1
|
Manna S, Das K, Santra S, Nosova EV, Zyryanov GV, Halder S. Structural and Synthetic Aspects of Small Ring Oxa- and Aza-Heterocyclic Ring Systems as Antiviral Activities. Viruses 2023; 15:1826. [PMID: 37766233 PMCID: PMC10536032 DOI: 10.3390/v15091826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Antiviral properties of different oxa- and aza-heterocycles are identified and properly correlated with their structural features and discussed in this review article. The primary objective is to explore the activity of such ring systems as antiviral agents, as well as their synthetic routes and biological significance. Eventually, the structure-activity relationship (SAR) of the heterocyclic compounds, along with their salient characteristics are exhibited to build a suitable platform for medicinal chemists and biotechnologists. The synergistic conclusions are extremely important for the introduction of a newer tool for the future drug discovery program.
Collapse
Affiliation(s)
- Sibasish Manna
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Koushik Das
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Sougata Santra
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia; (S.S.); (E.V.N.); (G.V.Z.)
| | - Emily V. Nosova
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia; (S.S.); (E.V.N.); (G.V.Z.)
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russia
| | - Grigory V. Zyryanov
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia; (S.S.); (E.V.N.); (G.V.Z.)
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russia
| | - Sandipan Halder
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| |
Collapse
|
2
|
Zhou X, Wang S, Zhu Y, Pan Y, Zhang L, Yang Z. Overcoming the delivery barrier of oligonucleotide drugs and enhancing nucleoside drug efficiency: The use of nucleolipids. Med Res Rev 2019; 40:1178-1199. [PMID: 31820472 DOI: 10.1002/med.21652] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022]
Abstract
With the rapid development of synthetic technology and biological technology, many nucleic acid-based drugs have entered the clinical trials. However, their inherent disabilities in actively and efficiently penetrating cell membranes still severely restrict their further application. The main drawback of cationic lipids, which have been widely used as nonviral vectors of nucleic acids, is their high cytotoxicity. A series of nucleoside-based or nucleotide-based nucleolipids have been reported in recent years, due to their oligonucleotide delivery capacity and low toxicity in comparison with cationic lipids. Lipophilic prodrugs of nucleoside analogs have extremely similar structures with nucleolipid vectors and are thus helpful for improving the transmembrane ability. This review introduces the progress of nucleolipids and provides new strategies for improving the delivery efficiency of nucleic acid-based drugs, as well as lipophilic prodrugs of nucleosides or nucleotides for antiviral or anticancer therapies.
Collapse
Affiliation(s)
- Xinyang Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, Haidian, China
| | - Shuhe Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, Haidian, China
| | - Yuejie Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, Haidian, China
| | - Yufei Pan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, Haidian, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, Haidian, China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, Haidian, China
| |
Collapse
|
3
|
Li C, Wang J, Wang Y, Gao H, Wei G, Huang Y, Yu H, Gan Y, Wang Y, Mei L, Chen H, Hu H, Zhang Z, Jin Y. Recent progress in drug delivery. Acta Pharm Sin B 2019; 9:1145-1162. [PMID: 31867161 PMCID: PMC6900554 DOI: 10.1016/j.apsb.2019.08.003] [Citation(s) in RCA: 422] [Impact Index Per Article: 84.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 01/05/2023] Open
Abstract
Drug delivery systems (DDS) are defined as methods by which drugs are delivered to desired tissues, organs, cells and subcellular organs for drug release and absorption through a variety of drug carriers. Its usual purpose to improve the pharmacological activities of therapeutic drugs and to overcome problems such as limited solubility, drug aggregation, low bioavailability, poor biodistribution, lack of selectivity, or to reduce the side effects of therapeutic drugs. During 2015-2018, significant progress in the research on drug delivery systems has been achieved along with advances in related fields, such as pharmaceutical sciences, material sciences and biomedical sciences. This review provides a concise overview of current progress in this research area through its focus on the delivery strategies, construction techniques and specific examples. It is a valuable reference for pharmaceutical scientists who want to learn more about the design of drug delivery systems.
Collapse
Affiliation(s)
- Chong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jiancheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yiguang Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Gang Wei
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haijun Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yong Gan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongjun Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lin Mei
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Huabing Chen
- School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiping Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
4
|
Kapoor B, Gupta R, Singh SK, Gulati M, Singh S. Prodrugs, phospholipids and vesicular delivery - An effective triumvirate of pharmacosomes. Adv Colloid Interface Sci 2018; 253:35-65. [PMID: 29454464 DOI: 10.1016/j.cis.2018.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 12/11/2022]
Abstract
With the advent from the laboratory bench to patient bedside in last five decades, vesicular systems have now come to be widely accepted as pragmatic means for controlled delivery of drugs. Their success stories include those of liposomes, niosomes and even the lately developed ethosomes and transferosomes. Pharmacosomes, which, as delivery systems offer numerous advantages and have been widely researched, however, remain largely unacknowledged as a successful delivery system. Though a large number of drugs have been derivatized and formulated into self-assembled vesicular systems, the term pharmacosomes has not been widely used while reporting them. Therefore, their relative obscurity may be attributed to the non-usage of the nomenclature of pharmacosomes by the researchers working in the area. We present a review on the scenario that lead to origin of these bio-inspired vesicles composed of self-assembling amphiphilic molecules. Various drugs that have been formulated into pharmacosomes, their characterization techniques, their properties relative to those of other vesicular delivery systems, and the success achieved so far are also discussed.
Collapse
|
5
|
Li M, Zhang T, Zhu L, Wang R, Jin Y. Liposomal andrographolide dry powder inhalers for treatment of bacterial pneumonia via anti-inflammatory pathway. Int J Pharm 2017; 528:163-171. [DOI: 10.1016/j.ijpharm.2017.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/18/2017] [Accepted: 06/01/2017] [Indexed: 12/14/2022]
|
6
|
Zuo J, Tong L, Du L, Yang M, Jin Y. Biomimetic nanoassemblies of 1- O -octodecyl-2-conjugated linoleoyl- sn -glycero-3-phosphatidyl gemcitabine with phospholipase A 2 -triggered degradation for the treatment of cancer. Colloids Surf B Biointerfaces 2017; 152:467-474. [DOI: 10.1016/j.colsurfb.2017.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 10/20/2022]
|