1
|
Ke Q, Zhang Y, Qin Z, Meng Q, Huang X, Kou X, Zhang Y. Polydopamine-functionalized capsules: From design to applications. J Control Release 2025; 378:1114-1138. [PMID: 39724949 DOI: 10.1016/j.jconrel.2024.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
In recent years, polydopamine (PDA)-functionalized capsules have garnered significant interest from researchers in the field of materials, owing to its remarkable properties of adhesion, biocompatibility, photothermal conversion capabilities, chemical reactivity, and so on. At present, numerous studies have reported various structures and morphologies of PDA-functionalized capsules fabricated via diverse strategies, that have found applications across a broad spectrum of disciplines. However, there are few comprehensive and systematic reviews focusing on various preparation strategies of PDA-functionalized capsules with various structures. This paper systematically reviewed the preparation strategies and related applications of PDA-functionalized capsules. These strategies of PDA-functionalized capsules were discussed in detail from four parts including PDA-functionalized capsules based on hollow PDA, mesoporous PDA (MPDA), directly encapsulating emulsion, and surface modification of capsules. Then the review outlined the applications of PDA-functionalized capsules in biomedicine, energy, textiles, and the environment. Furthermore, this review summarized the current research findings on PDA-functionalized capsules and outlines their future development directions. Overall, we aim for this review to inspire researchers and offer valuable guidance for the synthesis and application of advanced PDA-functionalized capsules.
Collapse
Affiliation(s)
- Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Yifei Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhaoyuan Qin
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Xin Huang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Xingran Kou
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China.
| | - Yunchong Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
2
|
Voci S, Gagliardi A, Giuliano E, Salvatici MC, Procopio A, Cosco D. In Vitro Mucoadhesive Features of Gliadin Nanoparticles Containing Thiamine Hydrochloride. Pharmaceutics 2024; 16:1296. [PMID: 39458625 PMCID: PMC11510220 DOI: 10.3390/pharmaceutics16101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Gliadins have aroused significant interest in the last decade as suitable biomaterials for food and pharmaceutical applications. In particular, the oral route is the preferred method of administration for gliadin-based formulations, due to the affinity of this biomaterial for the gut mucosa. However, up to now, this has been demonstrated only by means of in vivo or ex vivo studies. METHODS This is why, in this study, various in vitro techniques were employed in order to evaluate the ability of polymeric nanoparticles, made up of a commercial grade of the protein and an etheric surfactant, to interact with porcine gastric mucin. The nanosystems were also used for the encapsulation of thiamine hydrochloride, used as a model of a micronutrient. RESULTS The resulting systems were characterized by a mean diameter of ~160-170 nm, a narrow size distribution when 0.2-0.6 mg/mL of thiamine was used, and an encapsulation efficiency between 30 and 45% of the drug initially employed. The incubation of the gliadin nanosystems with various concentrations of porcine gastric mucin evidenced the ability of the carriers to interact with the mucus glycoprotein, showing a decreased Zeta potential after a 4 h incubation (from ~-30 to -40 mV), while demonstrating that the encapsulation of the drug did not affect its bioadhesive features. CONCLUSIONS Altogether, these data support the conceivable application of gliadin nanoparticles as formulations for the oral administration of bioactive compounds.
Collapse
Affiliation(s)
- Silvia Voci
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, 8100 Catanzaro, Italy; (S.V.); (A.G.); (E.G.); (A.P.)
| | - Agnese Gagliardi
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, 8100 Catanzaro, Italy; (S.V.); (A.G.); (E.G.); (A.P.)
- “AGreenFood” Research Center, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, 88100 Catanzaro, Italy
| | - Elena Giuliano
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, 8100 Catanzaro, Italy; (S.V.); (A.G.); (E.G.); (A.P.)
| | - Maria Cristina Salvatici
- Institute of Chemistry of Organometallic Compounds (ICCOM)-Electron Microscopy Centre (Ce.M.E.), National Research Council (CNR), via Madonna del Piano n. 10, Sesto Fiorentino, 50019 Firenze, Italy;
| | - Antonio Procopio
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, 8100 Catanzaro, Italy; (S.V.); (A.G.); (E.G.); (A.P.)
- “AGreenFood” Research Center, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, 88100 Catanzaro, Italy
| | - Donato Cosco
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, 8100 Catanzaro, Italy; (S.V.); (A.G.); (E.G.); (A.P.)
- “AGreenFood” Research Center, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Chen YK, Simon IA, Maslov I, Oyarce-Pino IE, Kulkarni K, Hopper D, Aguilar MI, Vankadari N, Broughton BR, Del Borgo MP. A switch in N-terminal capping of β-peptides creates novel self-assembled nanoparticles. RSC Adv 2023; 13:29401-29407. [PMID: 37818265 PMCID: PMC10561372 DOI: 10.1039/d3ra04514e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023] Open
Abstract
Small tripeptides composed entirely of β3-amino acids have been shown to self-assemble into fibres following acylation of the N-terminus. Given the use of Fmoc as a strategy to initiate self-assembly in α-peptides, we hypothesized that the acyl cap can be replaced by an Fmoc without perturbation to the self-assembly and enable simpler synthetic protocols. We therefore replaced the N-acyl cap for an Fmoc group and herein we show that these Fmoc-protected β3-peptides produce regular spherical particles, rather than fibrous structures, that are stable and capable of encapsulating cargo. We then demonstrated that these particles were able to deliver cargo to cells without any obvious signs of cytotoxicity. This is the first description of such regular nanoparticles derived from Fmoc-protected β3-peptides.
Collapse
Affiliation(s)
- Yi-Kai Chen
- Department of Pharmacology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Isabella A Simon
- Department of Pharmacology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Ivan Maslov
- Department of Pharmacology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Ivan E Oyarce-Pino
- Department of Pharmacology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Ketav Kulkarni
- Department of Biochemistry & Molecular Biology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Denham Hopper
- Department of Pharmacology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry & Molecular Biology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Naveen Vankadari
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Melbourne VIC 3000 Australia
| | - Brad Rs Broughton
- Department of Pharmacology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Mark P Del Borgo
- Department of Pharmacology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| |
Collapse
|
4
|
Yi Y, Cui M, Song S, Zhang C, Mei J, Ying G. Genetic fusion of mussel foot protein to ZZ protein improves target detection in solid-phase immunoassays. J Immunol Methods 2023; 516:113461. [PMID: 36963561 DOI: 10.1016/j.jim.2023.113461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023]
Abstract
In the process of a solid-phase immunoassay, the stability and binding orientation between the antibody and the solid matrix can substantially influence the results. ZZ protein is a modified peptide of the B domain of Staphylococcus aureus protein A, which can bind to the Fc fragment of an antibody. It is often used for oriented immobilization of antibodies during solid-phase immunoassay. However, the conjugate is often not retained during the process, for example during washing steps. The resulting low stability detracts from reproducibility and sensitivity. Mfp-5 protein comes from mussel, is one of the components of mussel foot silk protein, and has good adhesion and biocompatibility. In this paper, the fusion protein of ZZ and Mfp-5 was constructed and expressed in Escherichia coli. In this method, the ZZ domain was firmly attached to the solid-phase support by Mfp-5, the directional fixation of IgG was realized by binding the ZZ protein to an Fc fragment, and then a Fab fragment was bound to the antigen to realize the solid-phase immunoassay. In addition, a protein adsorption assay confirmed that the adhesion of ZZ-Mfp-5 was significantly higher than that of ZZ protein, and the presence of Mfp-5 improved the ability of ZZ protein to capture antibodies. In conclusion, compared with the passively immobilized ZZ protein, the ZZ-Mfp-5 protein had stronger immobilization and antibody capture, a 10-fold increase in sensitivity and wider linear range, and better stability of detection. This may be an attractive strategy for solid-phase immunoassays or biosensing assays.
Collapse
Affiliation(s)
- Yu Yi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Mengyuan Cui
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shupeng Song
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Cheng Zhang
- Gmax Biopharm International Limited, Hangzhou 310014, China
| | - Jianfeng Mei
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guoqing Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
5
|
Jin Z, Hu G, Zhao K. Mannose-anchored quaternized chitosan/thiolated carboxymethyl chitosan composite NPs as mucoadhesive carrier for drug delivery. Carbohydr Polym 2022; 283:119174. [DOI: 10.1016/j.carbpol.2022.119174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 11/20/2021] [Accepted: 01/20/2022] [Indexed: 12/19/2022]
|
6
|
Watchorn J, Clasky AJ, Prakash G, Johnston IAE, Chen PZ, Gu FX. Untangling Mucosal Drug Delivery: Engineering, Designing, and Testing Nanoparticles to Overcome the Mucus Barrier. ACS Biomater Sci Eng 2022; 8:1396-1426. [PMID: 35294187 DOI: 10.1021/acsbiomaterials.2c00047] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mucus is a complex viscoelastic gel and acts as a barrier covering much of the soft tissue in the human body. High vascularization and accessibility have motivated drug delivery to various mucosal surfaces; however, these benefits are hindered by the mucus layer. To overcome the mucus barrier, many nanomedicines have been developed, with the goal of improving the efficacy and bioavailability of drug payloads. Two major nanoparticle-based strategies have emerged to facilitate mucosal drug delivery, namely, mucoadhesion and mucopenetration. Generally, mucoadhesive nanoparticles promote interactions with mucus for immobilization and sustained drug release, whereas mucopenetrating nanoparticles diffuse through the mucus and enhance drug uptake. The choice of strategy depends on many factors pertaining to the structural and compositional characteristics of the target mucus and mucosa. While there have been promising results in preclinical studies, mucus-nanoparticle interactions remain poorly understood, thus limiting effective clinical translation. This article reviews nanomedicines designed with mucoadhesive or mucopenetrating properties for mucosal delivery, explores the influence of site-dependent physiological variation among mucosal surfaces on efficacy, transport, and bioavailability, and discusses the techniques and models used to investigate mucus-nanoparticle interactions. The effects of non-homeostatic perturbations on protein corona formation, mucus composition, and nanoparticle performance are discussed in the context of mucosal delivery. The complexity of the mucosal barrier necessitates consideration of the interplay between nanoparticle design, tissue-specific differences in mucus structure and composition, and homeostatic or disease-related changes to the mucus barrier to develop effective nanomedicines for mucosal delivery.
Collapse
Affiliation(s)
- Jeffrey Watchorn
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Aaron J Clasky
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Gayatri Prakash
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Ian A E Johnston
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Paul Z Chen
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Frank X Gu
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada.,Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
7
|
Su WT, Huang CC, Liu HW. Evaluation and Preparation of a Designed Kartogenin Drug Delivery System (DDS) of Hydrazone-Linkage-Based pH Responsive mPEG-Hz-b-PCL Nanomicelles for Treatment of Osteoarthritis. Front Bioeng Biotechnol 2022; 10:816664. [PMID: 35356778 PMCID: PMC8959902 DOI: 10.3389/fbioe.2022.816664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/01/2022] [Indexed: 12/17/2022] Open
Abstract
Osteoarthritis (OA) is a chronic disease caused by the damage of articular cartilage. Kartogenin (KGN) is a well-recognized small molecule which could induce MSCs chondrogenesis and promote cartilage repair treatments. Nano-level micells could be a suitable drug carrier technology for the treatments. In this study, the acid-responsive methoxy poly(ethylene oxide)-hydrazone-poly(ε-caprolactone) copolymers, mPEG-Hz-b-PCL, were synthesized. The structure was characterized by 1H NMR. The evaluation of a designed kartogenin drug delivery system (DDS) of hydrazone-linkage-based pH responsive mPEG-Hz-b-PCL nanomicelles for treatment of osteoarthritis could be carried out.
Collapse
Affiliation(s)
- Wen-Ta Su
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Ching-Cheng Huang
- Department of Biomedical Engineering, Ming-Chuan University, Taipei, Taiwan
| | - Hsia-Wei Liu
- Department Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City, Taiwan
- *Correspondence: Hsia-Wei Liu,
| |
Collapse
|
8
|
Choi H, Jeong SH, Kim TY, Yi J, Hahn SK. Bioinspired urease-powered micromotor as an active oral drug delivery carrier in stomach. Bioact Mater 2021; 9:54-62. [PMID: 34820555 PMCID: PMC8586715 DOI: 10.1016/j.bioactmat.2021.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/16/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022] Open
Abstract
Self-propelling micro- and nano-motors (MNMs) have been extensively investigated as an emerging oral drug delivery carrier for gastrointestinal (GI) tract diseases. However, the propulsion of current MNMs reported so far is mostly based on the redox reaction of metals (such as Zn and Mg) with severe propulsion gas generation, remaining non-degradable residue in the GI tract. Here, we develop a bioinspired enzyme-powered biopolymer micromotor mimicking the mucin penetrating behavior of Helicobacter pylori in the stomach. It converts urea to ammonia and the subsequent increase of pH induces local gel-sol transition of the mucin layer facilitating the penetration into the stomach tissue layer. The successful fabrication of micromotors is confirmed by high-resolution transmission electron microscopy, electron energy loss spectroscopy, dynamic light scattering analysis, zeta-potential analysis. In acidic condition, the immobilized urease can efficiently converted urea to ammonia, comparable with that of neutral condition because of the increase of surrounding pH during propulsion. After administration into the stomach, the micromotors show enhanced penetration and prolonged retention in the stomach for 24 h. Furthermore, histological analysis shows that the micromotors are cleared within 3 days without causing any toxicity in the GI tract. The enhanced penetration and retention of the micromotors as an active oral delivery carrier in the stomach would be successfully harnessed for the treatment of various GI tract diseases. Polydopamine (PDA) hollow microcapsules are biocompatible, biodegradable, and muco-adhesive. Urease-powered PDA micromotors are propelled by the decomposition of urea to ammonia and carbon dioxide. Micromotors increase the local pH to induce the gel-sol transition of the mucus layer. Micromotors result in enhanced penetration and prolonged retention in the stomach. Micromotors can be effectively used for oral drug delivery with complete clearance from the GI tract.
Collapse
Affiliation(s)
- Hyunsik Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Sang Hoon Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Tae Yeon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Jeeyoon Yi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| |
Collapse
|
9
|
Marczynski M, Kimna C, Lieleg O. Purified mucins in drug delivery research. Adv Drug Deliv Rev 2021; 178:113845. [PMID: 34166760 DOI: 10.1016/j.addr.2021.113845] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022]
Abstract
One of the main challenges in the field of drug delivery remains the development of strategies to efficiently transport pharmaceuticals across mucus barriers, which regulate the passage and retention of molecules and particles in all luminal spaces of the body. A thorough understanding of the molecular mechanisms, which govern such selective permeability, is key for achieving efficient translocation of drugs and drug carriers. For this purpose, model systems based on purified mucins can contribute valuable information. In this review, we summarize advances that were made in the field of drug delivery research with such mucin-based model systems: First, we give an overview of mucin purification procedures and discuss the suitability of model systems reconstituted from purified mucins to mimic native mucus. Then, we summarize techniques to study mucin binding. Finally, we highlight approaches that made use of mucins as building blocks for drug delivery platforms or employ mucins as active compounds.
Collapse
|
10
|
Mucoadhesive Biopolymer Nanoparticles for Encapsulation of Lipophilic Nutrients With Enhanced Bioactivity. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-021-09691-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Abd El Hady WE, Soliman OAEA, El Sabbagh HM, Mohamed EA. Glutaraldehyde-crosslinked chitosan-polyethylene oxide nanofibers as a potential gastroretentive delivery system of nizatidine for augmented gastroprotective activity. Drug Deliv 2021; 28:1795-1809. [PMID: 34470551 PMCID: PMC8428272 DOI: 10.1080/10717544.2021.1971796] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Nizatidine (NIZ), a histamine H2-receptor antagonist, is soluble and stable in the stomach, however, it exhibits a short half-life and a rapid clearance. Therefore, chitosan (CS) and polyethylene oxide (PEO) nanofibers (NFs) at different weight ratios were prepared by electrospinning and characterized. The selected uncrosslinked and glutaraldehyde-crosslinked NFs were investigated regarding floating, solid-state characteristics, in vitro release, and in vitro cytotoxicity. The cytoprotective activity against ethanol-induced gastric injury in rats was evaluated through macroscopical, histopathological, immunohistochemical, and oxidative stress examinations. NFs based on 8:2 CS:PEO exhibited the smallest diameter (119.17 ± 22.05 nm) and the greatest mucoadhesion (22.82 ± 3.21 g/cm2), so they were crosslinked with glutaraldehyde. Solid-state characterization indicated polymers interaction, a successful crosslinking, and NIZ dispersion in NFs. Crosslinking maintained swollen mats at pH 1.2 (swelling% = 29.47 ± 3.50% at 24 h), retarded their erosion at pH 6.8 (swelling%= 84.64 ± 4.91% vs. 25.40 ± 0.79% for the uncrosslinked NFs at 24 h), augmented the floating up to 24 h vs. 10 min for the uncrosslinked NFs at pH 1.2 and prolonged the drug release (%drug released ≥ 93% at 24 h vs. 4 and 5 h for the uncrosslinked NFs at pHs 1.2 and 6.8, respectively). The viability of Caco-2 cells ≥ 86.87 ± 6.86% revealed NFs biocompatibility and unreacted glutaraldehyde removal. Crosslinking of 8:2 CS:PEO NFs potentiated the antiulcer activity (38.98 vs. 8.67 for the uncrosslinked NFs) as well as it preserved the gastric wall architecture, COX-2 expression, and oxidative stress markers levels of the normal rats.
Collapse
|
12
|
Hu S, Pei X, Duan L, Zhu Z, Liu Y, Chen J, Chen T, Ji P, Wan Q, Wang J. A mussel-inspired film for adhesion to wet buccal tissue and efficient buccal drug delivery. Nat Commun 2021; 12:1689. [PMID: 33727548 PMCID: PMC7966365 DOI: 10.1038/s41467-021-21989-5] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/05/2021] [Indexed: 02/08/2023] Open
Abstract
Administration of drugs via the buccal route has attracted much attention in recent years. However, developing systems with satisfactory adhesion under wet conditions and adequate drug bioavailability still remains a challenge. Here, we propose a mussel-inspired mucoadhesive film. Ex vivo models show that this film can achieve strong adhesion to wet buccal tissues (up to 38.72 ± 10.94 kPa). We also demonstrate that the adhesion mechanism of this film relies on both physical association and covalent bonding between the film and mucus. Additionally, the film with incorporated polydopamine nanoparticles shows superior advantages for transport across the mucosal barrier, with improved drug bioavailability (~3.5-fold greater than observed with oral delivery) and therapeutic efficacy in oral mucositis models (~6.0-fold improvement in wound closure at day 5 compared with that observed with no treatment). We anticipate that this platform might aid the development of tissue adhesives and inspire the design of nanoparticle-based buccal delivery systems.
Collapse
Affiliation(s)
- Shanshan Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lunliang Duan
- National Engineering Research Center for Inland Waterway Regulation, Chongqing Jiaotong University, Chongqing, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanhua Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Chen
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Jia Z, Guo Z, Yang CT, Prestidge C, Thierry B. "Mucus-on-Chip": A new tool to study the dynamic penetration of nanoparticulate drug carriers into mucus. Int J Pharm 2021; 598:120391. [PMID: 33621642 DOI: 10.1016/j.ijpharm.2021.120391] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/26/2021] [Accepted: 02/10/2021] [Indexed: 12/22/2022]
Abstract
The mucus covering of epithelial tissues presents one significant biological barrier to the uptake and absorption of particulate carriers. Improved understanding of the mechanisms mediating the transport of nanoparticles across such mucus layers would accelerate their development as optimised mucosal drug delivery formulations (e.g. via oral and rectal routes). Herein, an in vitro mucus model ("Mucus-on-Chip") was developed to enable the interaction and transport of functionalised nanoparticles and reconstituted mucus to be quantitatively investigated in real-time. We verified that the diffusion of nanoparticles into mucus is highly dependent on their biointerfacial properties. Muco-inert modification (PEGylation) significantly enhanced the mucopenetration of 50 nm and 200 nm nanoparticles, whereas limited mucopenetration was observed for pectin coated mucoadhesive nanoparticles. Furthermore, this model can be easily adapted to mimic specific physiological mucus environments. Mucus pre-treated with a mucolytic agent displayed reduced barrier function and therefore significantly accelerated mucopenetration of nanoparticles, which was independent of their size and biointerfacial properties. This new "Mucus-on-Chip" methodology provides detailed insight into the dynamics of nanoparticle-mucus interaction, which can be applied to refine the design of particulate formulations for more efficient mucosal drug delivery.
Collapse
Affiliation(s)
- Zhengyang Jia
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Zhaobin Guo
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Chih-Tsung Yang
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Clive Prestidge
- UniSA Clinical and Health Science and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, City West Campus, Adelaide, SA 5000, Australia
| | - Benjamin Thierry
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia.
| |
Collapse
|
14
|
Sunoqrot S, Alfaraj M, Hammad AM, Kasabri V, Shalabi D, Deeb AA, Hasan Ibrahim L, Shnewer K, Yousef I. Development of a Thymoquinone Polymeric Anticancer Nanomedicine through Optimization of Polymer Molecular Weight and Nanoparticle Architecture. Pharmaceutics 2020; 12:E811. [PMID: 32867015 PMCID: PMC7560238 DOI: 10.3390/pharmaceutics12090811] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/12/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Thymoquinone (TQ) is a water-insoluble natural compound isolated from Nigella sativa that has demonstrated promising chemotherapeutic activity. The purpose of this study was to develop a polymeric nanoscale formulation for TQ to circumvent its delivery challenges. TQ-encapsulated nanoparticles (NPs) were fabricated using methoxy poly(ethylene glycol)-b-poly(ε-caprolactone) (mPEG-PCL) copolymers by the nanoprecipitation technique. Formulation variables included PCL chain length and NP architecture (matrix-type nanospheres or reservoir-type nanocapsules). The formulations were characterized in terms of their particle size, polydispersity index (PDI), drug loading efficiency, and drug release. An optimized TQ NP formulation in the form of oil-filled nanocapsules (F2-NC) was obtained with a mean hydrodynamic diameter of 117 nm, PDI of 0.16, about 60% loading efficiency, and sustained in vitro drug release. The formulation was then tested in cultured human cancer cell lines to verify its antiproliferative efficacy as a potential anticancer nanomedicine. A pilot pharmacokinetic study was also carried out in healthy mice to evaluate the oral bioavailability of the optimized formulation, which revealed a significant increase in the maximum plasma concentration (Cmax) and a 1.3-fold increase in bioavailability compared to free TQ. Our findings demonstrate that the versatility of polymeric NPs can be effectively applied to design a nanoscale delivery platform for TQ that can overcome its biopharmaceutical limitations.
Collapse
Affiliation(s)
- Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan; (M.A.); (A.M.H.); (A.A.D.); (L.H.I.)
| | - Malek Alfaraj
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan; (M.A.); (A.M.H.); (A.A.D.); (L.H.I.)
| | - Ala’a M. Hammad
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan; (M.A.); (A.M.H.); (A.A.D.); (L.H.I.)
| | - Violet Kasabri
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, University of Jordan, Amman 11942, Jordan; (V.K.); (D.S.)
| | - Dana Shalabi
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, University of Jordan, Amman 11942, Jordan; (V.K.); (D.S.)
| | - Ahmad A. Deeb
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan; (M.A.); (A.M.H.); (A.A.D.); (L.H.I.)
| | - Lina Hasan Ibrahim
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan; (M.A.); (A.M.H.); (A.A.D.); (L.H.I.)
| | | | - Ismail Yousef
- Smart Medical Labs, Amman 11180, Jordan; (K.S.); (I.Y.)
| |
Collapse
|
15
|
Zheng P, Ding B, Li G. Polydopamine-Incorporated Nanoformulations for Biomedical Applications. Macromol Biosci 2020; 20:e2000228. [PMID: 32830435 DOI: 10.1002/mabi.202000228] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/03/2020] [Indexed: 12/18/2022]
Abstract
Polydopamine (PDA), a pigment in natural melanin, has attracted considerable attention because of its excellent optical properties, extraordinary adhesion, and good biocompatibility, which make it a promising material for application in energy, environmental, and biomedical fields. In this review, PDA-incorporated nanoformulations are focused for biomedical applications such as drug delivery, bioimaging, and tumor therapy. First, the recent advances in PDA-incorporated nanoformulations for drug delivery are discussed. Further, their application in boimaging, such as fluorescence imaging, photothermal imaging, and photoacoustic imaging, is reviewed. Next, their therapeutic applications, including chemotherapy, photodynamic therapy, photothermal therapy, and synergistic therapy are discussed. Finally, other biomedical applications of PDA-incorporated nanoformulations such as biosensing and clinical diagnosis are briefly presented. Finally, the biomedical applications of PDA-incorporated nanoformulations along with their prospects are summarized.
Collapse
Affiliation(s)
- Pan Zheng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Gao Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
16
|
Niaz T, Shabbir S, Noor T, Abbasi R, Imran M. Alginate-caseinate based pH-responsive nano-coacervates to combat resistant bacterial biofilms in oral cavity. Int J Biol Macromol 2020; 156:1366-1380. [DOI: 10.1016/j.ijbiomac.2019.11.177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/09/2023]
|
17
|
Characterisation of the Interaction among Oil-In-Water Nanocapsules and Mucin. Biomimetics (Basel) 2020; 5:biomimetics5030036. [PMID: 32731584 PMCID: PMC7559021 DOI: 10.3390/biomimetics5030036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/13/2020] [Accepted: 07/22/2020] [Indexed: 01/06/2023] Open
Abstract
Mucins are glycoproteins present in all mucosal surfaces and in secretions such as saliva. Mucins are involved in the mucoadhesion of nanodevices carrying bioactive molecules to their target sites in vivo. Oil-in-water nanocapsules (NCs) have been synthesised for carrying N,N'-(di-m-methylphenyl)urea (DMTU), a quorum-sensing inhibitor, to the oral cavity. DMTU-loaded NCs constitute an alternative for the treatment of plaque (bacterial biofilm). In this work, the stability of the NCs after their interaction with mucin is analysed. Mucin type III from Sigma-Aldrich has been used as the mucin model. Mucin and NCs were characterised by the multi-detection asymmetrical flow field-flow fractionation technique (AF4). Dynamic light scattering (DLS) and ζ-potential analyses were carried out to characterise the interaction between mucin and NCs. According to the results, loading DMTU changes the conformation of the NC. It was also found that the synergistic interaction between mucin and NCs was favoured within a specific range of the mucin:NC ratio within the first 24 h. Studies on the release of DMTU in vitro and the microbial activity of such NCs are ongoing in our lab.
Collapse
|
18
|
Hua S. Advances in Oral Drug Delivery for Regional Targeting in the Gastrointestinal Tract - Influence of Physiological, Pathophysiological and Pharmaceutical Factors. Front Pharmacol 2020; 11:524. [PMID: 32425781 PMCID: PMC7212533 DOI: 10.3389/fphar.2020.00524] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/03/2020] [Indexed: 12/22/2022] Open
Abstract
The oral route is by far the most common route of drug administration in the gastrointestinal tract and can be used for both systemic drug delivery and for treating local gastrointestinal diseases. It is the most preferred route by patients, due to its advantages, such as ease of use, non-invasiveness, and convenience for self-administration. Formulations can also be designed to enhance drug delivery to specific regions in the upper or lower gastrointestinal tract. Despite the clear advantages offered by the oral route, drug delivery can be challenging as the human gastrointestinal tract is complex and displays a number of physiological barriers that affect drug delivery. Among these challenges are poor drug stability, poor drug solubility, and low drug permeability across the mucosal barriers. Attempts to overcome these issues have focused on improved understanding of the physiology of the gastrointestinal tract in both healthy and diseased states. Innovative pharmaceutical approaches have also been explored to improve regional drug targeting in the gastrointestinal tract, including nanoparticulate formulations. This review will discuss the physiological, pathophysiological, and pharmaceutical considerations influencing drug delivery for the oral route of administration, as well as the conventional and novel drug delivery approaches. The translational challenges and development aspects of novel formulations will also be addressed.
Collapse
Affiliation(s)
- Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
19
|
Al-Shalabi E, Alkhaldi M, Sunoqrot S. Development and evaluation of polymeric nanocapsules for cirsiliol isolated from Jordanian Teucrium polium L. as a potential anticancer nanomedicine. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Interaction of particles with mucosae and cell membranes. Colloids Surf B Biointerfaces 2020; 186:110657. [DOI: 10.1016/j.colsurfb.2019.110657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 01/15/2023]
|
21
|
Wu Y, Zhang W, Huang J, Luo Z, Li J, Wang L, Di L. Mucoadhesive improvement of alginate microspheres as potential gastroretentive delivery carrier by blending with Bletilla striata polysaccharide. Int J Biol Macromol 2019; 156:1191-1201. [PMID: 31756485 DOI: 10.1016/j.ijbiomac.2019.11.156] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 11/15/2022]
Abstract
As polysaccharide from Bletilla striata (BSP) was anticipated with mucoadhesive improvement in sodium alginate (SA) microspheres, BSP was mixed with SA to construct a composite microsphere to retain in the gastrointestinal tract for a long time. The morphological properties, particle size and thermodynamic properties of the microspheres in combination with comprehensive evaluations in the swelling properties, mucin adsorption, ex vivo and in vivo gastric retention were determined to characterize the mucoadhesion of SA-BSP blend microspheres. Results showed that the prepared microspheres were discrete and spherical. The addition of BSP increased flexibility and reduced rigidity of SA microsphere. Furthermore, the swelling property, mucin adsorption ability and the retention rate on the gastric mucosa of SA matrix were increased after blending with BSP. Mucoadhesion tests showed the SA-BSP microspheres stayed much longer in rats' stomach than the SA microsphere did. Above all, the SA-BSP microspheres with the enhanced mucoadhesion suggested being a potential drug carrier in developing the gastroretentive drug delivery system.
Collapse
Affiliation(s)
- Yujia Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province 210023, PR China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing City, Jiangsu Province 210023, PR China
| | - Wen Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province 210023, PR China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing City, Jiangsu Province 210023, PR China
| | - Jianyu Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province 210023, PR China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing City, Jiangsu Province 210023, PR China
| | - Zichen Luo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province 210023, PR China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing City, Jiangsu Province 210023, PR China
| | - Junsong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province 210023, PR China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing City, Jiangsu Province 210023, PR China
| | - Lingchong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province 210023, PR China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing City, Jiangsu Province 210023, PR China.
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province 210023, PR China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing City, Jiangsu Province 210023, PR China.
| |
Collapse
|
22
|
Sunoqrot S, Abujamous L. pH-sensitive polymeric nanoparticles of quercetin as a potential colon cancer-targeted nanomedicine. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Abstract
Medical adhesives that are strong, easy to apply and biocompatible are promising alternatives to sutures and staples in a large variety of surgical and clinical procedures. Despite progress in the development and regulatory approval of adhesives for use in the clinic, adhesion to wet tissue remains challenging. Marine organisms have evolved a diverse set of highly effective wet adhesive approaches that have inspired the design of new medical adhesives. Here we provide an overview of selected marine animals and their chemical and physical adhesion strategies, the state of clinical translation of adhesives inspired by these organisms, and target applications where marine-inspired adhesives can have a significant impact. We will focus on medical adhesive polymers inspired by mussels, sandcastle worms, and cephalopods, emphasize the history of bioinspired medical adhesives from the peer reviewed and patent literature, and explore future directions including overlooked sources of bioinspiration and materials that exploit multiple bioinspired strategies.
Collapse
Affiliation(s)
- Diederik W. R. Balkenende
- Departments of Bioengineering and Materials Science and Engineering, University of California Berkeley, Berkeley, CA 94720-1760, USA
| | - Sally M. Winkler
- Departments of Bioengineering and Materials Science and Engineering, University of California Berkeley, Berkeley, CA 94720-1760, USA
- University of California, Berkeley–University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Phillip B. Messersmith
- Departments of Bioengineering and Materials Science and Engineering, University of California Berkeley, Berkeley, CA 94720-1760, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| |
Collapse
|
24
|
Amin DR, Higginson CJ, Korpusik AB, Gonthier AR, Messersmith PB. Untemplated Resveratrol-Mediated Polydopamine Nanocapsule Formation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34792-34801. [PMID: 30230809 PMCID: PMC6320237 DOI: 10.1021/acsami.8b14128] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanocapsules can be designed for applications including drug delivery, catalysis, and biological imaging. The mussel-inspired material polydopamine is a promising shell layer for nanocapsules because of its free radical scavenging capacity, ability to react with a broad range of functional molecules, lack of toxicity, and biodegradability. Previous reports of polydopamine nanocapsule formation have relied on a templating approach. Herein, we report a template-free approach to polydopamine nanocapsule formation in the presence of resveratrol, a naturally occurring anti-inflammatory and antioxidant compound found in red wine and grapes. Synthesis of nanocapsules occurs spontaneously in an ethanolic resveratrol/dopamine·HCl solution at pH 8.5. UV-vis absorbance spectroscopy and X-ray photoelectron spectroscopy indicate that resveratrol is incorporated into the nanocapsules. We also observed the formation of a soluble fluorescent dopamine-resveratrol adduct during synthesis, which was identified by high-performance liquid chromatography, UV-vis spectroscopy, and electrospray ionization mass spectrometry. Using transmission electron microscopy and dynamic light scattering, we studied the influence of solvent composition, dopamine concentration, and resveratrol/dopamine ratio on the nanocapsule diameter and shell thickness. The resulting nanocapsules have excellent free radical scavenging activity as measured by a 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay. Our work provides a convenient pathway by which resveratrol, and possibly other hydrophobic bioactive compounds, may be encapsulated within polydopamine nanocapsules.
Collapse
Affiliation(s)
- Devang R. Amin
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, 210 Hearst Mining Building, Berkeley, CA 94720 United States
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208 United States
| | - Cody J. Higginson
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, 210 Hearst Mining Building, Berkeley, CA 94720 United States
| | - Angie B. Korpusik
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, 210 Hearst Mining Building, Berkeley, CA 94720 United States
| | - Alyse R. Gonthier
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, 210 Hearst Mining Building, Berkeley, CA 94720 United States
| | - Phillip B. Messersmith
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, 210 Hearst Mining Building, Berkeley, CA 94720 United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 United States
| |
Collapse
|
25
|
Darbasizadeh B, Motasadizadeh H, Foroughi-Nia B, Farhadnejad H. Tripolyphosphate-crosslinked chitosan/poly (ethylene oxide) electrospun nanofibrous mats as a floating gastro-retentive delivery system for ranitidine hydrochloride. J Pharm Biomed Anal 2018; 153:63-75. [DOI: 10.1016/j.jpba.2018.02.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/18/2022]
|
26
|
Barbero N, Coletti M, Catalano F, Visentin S. Exploring gold nanoparticles interaction with mucins: A spectroscopic-based study. Int J Pharm 2018; 535:438-443. [DOI: 10.1016/j.ijpharm.2017.11.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/09/2017] [Accepted: 11/12/2017] [Indexed: 01/26/2023]
|
27
|
Sunoqrot S, Alsadi A, Tarawneh O, Hamed R. Polymer type and molecular weight dictate the encapsulation efficiency and release of Quercetin from polymeric micelles. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4183-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|