1
|
Zhang L, Lv J, Zhang W, Yi H, Zhao M, Wang Z, Li G, Xu B, Ma C, Li J, Li M, Wang Z. Functionalized xanthohumol nanoemulsion: fabrication, characterization and bioavailability enhancement of bioactive compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9442-9450. [PMID: 39082082 DOI: 10.1002/jsfa.13767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/08/2024] [Accepted: 07/10/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Xanthohumol is an isopentadienyl flavonoid in hops, which have several pharmacological effects. However, due to the poor bioavailability of xanthohumol, it cannot be widely used. RESULT In this study, solvent extraction combined with preparative liquid chromatography was used to separate and purify xanthohumol in hop residue. And the purity, yield and recovery of xanthohumol was 983.0 ± 2.1 g kg-1, 921.61 ± 5.65 g kg-1, and 5.41 ± 0.07 g kg-1, respectively. Response surface methodology optimization revealed that 216.75 g kg-1 ethyl oleate, 574.1 g kg-1 polyoxyl-35 castor oil (EL35) and 209.15 g kg-1 polyethylene glycol 200 (PEG200) produced the xanthohumol nanoemulsion with a loading capacity of 85.40 ± 0.33 g kg-1, mean droplet diameter of 42.35 ± 0.06 nm, and zeta potential of -21.78 ± 0.18 mV. CONCLUSION Xanthohumol nanoemulsion has better relative stability. The relative oral bioavailability of xanthohumol nanoemulsion was increased by 1.76 times. These results provide a theoretical basis for the application of nanoemulsion containing xanthohumol in food and pharmaceutical industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lifen Zhang
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, P. R. China
| | - Jiaxin Lv
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, P. R. China
| | - Wenchan Zhang
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, P. R. China
| | - Huixiang Yi
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, P. R. China
| | - Mengjian Zhao
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, P. R. China
| | - Ziying Wang
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, P. R. China
| | - Gang Li
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, P. R. China
| | - Bo Xu
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, P. R. China
| | - Chengjun Ma
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, P. R. China
| | - Jinwei Li
- Gansu Yasheng lvxin Beer Raw Material Group Co., Ltd, Jiuquan, P. R. China
| | - Mei Li
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, P. R. China
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, P. R. China
| |
Collapse
|
2
|
Li ZZ, Zhong NN, Cao LM, Cai ZM, Xiao Y, Wang GR, Liu B, Xu C, Bu LL. Nanoparticles Targeting Lymph Nodes for Cancer Immunotherapy: Strategies and Influencing Factors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308731. [PMID: 38327169 DOI: 10.1002/smll.202308731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/07/2024] [Indexed: 02/09/2024]
Abstract
Immunotherapy has emerged as a potent strategy in cancer treatment, with many approved drugs and modalities in the development stages. Despite its promise, immunotherapy is not without its limitations, including side effects and suboptimal efficacy. Using nanoparticles (NPs) as delivery vehicles to target immunotherapy to lymph nodes (LNs) can improve the efficacy of immunotherapy drugs and reduce side effects in patients. In this context, this paper reviews the development of LN-targeted immunotherapeutic NP strategies, the mechanisms of NP transport during LN targeting, and their related biosafety risks. NP targeting of LNs involves either passive targeting, influenced by NP physical properties, or active targeting, facilitated by affinity ligands on NP surfaces, while alternative methods, such as intranodal injection and high endothelial venule (HEV) targeting, have uncertain clinical applicability and require further research and validation. LN targeting of NPs for immunotherapy can reduce side effects and increase biocompatibility, but risks such as toxicity, organ accumulation, and oxidative stress remain, although strategies such as biodegradable biomacromolecules, polyethylene glycol (PEG) coating, and impurity addition can mitigate these risks. Additionally, this work concludes with a future-oriented discussion, offering critical insights into the field.
Collapse
Affiliation(s)
- Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Ze-Min Cai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Chun Xu
- School of Dentistry, The University of Queensland, 288 Herston Road, Brisbane, 4066, Australia
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| |
Collapse
|
3
|
Goyal F, Chattopadhyay A, Navik U, Jain A, Reddy PH, Bhatti GK, Bhatti JS. Advancing Cancer Immunotherapy: The Potential of mRNA Vaccines As a Promising Therapeutic Approach. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202300255] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Indexed: 01/11/2025]
Abstract
AbstractmRNA vaccines have long been recognized for their ability to induce robust immune responses. The discovery that mRNA vaccines may also contribute to antitumor immunity has made them a promising therapeutic approach against cancer. Recent advances in understanding of immune system are precious in developing therapeutic strategies that target pathways involved in tumor survival and progression, leading to the most reliable therapeutic strategies in cancer treatment history. Among all traditional cancer treatments, cancer immunotherapies are less toxic and more effective, even in advanced or recurrent stages of cancer. Recent advancements in genomics and machine learning algorithms give new insight into vaccine development. mRNA vaccines are designed to interfere with stimulator of interferon genes (STING) and tumor‐infiltrating lymphocytes pathways, activating more CD8+ T‐cells involved in destroying tumor cells and inhibiting tumor growth. A stronger immune response can be achieved by incorporating immunological adjuvants alongside mRNA. Nonformulated or vehicle‐based mRNA vaccines, when combined with adjuvants, efficiently express tumor antigens through antigen‐presenting cells and stimulate both innate and adaptive immune responses. Codelivery with additional immunotherapeutic agents, such as checkpoint inhibitors, further enhances the efficacy of mRNA vaccines. This article focuses on the current clinical approaches and challenges to consider when developing mRNA‐based vaccine technology for cancer treatment.
Collapse
Affiliation(s)
- Falak Goyal
- Laboratory of Translational Medicine and Nanotherapeutics Department of Human Genetics and Molecular Medicine School of Health Sciences Central University of Punjab Bathinda 151401 India
| | - Anandini Chattopadhyay
- Laboratory of Translational Medicine and Nanotherapeutics Department of Human Genetics and Molecular Medicine School of Health Sciences Central University of Punjab Bathinda 151401 India
| | - Umashanker Navik
- Department of Pharmacology School of Health Sciences Central University of Punjab Bathinda 151401 India
| | - Aklank Jain
- Department of Zoology Central University of Punjab Bathinda Punjab 151401 India
| | - P. Hemachandra Reddy
- Department of Internal Medicine Texas Tech University Health Sciences Center Lubbock TX 79430 USA
- Department of Pharmacology and Neuroscience and Garrison Institute on Aging Texas Tech University Health Sciences Center Lubbock TX 79430 USA
- Department of Public Health Graduate School of Biomedical Sciences Texas Tech University Health Sciences Center Lubbock TX 79430 USA
- Department of Neurology Texas Tech University Health Sciences Center Lubbock TX 79430 USA
- Department of Speech Language, and Hearing Sciences Texas Tech University Health Sciences Center Lubbock TX 79430 USA
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology University Institute of Applied Health Sciences Chandigarh University Mohali 140413 India
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics Department of Human Genetics and Molecular Medicine School of Health Sciences Central University of Punjab Bathinda 151401 India
| |
Collapse
|
4
|
Anindita J, Tanaka H, Yamakawa T, Sato Y, Matsumoto C, Ishizaki K, Oyama T, Suzuki S, Ueda K, Higashi K, Moribe K, Sasaki K, Ogura Y, Yonemochi E, Sakurai Y, Hatakeyama H, Akita H. The Effect of Cholesterol Content on the Adjuvant Activity of Nucleic-Acid-Free Lipid Nanoparticles. Pharmaceutics 2024; 16:181. [PMID: 38399242 PMCID: PMC10893020 DOI: 10.3390/pharmaceutics16020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
RNA vaccines are applicable to the treatment of various infectious diseases via the inducement of robust immune responses against target antigens by expressing antigen proteins in the human body. The delivery of messenger RNA by lipid nanoparticles (LNPs) has become a versatile drug delivery system used in the administration of RNA vaccines. LNPs are widely considered to possess adjuvant activity that induces a strong immune response. However, the properties of LNPs that contribute to their adjuvant activity continue to require clarification. To characterize the relationships between the lipid composition, particle morphology, and adjuvant activity of LNPs, the nanostructures of LNPs and their antibody production were evaluated. To simply compare the adjuvant activity of LNPs, empty LNPs were subcutaneously injected with recombinant proteins. Consistent with previous research, the presence of ionizable lipids was one of the determinant factors. Adjuvant activity was induced when a tiny cholesterol assembly (cholesterol-induced phase, ChiP) was formed according to the amount of cholesterol present. Moreover, adjuvant activity was diminished when the content of cholesterol was excessive. Thus, it is plausible that an intermediate structure of cholesterol (not in a crystalline-like state) in an intra-particle space could be closely related to the immunogenicity of LNPs.
Collapse
Affiliation(s)
- Jessica Anindita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba Aramaki, Aoba-ku, Sendai City 980-8578, Miyagi, Japan
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City 260-0856, Chiba, Japan
| | - Hiroki Tanaka
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba Aramaki, Aoba-ku, Sendai City 980-8578, Miyagi, Japan
- Center for Advanced Modalities and DDS, Osaka University, Suita 565-0871, Osaka, Japan
| | - Takuma Yamakawa
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City 260-0856, Chiba, Japan
| | - Yuka Sato
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City 260-0856, Chiba, Japan
| | - Chika Matsumoto
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba Aramaki, Aoba-ku, Sendai City 980-8578, Miyagi, Japan
| | - Kota Ishizaki
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City 260-0856, Chiba, Japan
| | - Taiji Oyama
- Sales Division, JASCO Corporation, 2967-5 Ishikawa, Hachioji City 192-8537, Tokyo, Japan;
| | - Satoko Suzuki
- Applicative Solution Lab Division, JASCO Corporation, 2967-5 Ishikawa, Hachioji City 192-8537, Tokyo, Japan
| | - Keisuke Ueda
- Laboratory of Pharmaceutical Technology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City 260-0856, Chiba, Japan; (K.U.)
| | - Kenjirou Higashi
- Laboratory of Pharmaceutical Technology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City 260-0856, Chiba, Japan; (K.U.)
| | - Kunikazu Moribe
- Laboratory of Pharmaceutical Technology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City 260-0856, Chiba, Japan; (K.U.)
| | - Kasumi Sasaki
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Shinagawa City 142-8501, Tokyo, Japan
| | - Yumika Ogura
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Shinagawa City 142-8501, Tokyo, Japan
| | - Etsuo Yonemochi
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Shinagawa City 142-8501, Tokyo, Japan
| | - Yu Sakurai
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba Aramaki, Aoba-ku, Sendai City 980-8578, Miyagi, Japan
| | - Hiroto Hatakeyama
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City 260-0856, Chiba, Japan
| | - Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba Aramaki, Aoba-ku, Sendai City 980-8578, Miyagi, Japan
- Center for Advanced Modalities and DDS, Osaka University, Suita 565-0871, Osaka, Japan
| |
Collapse
|
5
|
Tanaka H, Hagiwara S, Shirane D, Yamakawa T, Sato Y, Matsumoto C, Ishizaki K, Hishinuma M, Chida K, Sasaki K, Yonemochi E, Ueda K, Higashi K, Moribe K, Tadokoro T, Maenaka K, Taneichi S, Nakai Y, Tange K, Sakurai Y, Akita H. Ready-to-Use-Type Lyophilized Lipid Nanoparticle Formulation for the Postencapsulation of Messenger RNA. ACS NANO 2023; 17:2588-2601. [PMID: 36719091 DOI: 10.1021/acsnano.2c10501] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Based on the clinical success of an in vitro transcribed mRNA (IVT-mRNA) that is encapsulated in lipid nanoparticles (mRNA-LNPs), there is a growing demand by researchers to test whether their own biological findings might be applicable for use in mRNA-based therapeutics. However, the equipment and/or know-how required for manufacturing such nanoparticles is often inaccessible. To encourage more innovation in mRNA therapeutics, a simple method for preparing mRNA-LNPs is prerequisite. In this study, we report on a method for encapsulating IVT-mRNA into LNPs by rehydrating a Ready-to-Use empty freeze-dried LNP (LNPs(RtoU)) formulation with IVT-mRNA solution followed by heating. The resulting mRNA-LNPs(RtoU) had a similar intraparticle structure compared to the mRNA-LNPs prepared by conventional microfluidic mixing. In vivo genome editing, a promising application of these types of mRNA-LNPs, was accomplished using the LNPs(RtoU) containing co-encapsulated Cas9-mRNA and a small guide RNA.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba shi, Chiba 260-0856, Japan
| | - Shinya Hagiwara
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba shi, Chiba 260-0856, Japan
| | - Daiki Shirane
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba shi, Chiba 260-0856, Japan
| | - Takuma Yamakawa
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba shi, Chiba 260-0856, Japan
| | - Yuka Sato
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba shi, Chiba 260-0856, Japan
| | - Chika Matsumoto
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba shi, Chiba 260-0856, Japan
| | - Kota Ishizaki
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba shi, Chiba 260-0856, Japan
| | - Miho Hishinuma
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba shi, Chiba 260-0856, Japan
| | - Katsuyuki Chida
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba shi, Chiba 260-0856, Japan
| | - Kasumi Sasaki
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo 142-8501, Japan
| | - Etsuo Yonemochi
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo 142-8501, Japan
| | - Keisuke Ueda
- Laboratory of Pharmaceutical Technology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba shi, Chiba 260-0856, Japan
| | - Kenjirou Higashi
- Laboratory of Pharmaceutical Technology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba shi, Chiba 260-0856, Japan
| | - Kunikazu Moribe
- Laboratory of Pharmaceutical Technology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba shi, Chiba 260-0856, Japan
| | - Takashi Tadokoro
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- International Institute for Zoonosis Control, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Sakura Taneichi
- DDS Research Laboratory, NOF CORPORATION, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki city, Kanagawa 210-0865, Japan
| | - Yuta Nakai
- DDS Research Laboratory, NOF CORPORATION, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki city, Kanagawa 210-0865, Japan
| | - Kota Tange
- DDS Research Laboratory, NOF CORPORATION, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki city, Kanagawa 210-0865, Japan
| | - Yu Sakurai
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba shi, Chiba 260-0856, Japan
- Laboratory of Drug Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba shi, Chiba 260-0856, Japan
- Laboratory of Drug Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
6
|
Dymek M, Sikora E. Liposomes as biocompatible and smart delivery systems – The current state. Adv Colloid Interface Sci 2022; 309:102757. [DOI: 10.1016/j.cis.2022.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/01/2022]
|
7
|
Tanaka H, Miyama R, Sakurai Y, Tamagawa S, Nakai Y, Tange K, Yoshioka H, Akita H. Improvement of mRNA Delivery Efficiency to a T Cell Line by Modulating PEG-Lipid Content and Phospholipid Components of Lipid Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13122097. [PMID: 34959378 PMCID: PMC8706876 DOI: 10.3390/pharmaceutics13122097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/23/2022] Open
Abstract
(1) Background: T cells are important target cells, since they exert direct cytotoxic effects on infected/malignant cells, and affect the regulatory functions of other immune cells in a target antigen-specific manner. One of the current approaches for modifying the function of T cells is gene transfection by viral vectors. However, the insertion of the exogenous DNA molecules into the genome is attended by the risk of mutagenesis, especially when a transposon-based gene cassette is used. Based on this scenario, the transient expression of proteins by an in vitro-transcribed messenger RNA (IVT-mRNA) has become a subject of interest. The use of lipid nanoparticles (LNPs) for the transfection of IVT-mRNA is one of the more promising strategies for introducing exogenous genes. In this study, we report on the development of LNPs with transfection efficiencies that are comparable to that for electroporation in a T cell line (Jurkat cells). (2) Methods: Transfection efficiency was improved by optimizing the phospholipids and polyethylene glycol (PEG)-conjugated lipid components. (3) Results: Modification of the lipid composition resulted in the 221-fold increase in luciferase activity compared to a previously optimized formulation. Such a high transfection activity was due to the efficient uptake by clathrin/dynamin-dependent endocytosis and the relatively efficient escape into the cytoplasm at an early stage of endocytosis.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City 260-0856, Japan; (R.M.); (Y.S.)
- Correspondence: (H.T.); (H.A.); Tel.: +81-43-226-2894 (H.T.); +81-43-226-2893 (H.A.)
| | - Ryo Miyama
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City 260-0856, Japan; (R.M.); (Y.S.)
| | - Yu Sakurai
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City 260-0856, Japan; (R.M.); (Y.S.)
| | - Shinya Tamagawa
- DDS Research Laboratory, NOF CORPORATION, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki City 210-0865, Japan; (S.T.); (Y.N.); (K.T.); (H.Y.)
| | - Yuta Nakai
- DDS Research Laboratory, NOF CORPORATION, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki City 210-0865, Japan; (S.T.); (Y.N.); (K.T.); (H.Y.)
| | - Kota Tange
- DDS Research Laboratory, NOF CORPORATION, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki City 210-0865, Japan; (S.T.); (Y.N.); (K.T.); (H.Y.)
| | - Hiroki Yoshioka
- DDS Research Laboratory, NOF CORPORATION, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki City 210-0865, Japan; (S.T.); (Y.N.); (K.T.); (H.Y.)
| | - Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City 260-0856, Japan; (R.M.); (Y.S.)
- Correspondence: (H.T.); (H.A.); Tel.: +81-43-226-2894 (H.T.); +81-43-226-2893 (H.A.)
| |
Collapse
|
8
|
Akita H. Development of an SS-Cleavable pH-Activated Lipid-Like Material (ssPalm) as a Nucleic Acid Delivery Device. Biol Pharm Bull 2021; 43:1617-1625. [PMID: 33132308 DOI: 10.1248/bpb.b20-00534] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gene and nucleic acid-based medication is an ultimate strategy in the field of personalized medicine. A gene or short interference RNA (siRNA) molecule needs to be delivered to the appropriate organelle (i.e., nucleus and cytoplasm, respectively). We recently focused on improving the intrinsic activity of my original material (ssPalm) in terms of endosomal/lysosomal membrane destabilization activity by chemically modifying the tertiary amine structure. In parallel, I have been expanding the range of applications of ssPalms. The first application is a DNA or RNA vaccine. My crucial finding is that the vitamin E-scaffold ssPalm (ssPalmE) is highly immune-stimulative when combined with DNA. Thereafter, I redesigned the hydrophobic scaffold structure, and found that an oleic acid-scaffold ssPalm (ssPalmO) can confer anti-inflammatory characteristics. Based on this result, I further upgraded the ssPalmO, by inserting a newly designed linker with self-degradable properties.
Collapse
Affiliation(s)
- Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
9
|
Wang Y, Zhang Z, Luo J, Han X, Wei Y, Wei X. mRNA vaccine: a potential therapeutic strategy. Mol Cancer 2021; 20:33. [PMID: 33593376 PMCID: PMC7884263 DOI: 10.1186/s12943-021-01311-z] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/08/2021] [Indexed: 02/08/2023] Open
Abstract
mRNA vaccines have tremendous potential to fight against cancer and viral diseases due to superiorities in safety, efficacy and industrial production. In recent decades, we have witnessed the development of different kinds of mRNAs by sequence optimization to overcome the disadvantage of excessive mRNA immunogenicity, instability and inefficiency. Based on the immunological study, mRNA vaccines are coupled with immunologic adjuvant and various delivery strategies. Except for sequence optimization, the assistance of mRNA-delivering strategies is another method to stabilize mRNAs and improve their efficacy. The understanding of increasing the antigen reactiveness gains insight into mRNA-induced innate immunity and adaptive immunity without antibody-dependent enhancement activity. Therefore, to address the problem, scientists further exploited carrier-based mRNA vaccines (lipid-based delivery, polymer-based delivery, peptide-based delivery, virus-like replicon particle and cationic nanoemulsion), naked mRNA vaccines and dendritic cells-based mRNA vaccines. The article will discuss the molecular biology of mRNA vaccines and underlying anti-virus and anti-tumor mechanisms, with an introduction of their immunological phenomena, delivery strategies, their importance on Corona Virus Disease 2019 (COVID-19) and related clinical trials against cancer and viral diseases. Finally, we will discuss the challenge of mRNA vaccines against bacterial and parasitic diseases.
Collapse
Affiliation(s)
- Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Ziqi Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Jingwen Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Xuejiao Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| |
Collapse
|
10
|
Osella S, Knippenberg S. The influence of lipid membranes on fluorescent probes' optical properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183494. [PMID: 33129783 DOI: 10.1016/j.bbamem.2020.183494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND Organic fluorophores embedded in lipid bilayers can nowadays be described by a multiscale computational approach. Combining different length and time scales, a full characterization of the probe localization and optical properties led to novel insight into the effect of the environments. SCOPE OF REVIEW Following an introduction on computational advancements, three relevant probes are reviewed that delineate how a multiscale approach can lead to novel insight into the probes' (non) linear optical properties. Attention is paid to the quality of the theoretical description of the optical techniques. MAJOR CONCLUSIONS Computation can assess a priori novel probes' optical properties and guide the analysis and interpretation of experimental data in novel studies. The properties can be used to gain information on the phase and condition of the surrounding biological environment. GENERAL SIGNIFICANCE Computation showed that a canonical view on some of the probes should be revisited and adapted.
Collapse
Affiliation(s)
- Silvio Osella
- Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland.
| | - Stefan Knippenberg
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic; Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden; Theoretical Physics, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| |
Collapse
|
11
|
Tanaka H, Sakurai Y, Anindita J, Akita H. Development of lipid-like materials for RNA delivery based on intracellular environment-responsive membrane destabilization and spontaneous collapse. Adv Drug Deliv Rev 2020; 154-155:210-226. [PMID: 32650040 DOI: 10.1016/j.addr.2020.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 01/01/2023]
Abstract
Messenger RNA and small interfering RNA are attractive modalities for curing diseases by complementation or knock-down of proteins. For success of these RNAs, a drug delivery system (DDS) is required to control a pharmacokinetics, to enhance cellular uptake, to overcome biological membranes, and to release the cargo into the cytoplasm. Based on past research, developing nanoparticles that are neutrally charged have been the mainstream of their development. Also, the materials are further mounted with pH- and/or reducing environment-responsive units. In this review, we summarize progress made in the molecular design of these materials. We also focus on the importance of the hydrophobic scaffold for tissue/cell targeting, intracellular trafficking, and immune responses. As a practical example, the design concept of the SS-cleavable and pH-activated lipid-like material (ssPalm) and subsequent molecular modification tailored to the RNA-based medical application is discussed.
Collapse
|
12
|
Osella S, Smisdom N, Ameloot M, Knippenberg S. Conformational Changes as Driving Force for Phase Recognition: The Case of Laurdan. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11471-11481. [PMID: 31403301 DOI: 10.1021/acs.langmuir.9b01840] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The development of a universal probe to assess the phase of a lipid membrane is one of the most ambitious goals for fluorescence spectroscopy. The ability of a well-known molecule as Laurdan to reach this aim is here exploited as the behavior of the probe is fully characterized in a dipalmitoylphosphatidylcholine (DPPC) solid gel (So) phase by means of molecular dynamics simulations. Laurdan can take two conformations, depending on whether the carbonyl oxygen points toward the β-position of the naphthalene core (Conf-I) or to the α-position (Conf-II). We observe that Conf-I has an elongated form in this environment, whereas Conf-II takes an L-shape. Interestingly, our theoretical calculations show that these two conformations behave in an opposite way from what is reported in the literature for a DPPC membrane in a liquid disordered (Ld) phase, where Conf-I assumes an L-shape and Conf-II is elongated. Moreover, our results show that in DPPC (So) no intermixing between the conformations is present, whereas it has been seen in a fluid environment such as DOPC (Ld). Through a careful analysis of angle distributions and by means of the rotational autocorrelation function, we predict that the two conformers of Laurdan behave differently in different membrane environments.
Collapse
Affiliation(s)
- Silvio Osella
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies , University of Warsaw , Banacha 2C , 02-097 Warsaw , Poland
| | - Nick Smisdom
- Biomedical Research Institute , Hasselt University , Agoralaan Building C , 3590 Diepenbeek , Belgium
| | - Marcel Ameloot
- Biomedical Research Institute , Hasselt University , Agoralaan Building C , 3590 Diepenbeek , Belgium
| | - Stefan Knippenberg
- Biomedical Research Institute , Hasselt University , Agoralaan Building C , 3590 Diepenbeek , Belgium
- Department of Theoretical Chemistry and Biology, School of Biotechnology , Royal Institute of Technology , SE-10691 Stockholm , Sweden
- RCPTM, Department of Physical Chemistry, Fac. Sciences , Palacký University , 771 46 Olomouc , Czech Republic
| |
Collapse
|
13
|
Tanaka H, Nakatani T, Furihata T, Tange K, Nakai Y, Yoshioka H, Harashima H, Akita H. In Vivo Introduction of mRNA Encapsulated in Lipid Nanoparticles to Brain Neuronal Cells and Astrocytes via Intracerebroventricular Administration. Mol Pharm 2018; 15:2060-2067. [DOI: 10.1021/acs.molpharmaceut.7b01084] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hiroki Tanaka
- Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba City, Chiba 260-8675, Japan
| | - Taichi Nakatani
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Sapporo City, Hokkaido 060-0812, Japan
| | - Tomomi Furihata
- Department of Pharmacology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba City, Chiba 260-8670, Japan
| | - Kota Tange
- NOF CORPORATION, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki City, Kanagawa 210-0865, Japan
| | - Yuta Nakai
- NOF CORPORATION, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki City, Kanagawa 210-0865, Japan
| | - Hiroki Yoshioka
- NOF CORPORATION, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki City, Kanagawa 210-0865, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Sapporo City, Hokkaido 060-0812, Japan
| | - Hidetaka Akita
- Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba City, Chiba 260-8675, Japan
| |
Collapse
|