1
|
Radzikowska-Büchner E, Flieger W, Pasieczna-Patkowska S, Franus W, Panek R, Korona-Głowniak I, Suśniak K, Rajtar B, Świątek Ł, Żuk N, Bogucka-Kocka A, Makuch-Kocka A, Maciejewski R, Flieger J. Antimicrobial and Apoptotic Efficacy of Plant-Mediated Silver Nanoparticles. Molecules 2023; 28:5519. [PMID: 37513392 PMCID: PMC10383343 DOI: 10.3390/molecules28145519] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/01/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Phytogenically synthesised nanoparticle (NP)-based drug delivery systems have promising potential in the field of biopharmaceuticals. From the point of view of biomedical applications, such systems offer the small size, high surface area, and possible synergistic effects of NPs with embedded biomolecules. This article describes the synthesis of silver nanoparticles (Ag-NPs) using extracts from the flowers and leaves of tansy (Tanacetum vulgare L.), which is known as a remedy for many health problems, including cancer. The reducing power of the extracts was confirmed by total phenolic and flavonoid content and antioxidant tests. The Ag-NPs were characterised by various analytical techniques including UV-vis spectroscopy, scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), Fourier transform infrared (FT-IR) spectroscopy, and a dynamic light scattering (DLS) system. The obtained Ag-NPs showed higher cytotoxic activity than the initial extracts against both human cervical cancer cell lines HeLa (ATCC CCL-2) and human melanoma cell lines A375 and SK-MEL-3 by MTT assay. However, the high toxicity to Vero cell culture (ATCC CCL-81) and human fibroblast cell line WS-1 rules out the possibility of their use as anticancer agents. The plant-mediated Ag-NPs were mostly bactericidal against tested strains with MBC/MIC index ≤4. Antifungal bioactivity (C. albicans, C. glabrata, and C. parapsilosis) was not observed for aqueous extracts (MIC > 8000 mg L-1), but Ag-NPs synthesised using both the flowers and leaves of tansy were very potent against Candida spp., with MIC 15.6 and 7.8 µg mL-1, respectively.
Collapse
Affiliation(s)
| | - Wojciech Flieger
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Sylwia Pasieczna-Patkowska
- Department of Chemical Technology, Faculty of Chemistry, Maria Curie Skłodowska University, Pl. Maria Curie-Skłodowskiej 3, 20-031 Lublin, Poland
| | - Wojciech Franus
- Department of Geotechnics, Civil Engineering and Architecture Faculty, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland
| | - Rafał Panek
- Department of Geotechnics, Civil Engineering and Architecture Faculty, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodźki 1 St., 20-093 Lublin, Poland
| | - Katarzyna Suśniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodźki 1 St., 20-093 Lublin, Poland
| | - Barbara Rajtar
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Łukasz Świątek
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Natalia Żuk
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland
| | - Anna Makuch-Kocka
- Department of Pharmacology, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland
| | | | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| |
Collapse
|
2
|
Pajović JD, Dojčilović RJ, Kaščáková S, Réfrégiers M, Božanić DK, Djoković V. Enhanced resonance energy transfer in gold nanoparticles bifunctionalized by tryptophan and riboflavin and its application in fluorescence bioimaging. Colloids Surf B Biointerfaces 2023; 227:113340. [PMID: 37201446 DOI: 10.1016/j.colsurfb.2023.113340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Gold nanoparticles were functionalized by amino acid tryptophan and vitamin riboflavin - a resonance energy transfer (RET) pair of biomolecules. The presence of the gold nanoparticles resulted in 65% increase in RET efficiency. Because of enhanced RET efficiency, the photobleaching dynamics of the fluorescent molecules at the surface of the nanoparticles is different from that of molecules in solution. The observed effect was used for detection of the functionalized nanoparticles within biological material rich with autofluorescent species. Synchrotron radiation deep-ultraviolet fluorescence microscopy is used to study the photobleaching dynamics of the fluorescence centers within human hepatocellular carcinoma Huh7.5.1 cells incubated with the nanoparticles. The fluorescent centers were classified according to their photobleaching dynamics, which enabled the discrimination of the cell areas where the accumulation of the nanoparticles takes place, even though the particles were smaller than the spatial resolution of the images.
Collapse
Affiliation(s)
- Jelena D Pajović
- DISCO Beamline, Synchrotron SOLEIL, BP 48, Gif sur Yvette 91192, France; University of Belgrade, Faculty of Physics, Studentski trg 12, Belgrade 11001, Serbia.
| | - Radovan J Dojčilović
- University of Belgrade, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Center of Excellence for Photoconversion, PO Box 522, Belgrade 11001, Serbia; Department of Experimental and Health Sciences, Pompeu Fabra University, Carrer del Dr. Aiguader 88, Barcelona 08003, Spain
| | - Slávka Kaščáková
- Inserm, Unité 1193, Villejuif F-94800, France; University Paris-Sud XI, UMR-S1193, Villejuif F-94800, France
| | - Matthieu Réfrégiers
- DISCO Beamline, Synchrotron SOLEIL, BP 48, Gif sur Yvette 91192, France; Centre de Biophysique Moléculaire, CNRS UPR4301, Rue Charles Sadron, Orléans 45071, France
| | - Dušan K Božanić
- University of Belgrade, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Center of Excellence for Photoconversion, PO Box 522, Belgrade 11001, Serbia.
| | - Vladimir Djoković
- University of Belgrade, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Center of Excellence for Photoconversion, PO Box 522, Belgrade 11001, Serbia.
| |
Collapse
|
3
|
Huang LL, Wang ZJ, Xie HY. Photoluminescent inorganic nanoprobe-based pathogen detection. Chem Asian J 2022; 17:e202200475. [PMID: 35758547 DOI: 10.1002/asia.202200475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/20/2022] [Indexed: 11/05/2022]
Abstract
Pathogens are serious threats to human health, and traditional detection techniques suffer from various limitations. The unique optical properties of photoluminescent inorganic nanomaterials, such as high photoluminescence quantum yields, good photostability, and tunable spectrum, make them ideal tools for the detection of pathogens with high specificity and sensitivity. In this review, the design strategies, working mechanisms, and applications of photoluminescent inorganic nanomaterial-based probes in pathogen detection are introduced. In particular, the design and construction of stimuli-responsive nanoprobes and their potential in these fields are highlighted.
Collapse
Affiliation(s)
- Li-Li Huang
- Beijing Institute of Technology, School of Medical Technology, , 100081, , CHINA
| | - Zhong-Jie Wang
- Beijing Institute of Technology, School of Medical Technology, CHINA
| | - Hai-Yan Xie
- Beijing Institute Of Technology School of Life Science, School of Life science, south 5 zhongguancun street, 100081, Beijing, CHINA
| |
Collapse
|
4
|
Fluorescent Flavin/PVP-Coated Silver Nanoparticles: Design and Biological Performance. J Fluoresc 2022; 32:1309-1319. [PMID: 35362934 DOI: 10.1007/s10895-022-02909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/16/2022] [Indexed: 10/18/2022]
Abstract
A red-emitting fluorescent Riboflavin (RF)/Polyvinylpyrrolidone (PVP)-coated silver nanoparticles system, λem = 527 nm, Φ = 0.242, with a diameter of the metallic core of 27.33 nm and a zeta potential of - 25.05 mV was prepared and investigated regarding its biological activity. We found that PVP has a key role in RF adsorption around the SNPs surface leading to an enhancement of antioxidant properties (∼70%), low cytotoxicity (> 90% cell viability, at 50 µL/mL, after 48 h of incubation) as well as to an efficient process of its cellular uptake (∼ 60%, after 24 h of incubation) in L929 cells. The results are relevant concerning the involvement of RF and its coenzymes forms in SNPs - based systems, in cellular respiration as well as for future studies as antioxidant marker system on tumoral cells for viewing and monitoring them, by cellular imaging.
Collapse
|
5
|
Božanić DK, Dojčilović R, Pajović JD, Tošić D, Dudić D, Réfrégiers M, Djoković V. Fluorescence microscopy and photodielectric characterization studies of the composite films of polyvinyl alcohol and tryptophan functionalized silver nanoparticles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Darwish RM, AlKawareek MY, Bulatova NR, Alkilany AM. Silver nanoparticles, a promising treatment against clinically important fluconazole-resistant Candida glabrata. Lett Appl Microbiol 2021; 73:718-724. [PMID: 34510497 DOI: 10.1111/lam.13560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022]
Abstract
Resistance to azole antifungal agents is a challenging limitation in Candida glabrata treatment. It is associated with decreased intracellular concentrations of antifungal agents as a result of overexpression of efflux pumps on the cellular plasma membranes. This work evaluates the potential of silver nanoparticles (AgNPs) to reverse the resistance of fungal cells to fluconazole. Silver nanoparticles were prepared using wet chemical method and characterised by UV-Vis spectrophotometry, dynamic light scattering, and zeta potential. Broth microdilution and pour plates methods were used to study the anticandidal activity using two C. glabrata fluconazole-resistant strains (DSY565 and CBS138) known to overexpress active efflux pumps, and a standard fluconazole sensitive strain ATCC 22553. Silver nanoparticles-fluconazole combinations decreased concentrations of fluconazole substantially without compromising the activity. These findings suggest that AgNPs enhance the efficacy of fluconazole and offer a promising application in therapy of C. glabrata infections.
Collapse
Affiliation(s)
- R M Darwish
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - M Y AlKawareek
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - N R Bulatova
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - A M Alkilany
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, Jordan
| |
Collapse
|
7
|
Mohammadi G, Zangeneh MM, Zangeneh A, Haghighi ZMS. Chemical characterization and anti‐breast cancer effects of silver nanoparticles using
Phoenix dactylifera
seed ethanolic extract on 7,12‐Dimethylbenz[a] anthracene‐induced mammary gland carcinogenesis in Sprague Dawley male rats. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5136] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ghobad Mohammadi
- Pharmaceutical Sciences Research Center, Health InstituteKermanshah University of Medical Sciences Kermanshah Iran
| | - Mohammad Mahdi Zangeneh
- Department of Clinical Science, Faculty of Veterinary MedicineRazi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| | - Akram Zangeneh
- Department of Clinical Science, Faculty of Veterinary MedicineRazi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| | | |
Collapse
|
8
|
Burdușel AC, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E. Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E681. [PMID: 30200373 PMCID: PMC6163202 DOI: 10.3390/nano8090681] [Citation(s) in RCA: 587] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 12/18/2022]
Abstract
During the past few years, silver nanoparticles (AgNPs) became one of the most investigated and explored nanotechnology-derived nanostructures, given the fact that nanosilver-based materials proved to have interesting, challenging, and promising characteristics suitable for various biomedical applications. Among modern biomedical potential of AgNPs, tremendous interest is oriented toward the therapeutically enhanced personalized healthcare practice. AgNPs proved to have genuine features and impressive potential for the development of novel antimicrobial agents, drug-delivery formulations, detection and diagnosis platforms, biomaterial and medical device coatings, tissue restoration and regeneration materials, complex healthcare condition strategies, and performance-enhanced therapeutic alternatives. Given the impressive biomedical-related potential applications of AgNPs, impressive efforts were undertaken on understanding the intricate mechanisms of their biological interactions and possible toxic effects. Within this review, we focused on the latest data regarding the biomedical use of AgNP-based nanostructures, including aspects related to their potential toxicity, unique physiochemical properties, and biofunctional behaviors, discussing herein the intrinsic anti-inflammatory, antibacterial, antiviral, and antifungal activities of silver-based nanostructures.
Collapse
Affiliation(s)
- Alexandra-Cristina Burdușel
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 313 Splaiul Independenței, Bucharest 060042, Romania.
| | - Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, Bucharest 011061, Romania.
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomiștilor Street, Magurele 077125, Romania.
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, Bucharest 011061, Romania.
| | - Laurențiu Mogoantă
- Research Center for Microscopic Morphology and Immunology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareș Street, Craiova 200349, Romania.
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, Bucharest 011061, Romania.
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, Bucharest 011061, Romania.
| |
Collapse
|