinder JLP, Barros NRD, Pegorin GS, Singulani JDL, Borges FA, Arco MCGD, Giannini MJSM, Almeida AMF, Salvador SLDS, Herculano RD. Gentamicin encapsulated within a biopolymer for the treatment of Staphylococcus aureus and Escherichia coli infected skin ulcers. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:93-111. [PMID: 32897812 DOI: 10.1080/09205063.2020.1817667] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Skin wound infection requires carefully long-term treatment with an immense financial burden to healthcare systems worldwide. Various strategies such as drug delivery systems using polymer matrix from natural source have been used to enhance wound healing. Natural rubber latex (NRL) from Hevea brasiliensis has shown angiogenic and tissue repair properties. Gentamicin sulfate (GS) is a broad-spectrum antibiotic which inhibits the growth of a wide variety of microorganisms and, because of this, it has also been applied topically for treatment of local infections. The aim of this study was to develop a GS release system using NRL as matrix for Staphylococcus aureus and Escherichia coli infected skin ulcers treatment, without changing drug antibiotic properties. The matrix did not change the GS antimicrobial activity against S. aureus and E. coli strains. Moreover, the NRL-GS biomembrane did not exhibit hemolytic activity, being non-toxic to red blood cells. The eluates of NRL-GS biomembranes and GS solutions did not significantly reduce the survival of Caenorhabditis elegans worms for 24 h at any of the tested concentrations. Thus, these results emphasize that the NRL-GS biomembrane proved to be a promising biomaterial for future studies on the development of dressings for topical uses, inexpensive and practicable, keeping drug antibiotic properties against pathogens and to reduce the side effects.
Collapse
Affiliation(s)
- José Lúcio Pádua Gemeinder
- Department of Biotechnology, São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, São Paulo, Brazil.,Department of Biochemistry and Chemical Technology, São Paulo State University (UNESP), Institute of Chemistry, Araraquara, São Paulo, Brazil
| | - Natan Roberto de Barros
- Department of Biochemistry and Chemical Technology, São Paulo State University (UNESP), Institute of Chemistry, Araraquara, São Paulo, Brazil.,Department of Biotechnology and Bioprocesses Engineering, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Giovana Sant'Ana Pegorin
- Department of Biochemistry and Chemical Technology, São Paulo State University (UNESP), Institute of Chemistry, Araraquara, São Paulo, Brazil.,Department of Biotechnology and Bioprocesses Engineering, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Junya de Lacorte Singulani
- Department of Clinical Analysis, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Felipe Azevedo Borges
- Department of Biochemistry and Chemical Technology, São Paulo State University (UNESP), Institute of Chemistry, Araraquara, São Paulo, Brazil.,Department of Biotechnology and Bioprocesses Engineering, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Marina Constante Gabriel Del Arco
- Department of Clinical, Toxicological and Bromatological Analysis, São Paulo University (USP), School of Pharmaceutical Sciences, Ribeirão Preto, São Paulo, Brazil
| | - Maria José Soares Mendes Giannini
- Department of Clinical Analysis, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Ana Marisa Fusco Almeida
- Department of Clinical Analysis, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Sérgio Luiz de Souza Salvador
- Department of Clinical, Toxicological and Bromatological Analysis, São Paulo University (USP), School of Pharmaceutical Sciences, Ribeirão Preto, São Paulo, Brazil
| | - Rondinelli Donizetti Herculano
- Department of Biotechnology and Bioprocesses Engineering, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| |
Collapse
|
5
|
Zhang K, Zhuang Y, Li J, Liu X, He S. Poly(Acrylic Acid)-Modified MoS 2 Nanoparticle-Based Transdermal Delivery of Atenolol. Int J Nanomedicine 2020; 15:5517-5526. [PMID: 32801703 PMCID: PMC7414933 DOI: 10.2147/ijn.s257906] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/15/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Hypertension is a major health problem worldwide and is typically treated using oral drugs. However, the frequency of oral administration may result in poor patient compliance, and reduced bioavailability owing to the first-pass effect can also prove problematic. Methods In this study, we developed a new transdermal-drug-delivery system (TDDS) for the treatment of hypertension using atenolol (ATE) based on poly(acrylic acid) (PAA)-decorated three-dimensional (3D) flower-like MoS2 nanoparticles (PAA-MoS2 NPs) that respond to NIR laser irradiation. The PAA-modified MoS2 NPs were synthesized and characterized using attenuated total reflection Fourier-transform infrared spectroscopy, X-ray diffraction measurements, scanning electron microscopy, transmission electron microscopy, dynamic light scattering, and the sedimentation equilibrium method. The drug-loading efficiency and photothermal conversion effect were also explored. Results The results showed that the colloidally stable PAA-MoS2 NPs exhibited a high drug-loading capacity of 54.99% and high photothermal conversion ability. Further, the capacity of the PAA-MoS2 NPs for controlled release was explored using in vitro drug-release and skin-penetration studies. The drug-release percentage was 44.72 ± 1.04%, and skin penetration was enhanced by a factor of 1.85 in the laser-stimulated group. Sustained and controlled release by the developed TDDS were observed with laser stimulation. Moreover, in vivo erythema index analysis verified that the PAA-MoS2 NPs did not cause skin irritation. Discussion Our findings demonstrate that PAA-MoS2 NPs can be used as a new carrier for transdermal drug delivery for the first time.
Collapse
Affiliation(s)
- Kai Zhang
- College of Science and Technology, Hebei Agricultural University, Cangzhou, People's Republic of China
| | - Yanling Zhuang
- College of Humanities and Management, Hebei Agricultural University, Cangzhou, People's Republic of China
| | - Jiwen Li
- College of Science and Technology, Hebei Agricultural University, Cangzhou, People's Republic of China
| | - Xiaochang Liu
- School of Pharmacy, Shenyang Medical College, Shenyang, People's Republic of China.,Translational Medicine Research Centre, Shenyang Medical College, Shenyang, People's Republic of China
| | - Shaoheng He
- Translational Medicine Research Centre, Shenyang Medical College, Shenyang, People's Republic of China
| |
Collapse
|
6
|
Liu F, Shen Y, Chen S, Yan G, Zhang Q, Guo Q, Gu Y. Tumor‐Targeting Fluorescent Probe Based on 1,8‐Naphthalimide and Porphyrin Groups. ChemistrySelect 2020. [DOI: 10.1002/slct.202001340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fan Liu
- School of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430205 China
- School of MechanicalMedical & Process EngineeringScience and Engineering FacultyQueensland University of Technology Brisbane QLD 4001 Australia
| | - Yan‐Chun Shen
- School of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430205 China
| | - Si Chen
- School of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430205 China
| | - Guo‐Ping Yan
- School of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430205 China
| | - Qiao Zhang
- School of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430205 China
| | - Qing‐Zhong Guo
- School of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430205 China
| | - Yuan‐Tong Gu
- School of MechanicalMedical & Process EngineeringScience and Engineering FacultyQueensland University of Technology Brisbane QLD 4001 Australia
| |
Collapse
|
7
|
Liu F, Yan JR, Chen S, Yan GP, Pan BQ, Zhang Q, Wang YF, Gu YT. Polypeptide-rhodamine B probes containing laminin/fibronectin receptor-targeting sequence (YIGSR/RGD) for fluorescent imaging in cancers. Talanta 2020; 212:120718. [DOI: 10.1016/j.talanta.2020.120718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022]
|
8
|
Wu T, Xu H, Liang X, Tang M. Caenorhabditis elegans as a complete model organism for biosafety assessments of nanoparticles. CHEMOSPHERE 2019; 221:708-726. [PMID: 30677729 DOI: 10.1016/j.chemosphere.2019.01.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/24/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
The number of biosafety evaluation studies of nanoparticles (NPs) using different biological models is increasing with the rapid development of nanotechnology. Thus far, nematode Caenorhabditis elegans (C. elegans), as a complete model organism, has become an important in vivo alternative assay system to assess the risk of NPs, especially at the environmental level. According to results of qualitative and quantitative analyses, it can be concluded that studies of nanoscientific research using C. elegans is persistently growing. However, the comprehensive conclusion and analysis of toxic effects of NPs in C. elegans are limited and chaotic. This review focused on the effects, especially sublethal ones, induced by NPs in C. elegans, including the development, intestinal function, immune response, neuronal function, and reproduction, as well as the underlying mechanisms of NPs causing these effects, including oxidative stress and alterations of several signaling pathways. Furthermore, we presented some factors that influence the toxic effects of NPs in C. elegans. The advantages and limitations of using nematodes in the nanotoxicology study were also discussed. Finally, we predicted that the application of C. elegans to assess long-term impacts of metal oxide NPs in the ecosystem would become a vital part of the nanoscientific research field, which provided an insight for further study.
Collapse
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China.
| | - Hongsheng Xu
- State Grid Electric Power Research Institute, NARI Group Corporation, Nanjing, 211000, China
| | - Xue Liang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China.
| |
Collapse
|