1
|
Iqbal MH, Kerdjoudj H, Boulmedais F. Protein-based layer-by-layer films for biomedical applications. Chem Sci 2024; 15:9408-9437. [PMID: 38939139 PMCID: PMC11206333 DOI: 10.1039/d3sc06549a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/03/2024] [Indexed: 06/29/2024] Open
Abstract
The surface engineering of biomaterials is crucial for their successful (bio)integration by the body, i.e. the colonization by the tissue-specific cell, and the prevention of fibrosis and/or bacterial colonization. Performed at room temperature in an aqueous medium, the layer-by-layer (LbL) coating method is based on the alternating deposition of macromolecules. Versatile and simple, this method allows the functionalization of surfaces with proteins, which play a crucial role in several biological mechanisms. Possessing intrinsic properties (cell adhesion, antibacterial, degradable, etc.), protein-based LbL films represent a powerful tool to control bacterial and mammalian cell fate. In this article, after a general introduction to the LbL technique, we will focus on protein-based LbL films addressing different biomedical issues/domains, such as bacterial infection, blood contacting surfaces, mammalian cell adhesion, drug and gene delivery, and bone and neural tissue engineering. We do not consider biosensing applications or electrochemical aspects using specific proteins such as enzymes.
Collapse
Affiliation(s)
- Muhammad Haseeb Iqbal
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, Strasbourg Cedex 2 67034 France
| | | | - Fouzia Boulmedais
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, Strasbourg Cedex 2 67034 France
| |
Collapse
|
2
|
Baba Ismail YM, Reinwald Y, Ferreira AM, Bretcanu O, Dalgarno K, El Haj AJ. Manufacturing of 3D-Printed Hybrid Scaffolds with Polyelectrolyte Multilayer Coating in Static and Dynamic Culture Conditions. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2811. [PMID: 38930181 PMCID: PMC11205028 DOI: 10.3390/ma17122811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Three-dimensional printing (3DP) has emerged as a promising method for creating intricate scaffold designs. This study assessed three 3DP scaffold designs fabricated using biodegradable poly(lactic) acid (PLA) through fused deposition modelling (FDM): mesh, two channels (2C), and four channels (4C). To address the limitations of PLA, such as hydrophobic properties and poor cell attachment, a post-fabrication modification technique employing Polyelectrolyte Multilayers (PEMs) coating was implemented. The scaffolds underwent aminolysis followed by coating with SiCHA nanopowders dispersed in hyaluronic acid and collagen type I, and finally crosslinked the outermost coated layers with EDC/NHS solution to complete the hybrid scaffold production. The study employed rotating wall vessels (RWVs) to investigate how simulating microgravity affects cell proliferation and differentiation. Human mesenchymal stem cells (hMSCs) cultured on these scaffolds using proliferation medium (PM) and osteogenic media (OM), subjected to static (TCP) and dynamic (RWVs) conditions for 21 days, revealed superior performance of 4C hybrid scaffolds, particularly in OM. Compared to commercial hydroxyapatite scaffolds, these hybrid scaffolds demonstrated enhanced cell activity and survival. The pre-vascularisation concept on 4C hybrid scaffolds showed the proliferation of both HUVECs and hMSCs throughout the scaffolds, with a positive expression of osteogenic and angiogenic markers at the early stages.
Collapse
Affiliation(s)
- Yanny Marliana Baba Ismail
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Penang, Malaysia
- Guy Hilton Research Centre, Institute for Science and Technology in Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB, UK
- School of Mechanical and Systems Engineering, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK
| | - Yvonne Reinwald
- Guy Hilton Research Centre, Institute for Science and Technology in Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB, UK
- School of Science & Technology, Department of Engineering, Nottingham Trent University, Clifton Campus, Nottingham NG1 18NS, UK
- Medical Technology Innovation Facility, Nottingham Trent University, Clifton Campus, Nottingham NG1 18NS, UK
| | - Ana Marina Ferreira
- School of Mechanical and Systems Engineering, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK
| | - Oana Bretcanu
- School of Mechanical and Systems Engineering, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK
| | - Kenneth Dalgarno
- School of Mechanical and Systems Engineering, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK
| | - Alicia J. El Haj
- Guy Hilton Research Centre, Institute for Science and Technology in Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB, UK
- Institute of Translational Medicine, Heritage Building (Old Queen Elizabeth Hospital), Mindelsohn Way, Birmingham B15 2TH, UK
| |
Collapse
|
3
|
Rafique A, Bulbul YE, Raza ZA, Oksuz AU. Development of aminolyzed polylactic acid-based porous films for pH-responsive sustained drug delivery devices. Int J Biol Macromol 2024; 266:130947. [PMID: 38521313 DOI: 10.1016/j.ijbiomac.2024.130947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Biomaterial-based drug-carrying systems have scored enormous focus in the biomedical sector. Poly(lactic acid) (PLA) is a versatile material in this context. A porous and hydrophilic PLA surface can do this job better. We aimed to synthesize pH-responsive PLA-based porous films for uptaking and releasing amikacin sulfate in the aqueous media. The native PLA lacks functional/polar sites for the said purpose. So, we tended to aminolyze it for tailored physicochemical and surface properties. The amino (-NH2) group density on the treated films was examined using the ninhydrin assay. Electron microscopic analyses indicated the retention of porous morphology after aminolysis. Surface wettability and FTIR results expressed that the resultant films became hydrophilic after aminolysis. The thermal analysis expressed reasonable thermal stability of the aminolyzed films. The prepared films expressed pH-responsive behaviour for loading and releasing amikacin sulfate drug at pH 5.5 and 7.4, respectively. The drug release data best-fitted the first-order kinetic model based on Akaike information and model selection criteria. The prepared PLA-based aminolyzed films qualified as potential candidates for pH-responsive drug delivery applications. This study could be the first report on pH-responsive amikacin sulfate uptake and release on the swellable aminolyzed PLA-based porous films for effective drug delivery application.
Collapse
Affiliation(s)
- Ammara Rafique
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan; Department of Chemistry, Suleyman Demirel University, Faculty of Engineering and Natural Sciences, 32220 Isparta, Turkey
| | - Y Emre Bulbul
- Department of Chemistry, Suleyman Demirel University, Faculty of Engineering and Natural Sciences, 32220 Isparta, Turkey
| | - Zulfiqar Ali Raza
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan.
| | - Aysegul Uygun Oksuz
- Department of Chemistry, Suleyman Demirel University, Faculty of Engineering and Natural Sciences, 32220 Isparta, Turkey.
| |
Collapse
|
4
|
Yu YH, Lee CH, Hsu YH, Chou YC, Yu PC, Huang CT, Liu SJ. Anti-Adhesive Resorbable Indomethacin/Bupivacaine-Eluting Nanofibers for Tendon Rupture Repair: In Vitro and In Vivo Studies. Int J Mol Sci 2023; 24:16235. [PMID: 38003425 PMCID: PMC10671766 DOI: 10.3390/ijms242216235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The treatment and surgical repair of torn Achilles tendons seldom return the wounded tendon to its original elasticity and stiffness. This study explored the in vitro and in vivo simultaneous release of indomethacin and bupivacaine from electrospun polylactide-polyglycolide composite membranes for their capacity to repair torn Achilles tendons. These membranes were fabricated by mixing polylactide-polyglycolide/indomethacin, polylactide-polyglycolide/collagen, and polylactide-polyglycolide/bupivacaine with 1,1,1,3,3,3-hexafluoro-2-propanol into sandwich-structured composites. Subsequently, the in vitro pharmaceutic release rates over 30 days were determined, and the in vivo release behavior and effectiveness of the loaded drugs were assessed using an animal surgical model. High concentrations of indomethacin and bupivacaine were released for over four weeks. The released pharmaceutics resulted in complete recovery of rat tendons, and the nanofibrous composite membranes exhibited exceptional mechanical strength. Additionally, the anti-adhesion capacity of the developed membrane was confirmed. Using the electrospinning technique developed in this study, we plan on manufacturing degradable composite membranes for tendon healing, which can deliver sustained pharmaceutical release and provide a collagenous habitat.
Collapse
Affiliation(s)
- Yi-Hsun Yu
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; (Y.-H.Y.)
| | - Chen-Hung Lee
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Yung-Heng Hsu
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; (Y.-H.Y.)
| | - Ying-Chao Chou
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; (Y.-H.Y.)
| | - Ping-Chun Yu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chao-Tsai Huang
- Department of Chemical and Materials Engineering, Tamkang University, New Taipei City 25137, Taiwan;
| | - Shih-Jung Liu
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; (Y.-H.Y.)
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
5
|
Physical Chemistry Study of Collagen-Based Multilayer Films. Gels 2023; 9:gels9030192. [PMID: 36975641 PMCID: PMC10048292 DOI: 10.3390/gels9030192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The surface properties of a biomaterial play an important role in cell behavior, e.g., recolonization, proliferation, and migration. Collagen is known to favor wound healing. In this study, collagen (COL)-based layer-by-layer (LbL) films were built using different macromolecules as a partner, i.e., tannic acid (TA), a natural polyphenol known to establish hydrogen bonds with protein, heparin (HEP), an anionic polysaccharide, and poly(sodium 4-styrene sulfonate) (PSS), an anionic synthetic polyelectrolyte. To cover the whole surface of the substrate with a minimal number of deposition steps, several parameters of the film buildup were optimized, such as the pH value of the solutions, the dipping time, and the salt (sodium chloride) concentration. The morphology of the films was characterized by atomic force microscopy. Built at an acidic pH, the stability of COL-based LbL films was studied when in contact with a physiological medium as well as the TA release from COL/TA films. In contrast to COL/PSS and COL/HEP LbL films, COL/TA films showed a good proliferation of human fibroblasts. These results validate the choice of TA and COL as components of LbL films for biomedical coatings.
Collapse
|
6
|
Wen J, Cai D, Gao W, He R, Li Y, Zhou Y, Klein T, Xiao L, Xiao Y. Osteoimmunomodulatory Nanoparticles for Bone Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040692. [PMID: 36839060 PMCID: PMC9962115 DOI: 10.3390/nano13040692] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 05/27/2023]
Abstract
Treatment of large bone fractures remains a challenge for orthopedists. Bone regeneration is a complex process that includes skeletal cells such as osteoblasts, osteoclasts, and immune cells to regulate bone formation and resorption. Osteoimmunology, studying this complicated process, has recently been used to develop biomaterials for advanced bone regeneration. Ideally, a biomaterial shall enable a timely switch from early stage inflammatory (to recruit osteogenic progenitor cells) to later-stage anti-inflammatory (to promote differentiation and terminal osteogenic mineralization and model the microstructure of bone tissue) in immune cells, especially the M1-to-M2 phenotype switch in macrophage populations, for bone regeneration. Nanoparticle (NP)-based advanced drug delivery systems can enable the controlled release of therapeutic reagents and the delivery of therapeutics into specific cell types, thereby benefiting bone regeneration through osteoimmunomodulation. In this review, we briefly describe the significance of osteoimmunology in bone regeneration, the advancement of NP-based approaches for bone regeneration, and the application of NPs in macrophage-targeting drug delivery for advanced osteoimmunomodulation.
Collapse
Affiliation(s)
- Jingyi Wen
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Donglin Cai
- School of Medicine and Dentistry, Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
| | - Wendong Gao
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Ruiying He
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430061, China
| | - Yulin Li
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200231, China
| | - Yinghong Zhou
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Travis Klein
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Lan Xiao
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Yin Xiao
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia
- School of Medicine and Dentistry, Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
7
|
Min T, Zhou L, Sun X, Du H, Bian X, Zhu Z, Wen Y. Enzyme-responsive food packaging system based on pectin-coated poly (lactic acid) nanofiber films for controlled release of thymol. Food Res Int 2022; 157:111256. [DOI: 10.1016/j.foodres.2022.111256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/01/2022]
|
8
|
Drobota M, Ursache S, Aflori M. Surface Functionalities of Polymers for Biomaterial Applications. Polymers (Basel) 2022; 14:polym14122307. [PMID: 35745883 PMCID: PMC9229900 DOI: 10.3390/polym14122307] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
Changes of a material biointerface allow for specialized cell signaling and diverse biological responses. Biomaterials incorporating immobilized bioactive ligands have been widely introduced and used for tissue engineering and regenerative medicine applications in order to develop biomaterials with improved functionality. Furthermore, a variety of physical and chemical techniques have been utilized to improve biomaterial functionality, particularly at the material interface. At the interface level, the interactions between materials and cells are described. The importance of surface features in cell function is then examined, with new strategies for surface modification being highlighted in detail.
Collapse
Affiliation(s)
- Mioara Drobota
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Gr. Ghica Voda, 700487 Iasi, Romania;
| | - Stefan Ursache
- Innovative Green Power, No. 5 Iancu Bacalu Street, 700029 Iasi, Romania;
| | - Magdalena Aflori
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Gr. Ghica Voda, 700487 Iasi, Romania;
- Correspondence:
| |
Collapse
|
9
|
Niari SA, Rahbarghazi R, Geranmayeh MH, Karimipour M. Biomaterials patterning regulates neural stem cells fate and behavior: The interface of biology and material science. J Biomed Mater Res A 2021; 110:725-737. [PMID: 34751503 DOI: 10.1002/jbm.a.37321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/19/2021] [Accepted: 10/06/2021] [Indexed: 11/12/2022]
Abstract
The combination of nanotechnology and stem cell biology is one of the most promising advances in the field of regenerative medicine. This novel combination has widely been utilized in vitro settings in an attempt to develop efficient therapeutic strategies to overcome the limited capacity of the central nervous system (CNS) in replacing degenerating neural cells with functionally normal cells after the onset of acute and chronic neurological disorders. Importantly, biomaterials, not only, enhance the endogenous CNS neurogenesis and plasticity, but also, could provide a desirable supportive microenvironment to harness the full potential of the in vitro expanded neural stem cells (NSCs) for regenerative purposes. Here, first, we discuss how the physical and biochemical properties of biomaterials, such as their stiffness and elasticity, could influence the behavior of NSCs. Then, since the NSCs niche or microenvironment is of fundamental importance in controlling the dynamic destiny of NSCs such as their quiescent and proliferative states, topographical effects of surface diversity in biomaterials, that is, the micro-and nano-patterned surfaces will be discussed in detail. Finally, the influence of biomaterials as artificial microenvironments on the behavior of NSCs through the specific mechanotransduction signaling pathway mediated by focal adhesion formation will be reviewed.
Collapse
Affiliation(s)
- Shabnam Asghari Niari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Geranmayeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Neurosciences Research Center (NSRC), Imam Reza Medical Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Kitsara M, Tassis G, Papagiannopoulos A, Simon A, Agbulut O, Pispas S. Polysaccharide-Protein Multilayers Based on Chitosan-Fibrinogen Assemblies for Cardiac Cell Engineering. Macromol Biosci 2021; 22:e2100346. [PMID: 34648684 DOI: 10.1002/mabi.202100346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/10/2021] [Indexed: 12/11/2022]
Abstract
The cell and tissue culture substrates play a pivotal role in the regulation of cell-matrix and cell-cell interactions. The surface properties of the materials control a wide variety of cell functions. Amongst various methods, layer-by-layer (LbL) assembly is a versatile surface coating technique for creating controllable bio-coatings. Here, polysaccharide/protein multilayers are proposed, which are fabricated by immersive LbL assembly and based on the chitosan/fibrinogen pair for improving the adhesion and spreading of cardiomyocytes. Two approaches in LbL assembly are employed for clarifying the effect of the bilayers order and their concentration on cardiomyocytes viability and morphology. Fourier transform infrared spectroscopy (FTIR) measurements show that the adsorption of the biopolymers is enhanced during the LbL deposition in a synergistic manner. Contact angle measurements indicate that the multilayers are alternating from less to more hydrophilic behavior depending on the biopolymer that is added last. Confocal microscopy with immunostained fibrinogen reveals that the amount of the protein is higher when the concentration of the immersion solution is increased, however, for low solution concentration it is speculated that interdigitation between the separate biopolymer layers takes place. This work motivates the use of fibrinogen in polysaccharide/protein multilayers for enhanced cytocompatibility in cardiac tissue engineering.
Collapse
Affiliation(s)
- Maria Kitsara
- Institut de Biologie Paris-Seine, CNRS UMR 8256, INSERM ERL 1164, Biological Adaptation and Ageing, Sorbonne Université, Paris, 75005, France
| | - George Tassis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece.,Department of Physics, University of Patras, Patras, 26504, Greece
| | - Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
| | - Alexandre Simon
- Institut de Biologie Paris-Seine, CNRS UMR 8256, INSERM ERL 1164, Biological Adaptation and Ageing, Sorbonne Université, Paris, 75005, France
| | - Onnik Agbulut
- Institut de Biologie Paris-Seine, CNRS UMR 8256, INSERM ERL 1164, Biological Adaptation and Ageing, Sorbonne Université, Paris, 75005, France
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
| |
Collapse
|
11
|
Kupikowska-Stobba B, Kasprzak M. Fabrication of nanoparticles for bone regeneration: new insight into applications of nanoemulsion technology. J Mater Chem B 2021; 9:5221-5244. [PMID: 34142690 DOI: 10.1039/d1tb00559f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introducing synthetic bone substitutes into the clinic was a major breakthrough in the regenerative medicine of bone. Despite many advantages of currently available bone implant materials such as biocompatiblity and osteoconductivity, they still suffer from relatively poor bioactivity, osteoinductivity and osteointegration. These properties can be effectively enhanced by functionalization of implant materials with nanoparticles such as osteoinductive hydroxyapatite nanocrystals, resembling inorganic part of the bone, or bioactive polymer nanoparticles providing sustained delivery of pro-osteogenic agents directly at implantation site. One of the most widespread techniques for fabrication of nanoparticles for bone regeneration applications is nanoemulsification. It allows manufacturing of nanoscale particles (<100 nm) that are injectable, 3D-printable, offer high surface-area-to-volume-ratio and minimal mass transport limitations. Nanoparticles obtained by this technique are of particular interest for biomedical engineering due to fabrication procedures requiring low surfactant concentrations, which translates into reduced risk of surfactant-related in vivo adverse effects and improved biocompatibility of the product. This review discusses nanoemulsion technology and its current uses in manufacturing of nanoparticles for bone regeneration applications. In the first section, we introduce basic concepts of nanoemulsification including nanoemulsion formation, properties and preparation methods. In the next sections, we focus on applications of nanoemulsions in fabrication of nanoparticles used for delivery of drugs/biomolecules facilitating osteogenesis and functionalization of bone implants with special emphasis on biomimetic hydroxyapatite nanoparticles, synthetic polymer nanoparticles loaded with bioactive compounds and bone-targeting nanoparticles. We also highlight key challenges in formulation of nanoparticles via nanoemulsification and outline potential further improvements in this field.
Collapse
Affiliation(s)
- Barbara Kupikowska-Stobba
- ŁUKASIEWICZ Research Network - Institute of Ceramics and Building Materials, Ceramic and Concrete Division in Warsaw, Department of Biomaterials, Postępu 9, 02-677, Warsaw, Poland.
| | - Mirosław Kasprzak
- ŁUKASIEWICZ Research Network - Institute of Ceramics and Building Materials, Ceramic and Concrete Division in Warsaw, Department of Biomaterials, Postępu 9, 02-677, Warsaw, Poland.
| |
Collapse
|
12
|
Dammak I, Sobral PJDA, Aquino A, Neves MAD, Conte‐Junior CA. Nanoemulsions: Using emulsifiers from natural sources replacing synthetic ones—A review. Compr Rev Food Sci Food Saf 2020; 19:2721-2746. [DOI: 10.1111/1541-4337.12606] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Ilyes Dammak
- Food Science ProgramInstitute of Chemistry, Federal University of Rio de Janeiro Rio de Janerio Brazil
| | - Paulo José do Amaral Sobral
- Department of Food EngineeringFZEAUniversity of São Paulo Pirassununga São Paulo Brazil
- Food Research Center (FoRC)University of São Paulo Pirassununga São Pau Brazil
| | - Adriano Aquino
- Food Science ProgramInstitute of Chemistry, Federal University of Rio de Janeiro Rio de Janerio Brazil
- Nanotechnology NetworkCarlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro Rio de Janerio Brazil
| | | | - Carlos Adam Conte‐Junior
- Food Science ProgramInstitute of Chemistry, Federal University of Rio de Janeiro Rio de Janerio Brazil
- Nanotechnology NetworkCarlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro Rio de Janerio Brazil
| |
Collapse
|
13
|
Qian Y, Zhou X, Zhang F, Diekwisch TG, Luan X, Yang J. Triple PLGA/PCL Scaffold Modification Including Silver Impregnation, Collagen Coating, and Electrospinning Significantly Improve Biocompatibility, Antimicrobial, and Osteogenic Properties for Orofacial Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37381-37396. [PMID: 31517483 PMCID: PMC7220812 DOI: 10.1021/acsami.9b07053] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Biodegradable synthetic scaffolds hold great promise for oral and craniofacial guided tissue regeneration and bone regeneration. To overcome the limitations of current scaffold materials in terms of osteogenic and antimicrobial properties, we have developed a novel silver-modified/collagen-coated electrospun poly-lactic-co-glycolic acid/polycaprolactone (PLGA/PCL) scaffold (PP-pDA-Ag-COL) with improved antimicrobial and osteogenic properties. Our novel scaffold was generated by electrospinning a basic PLGA/PCL matrix, followed by silver nanoparticles (AgNPs) impregnation via in situ reduction, polydopamine coating, and then coating by collagen I. The three intermediate materials involved in the fabrication of our scaffolds, namely, PLGA/PCL (PP), PLGA/PCL-polydopamine (PP-pDA), and PLGA/PCL-polydopamine-Ag (PP-pDA-Ag), were used as control scaffolds. Scanning electron micrographs and mechanical testing indicated that the unique three-dimensional structures with randomly oriented nanofibrous electrospun scaffold architectures, the elasticity modulus, and the tensile strength were maintained after modifications. CCK-8 cell proliferation analysis demonstrated that the PP-pDA-Ag-COL scaffold was associated with higher MC3T3 proliferation rates than the three control scaffolds employed. Scanning electron and fluorescence light microscopy illustrated that PP-pDA-Ag-COL scaffolds significantly enhanced MC3T3 cell adhesion compared to the control scaffolds after 12 and 24 h culture, in tandem with the highest β1 integrin expression levels, both at the mRNA level and the protein level. Alkaline phosphatase activity, BMP2, and RUNX2 expression levels of MC3T3 cells cultured on PP-pDA-Ag-COL scaffolds for 7 and 14 days were also significantly higher when compared to controls (P < 0.001). There was a wider antibacterial zone associated in PP-pDA-Ag-COL and PP-pDA-Ag scaffolds versus control scaffolds (P < 0.05), and bacterial fluorescence was reduced on the Ag-modified scaffolds after 24 h inoculation against Staphylococcus aureus and Streptococcus mutans. In a mouse periodontal disease model, the PP-pDA-Ag-COL scaffold enhanced alveolar bone regeneration (31.8%) and was effective for periodontitis treatment. These results demonstrate that our novel PP-pDA-Ag-COL scaffold enhanced biocompatibility and osteogenic and antibacterial properties and has therapeutic potential for alveolar/craniofacial bone regeneration.
Collapse
Affiliation(s)
- Yunzhu Qian
- Center of Stomatology, The Second Affiliated Hospital of Soochow University. Suzhou 215004, People’s Republic of China
| | - Xuefeng Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People’s Republic of China
- Corresponding Author: (J.Y) , (X.Z) , (X.L)
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, People’s Republic of China
| | - Thomas G.H. Diekwisch
- Texas A&M Center for Craniofacial Research and Diagnosis, Dallas, Texas 75246, United States
| | - Xianghong Luan
- Texas A&M Center for Craniofacial Research and Diagnosis, Dallas, Texas 75246, United States
- Corresponding Author: (J.Y) , (X.Z) , (X.L)
| | - Jianxin Yang
- Center of Stomatology, The Second Affiliated Hospital of Soochow University. Suzhou 215004, People’s Republic of China
- Corresponding Author: (J.Y) , (X.Z) , (X.L)
| |
Collapse
|
14
|
Layer-by-layer assembly as a robust method to construct extracellular matrix mimic surfaces to modulate cell behavior. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Functional textile finishing of type I collagen isolated from bovine bone for potential healthtech. Heliyon 2019; 5:e01260. [PMID: 30891510 PMCID: PMC6389544 DOI: 10.1016/j.heliyon.2019.e01260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/18/2019] [Accepted: 02/15/2019] [Indexed: 01/03/2023] Open
Abstract
Collagen is the most abundant fibrous protein in animal's body and is widely used for biomedical and pharmaceutical applications. The principal sources of this protein are bovine, porcine and fish skin and bones. In Colombia, bovine bones are waste from meat industry, this material have potential as an alternative source of collagen isolation. The aim of this study was to evaluate the composition and some properties of type I collagen (COL I) extracted of bovine bones of Zebu-Bos Primigenius Indicus and its use as textile finishing to modify two types of fabrics: first a taffeta weave and the second a single jersey knit, both 100% cotton. The extracted bone collagen showed the main characteristic bands of this material in the FTIR spectra, corresponding to amide A, I, II and III. Gel electrophoresis (SDS-PAGE) presented the main bands of α1 and α2 chains characteristic of COL I with a molecular weight of approximately 120 kDa and the amino acid profile of hydrolyzed protein evaluated by amino acid analysis showed 9.4% of hydroxyproline, 10.3% proline and 16.9% of glycine content. Two traditional methods of applying finished textiles were evaluated to modify both fabrics with COL I, exhibiting better attachment through PAD method compared with exhaustion method. These results suggest that bone is an alternative source for type I collagen extraction, which can be applied as a functional textile finishing for traditional fabrics for implementation in healthtech field.
Collapse
|