1
|
Si B, Yang Y, Naveed M, Wang F, Chan MWH. Characterizations of biogenic selenium nanoparticles and their anti-biofilm potential against Streptococcus mutans ATCC 25175. J Trace Elem Med Biol 2024; 84:127448. [PMID: 38626650 DOI: 10.1016/j.jtemb.2024.127448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/18/2024]
Abstract
INTRODUCTION S. mutans has been identified as the primary pathogenic bacterium in biofilm-mediated dental caries. The biogenic selenium nanoparticles (SeNPs) produced by L. plantarum KNF-5 were used in this study against S. mutans ATCC 25175. OBJECTIVES The aims of this study were: (1) the biosynthesis of SeNPs by L. plantarum KNF-5, (2) the characterization of SeNPs, (3) the investigation of the inhibitory effect of biogenic SeNPs against S. mutans ATCC 25175, and (4) the determination of the anti-biofilm potential of SeNPS against S. mutans ATCC 25175. METHODOLOGY 3 mL of the culture was added to 100 mL of MRS medium and incubated. After 4 h, Na2SeO3 solution (concentration 100 μg/mL) was added and incubated at 37 °C for 36 h. The color of the culture solution changed from brownish-yellow to reddish, indicating the formation of SeNPs. The characterization of SeNPs was confirmed by UV-Vis spectrophotometry, FTIR, SEM-EDS and a particle size analyzer. The antibacterial activity was determined by the disk diffusion method, the MIC by the micro-double dilution method, and the biofilm inhibitory potential by the crystal violet method and the MTT assay. The effect of SeNPs on S. mutans ATCC 25175 was determined using SEM and CLSM spectrometry techniques. The sulfate-anthrone method was used to analyze the effect of SeNPs on insoluble extracellular polysaccharides. The expression of genes in S. mutans ATCC 25175 was analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). PREPARATION OF NANOPARTICLES SeNPs produced by probiotic bacteria are considered a safe method. In this study, L. plantarum KNF-5 (probiotic strain) was used for the production of SeNPs. RESULTS The biogenic SeNPs were spherical and coated with proteins and polysaccharides and had a diameter of about 270 nm. The MIC of the SeNPs against S. mutans ATCC 25175 was 3.125 mg/mL. Biofilm growth was also significantly suppressed at this concentration. The expression of genes responsible for biofilm formation (GtfB, GtfC, BrpA and GbpB,) was reduced when S. mutans ATCC 25175 was treated with SeNPs. CONCLUSION It was concluded that the biogenic SeNPs produced by L. plantarum KNF-5 was highly effective to inhibit the growth of S. mutans ATCC 25175. NOVELTY STATEMENT The application of biogenic SeNPs, a natural anti-biofilm agent against S. mutans ATCC 25175. In the future, this study will provide a new option for the prevention and treatment of dental caries.
Collapse
Affiliation(s)
- Binbin Si
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yang Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Muhammad Naveed
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Fenghuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Malik Wajid Hussain Chan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
2
|
Miura D, Motohashi S, Goto A, Kimura H, Tsugawa W, Sode K, Ikebukuro K, Asano R. Rapid and Convenient Single-Chain Variable Fragment-Employed Electrochemical C-Reactive Protein Detection System. Int J Mol Sci 2024; 25:2859. [PMID: 38474105 DOI: 10.3390/ijms25052859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Although IgG-free immunosensors are in high demand owing to ethical concerns, the development of convenient immunosensors that alternatively integrate recombinantly produced antibody fragments, such as single-chain variable fragments (scFvs), remains challenging. The low affinity of antibody fragments, unlike IgG, caused by monovalent binding to targets often leads to decreased sensitivity. We improved the affinity owing to the bivalent effect by fabricating a bivalent antibody-enzyme complex (AEC) composed of two scFvs and a single glucose dehydrogenase, and developed a rapid and convenient scFv-employed electrochemical detection system for the C-reactive protein (CRP), which is a homopentameric protein biomarker of systemic inflammation. The development of a point-of-care testing (POCT) system is highly desirable; however, no scFv-based CRP-POCT immunosensors have been developed. As expected, the bivalent AEC showed higher affinity than the single scFv and contributed to the high sensitivity of CRP detection. The electrochemical CRP detection using scFv-immobilized magnetic beads and the bivalent AEC as capture and detection antibodies, respectively, was achieved in 20 min without washing steps in human serum and the linear range was 1-10 nM with the limit of detection of 2.9 nM, which has potential to meet the criteria required for POCT application in rapidity, convenience, and hand-held detection devices without employing IgGs.
Collapse
Affiliation(s)
- Daimei Miura
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Japan
| | - Saki Motohashi
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Japan
| | - Ayaka Goto
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Japan
| | - Hayato Kimura
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Japan
| | - Wakako Tsugawa
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Japan
| | - Koji Sode
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Japan
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu 183-8509, Japan
| |
Collapse
|
3
|
Futagawa K, Tang D, Kato Y, Nagata K, Suzuki M. Structural Analyses of DP-1, a Protein with the Ability To Bind Gold Nanoparticles, by Using Nuclear Magnetic Resonance Spectroscopy. Chembiochem 2024; 25:e202300554. [PMID: 37792876 DOI: 10.1002/cbic.202300554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023]
Abstract
Gold nanoparticles (AuNPs), consisting of metallic gold, are applied in various fields owing to their characteristic physical properties. Collimonas sp. D-25 (D-25) is a Gram-negative bacterium obtained from soil, compost, and other environmental materials in the Akita Prefecture. DP-1 is a water-soluble protein found in D-25 that binds specifically to AuNPs and retains them with high stability. This study aimed to identify the part of DP-1 that interacts with AuNPs and determine its 3D structure in solution using nuclear magnetic resonance spectroscopy. Peptide fragments obtained by trypsin digestion were examined for their AuNP-binding capacity to determine the key Au-binding domain of DP-1. A fragment consisting of 16 amino acid residues (GHAATPEQYGVVTANK) was identified as the peptide with the highest binding activity. Structural analyses of this peptide indicated that the main chain was elongated, and negatively charged residues in the side chain were exposed on the surface by incorporating AuNPs. These results suggest that DP-1 interacts with AuNPs through negatively charged residues and extended hydrophobic residues for protein-protein interactions. The structural data also provide new insights into biomimetic technologies.
Collapse
Affiliation(s)
- Kei Futagawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Donglin Tang
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yugo Kato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Muchio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
4
|
Burlec AF, Corciova A, Boev M, Batir-Marin D, Mircea C, Cioanca O, Danila G, Danila M, Bucur AF, Hancianu M. Current Overview of Metal Nanoparticles' Synthesis, Characterization, and Biomedical Applications, with a Focus on Silver and Gold Nanoparticles. Pharmaceuticals (Basel) 2023; 16:1410. [PMID: 37895881 PMCID: PMC10610223 DOI: 10.3390/ph16101410] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Metal nanoparticles (NPs) have garnered considerable attention, due to their unique physicochemical properties, that render them promising candidates for various applications in medicine and industry. This article offers a comprehensive overview of the most recent advancements in the manufacturing, characterization, and biomedical utilization of metal NPs, with a primary focus on silver and gold NPs. Their potential as effective anticancer, anti-inflammatory, and antimicrobial agents, drug delivery systems, and imaging agents in the diagnosis and treatment of a variety of disorders is reviewed. Moreover, their translation to therapeutic settings, and the issue of their inclusion in clinical trials, are assessed in light of over 30 clinical investigations that concentrate on administering either silver or gold NPs in conditions ranging from nosocomial infections to different types of cancers. This paper aims not only to examine the biocompatibility of nanomaterials but also to emphasize potential challenges that may limit their safe integration into healthcare practices. More than 100 nanomedicines are currently on the market, which justifies ongoing study into the use of nanomaterials in medicine. Overall, the present review aims to highlight the potential of silver and gold NPs as innovative and effective therapeutics in the field of biomedicine, citing some of their most relevant current applications.
Collapse
Affiliation(s)
- Ana Flavia Burlec
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| | - Andreia Corciova
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| | - Monica Boev
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Denisa Batir-Marin
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Cornelia Mircea
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| | - Oana Cioanca
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| | - Gabriela Danila
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Marius Danila
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Anca Florentina Bucur
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Monica Hancianu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| |
Collapse
|
5
|
Amini SM, Rezayat SM, Dinarvand R, Kharrazi S, Jaafari MR. Gold cluster encapsulated liposomes: theranostic agent with stimulus triggered release capability. Med Oncol 2023; 40:126. [PMID: 36961614 DOI: 10.1007/s12032-023-01991-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/07/2023] [Indexed: 03/25/2023]
Abstract
Cancer is a major cause of death worldwide. Cancer-resistant to chemo or radiotherapy treatment is a challenge that could be overcome by a nanotechnology approach. Providing a theranostic nano-platform for different cancer treatment strategies could be revolutionary. Here we introduce a multifunctional theranostic nanostructure which has the capacity for improving cancer diagnosis and treatment through better chemo and radiotherapy and current x-ray imaging systems through co-encapsulation of a small gold cluster and anticancer drug doxorubicin. 2 nm gold clusters represent good heating under radio frequency electric field (RF-EF) exposure and have been used for in vitro hyperthermia treatment of cancerous cells. Liposomal doxorubicin (169 ± 19.8 nm) with gold clusters encapsulation efficiency of 13.2 ± 3.0% and doxorubicin encapsulation efficiency of 64.7 ± 0.7% were prepared and studied as a theranostic agent with a high potential in different cancer treatment modalities. Exposure to a radiofrequency electric field on prepared formulation caused 20.2 ± 2.1% drug release and twice decreasing of IC50 on colorectal carcinoma cells. X-ray attenuation efficiency of the liposomal gold cluster was better than commercial iohexol and free gold clusters in different concentrations. Finally, treatment of gold clusters on cancerous cells results in a significant decrease in the viability of irradiated cells to cobalt-60 beam. Based on these experiments, we concluded that the conventional liposomal formulation of doxorubicin that has been co-encapsulated with small gold clusters could be a suitable theranostic nanostructure for cancer treatment and merits further investigation.
Collapse
Affiliation(s)
- Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Seyed Mahdi Rezayat
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Centre, Novel Drug Delivery Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sharmin Kharrazi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Mahmoud Reza Jaafari
- Pharmaceutical Technology Institute, School of Pharmacy, Nanotechnology Research Center, Mashhad University of Medical Sciences, 91775-1365, Mashhad, Iran.
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, 91775-1365, Mashhad, Iran.
| |
Collapse
|
6
|
Sharifiaghdam Z, Amini SM, Dalouchi F, Behrooz AB, Azizi Y. Apigenin-coated gold nanoparticles as a cardioprotective strategy against doxorubicin-induced cardiotoxicity in male rats via reducing apoptosis. Heliyon 2023; 9:e14024. [PMID: 36915508 PMCID: PMC10006676 DOI: 10.1016/j.heliyon.2023.e14024] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Aims Cardiotoxicity is associated with doxorubicin (DOX), an effective anticancer drug. Apigenin has cardioprotective properties; it may be employed as a capping and reducing agent in synthesizing gold nanoparticles (AuNPs). This study examined the cardioprotective impact of AuNPs synthesized with apigenin (Api) in DOX-induced cardiotoxicity (DIC). Main methods Api-AuNPs were synthesized in a single pot without needing additional reagents for reducing gold ions or stabilizing the NPs. The cytotoxicity of Api-AuNPs on H9c2 heart cells was subsequently determined using the MTT assay. In the animal investigation, 40 male rats were randomly assigned to one of four groups: control, cardiotoxicity (DOX), DOX treated with apigenin (DOX + Api), or DOX treated with Api-AuNPs (DOX + Api-AuNPs). To examine heart function, echocardiography was conducted. Blood samples were obtained to evaluate injury indicators (Lactate dehydrogenase (LDH), creatine kinase MB (CK-MB), Cardiac Troponin I (cTn-I), Alanine transaminase (ALT), and Aspartate transaminase (AST)). The heart was removed under general anesthetic, weighed, and preserved in formalin solution. Six micrometer-thick cardiac tissue sections were stained with hematoxylin, eosin (H&E), and immunohistochemistry to identify cardiomyocyte apoptotic markers (Bax, Bcl-2, and caspase3). Key findings Api-AuNPs have an average size of 21.4 ± 11.6 nm and are stable in physiological environments. Api-AuNPs therapy substantially reduced body and heart weight loss compared to the DOX group. Injury indicators were reduced dramatically by Api-AuNPs treatment. Api-AuNPs inhibited myocardial apoptosis via modulating Bax, caspase3, and Bcl-2 and ameliorating tissue damage caused by DOX. Significance Api-AuNPs' anti-apoptotic activities provide cardioprotection against DIC. It has the potential to reduce cardiotoxicity and boost myocardial performance.
Collapse
Affiliation(s)
- Zeynab Sharifiaghdam
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fereshteh Dalouchi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Barzegar Behrooz
- Nanobiotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang 43400, Malaysia.,Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Azizi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Biomedical applications of solid-binding peptides and proteins. Mater Today Bio 2023; 19:100580. [PMID: 36846310 PMCID: PMC9950531 DOI: 10.1016/j.mtbio.2023.100580] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Over the past decades, solid-binding peptides (SBPs) have found multiple applications in materials science. In non-covalent surface modification strategies, solid-binding peptides are a simple and versatile tool for the immobilization of biomolecules on a vast variety of solid surfaces. Especially in physiological environments, SBPs can increase the biocompatibility of hybrid materials and offer tunable properties for the display of biomolecules with minimal impact on their functionality. All these features make SBPs attractive for the manufacturing of bioinspired materials in diagnostic and therapeutic applications. In particular, biomedical applications such as drug delivery, biosensing, and regenerative therapies have benefited from the introduction of SBPs. Here, we review recent literature on the use of solid-binding peptides and solid-binding proteins in biomedical applications. We focus on applications where modulating the interactions between solid materials and biomolecules is crucial. In this review, we describe solid-binding peptides and proteins, providing background on sequence design and binding mechanism. We then discuss their application on materials relevant for biomedicine (calcium phosphates, silicates, ice crystals, metals, plastics, and graphene). Although the limited characterization of SBPs still represents a challenge for their design and widespread application, our review shows that SBP-mediated bioconjugation can be easily introduced into complex designs and on nanomaterials with very different surface chemistries.
Collapse
|
8
|
Investigation of effects of transferrin-conjugated gold nanoparticles on hippocampal neuronal activity and anxiety behavior in mice. Mol Cell Biochem 2022. [DOI: 10.1007/s11010-022-04632-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Ngernyuang N, Wongwattanakul M, Charusirisawad W, Shao R, Limpaiboon T. Green synthesized apigenin conjugated gold nanoparticles inhibit cholangiocarcinoma cell activity and endothelial cell angiogenesis in vitro. Heliyon 2022; 8:e12028. [PMID: 36506385 PMCID: PMC9732323 DOI: 10.1016/j.heliyon.2022.e12028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/05/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a rare malignancy of the biliary tract with extremely poor clinical outcomes due to a lack of effective therapies to improve disease management. The emerging green synthesis of gold nanoparticles (AuNPs) has extensively provided their use in biomedical applications. In this study, we developed AuNPs via reducing gold salts with apigenin (4',5,7-trihydroxyflavone). The synthesized apigenin-conjugated AuNPs (api-AuNPs) were physicochemically characterized by various techniques before evaluation their biological and functional inhibition in a CCA cell line, KKU-M055. The mean size of api-AuNPs was 90.34 ± 22.82 nm with zeta potential of -36 ± 0.55. The half-maximal inhibitory concentration (IC50, 0.8 mg/mL) of api-AuNPs on cell proliferation of KKU-M055 was 1.9-fold less than that of an immortalized human cholangiocyte cell line, MMNK1 (IC50, 1.5 mg/mL). Moreover, api-AuNPs induced cell apoptosis via the up-regulation of Bax, Bid, and Caspase 3, and down-regulation of Bcl2, leading to elevated caspase 3/7, 8, 9 activities and reactive oxygen species (ROS) production. The api-AuNPs significantly inhibited the migration of KKU-M055 cells and suppressed the proliferation, migration, and in vitro tube formation of vascular endothelial cells. Collectively, our findings indicate the dual abilities of api-AuNPs that potentially inhibit cancer cell growth and motility as well as endothelial cell-mediated angiogenesis, which may offer a novel therapeutic avenue to treat CCA patients effectively.
Collapse
Affiliation(s)
- Nipaporn Ngernyuang
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Molin Wongwattanakul
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wannit Charusirisawad
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Rong Shao
- Development of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Temduang Limpaiboon
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
10
|
Eissa DM, Mabrouk MM, Ebeid EZM, Abdel Hamid MA. Hydrophilic gold nanospheres: influence of alendronate, memantine, and tobramycin on morphostructural features. BMC Chem 2022; 16:101. [PMID: 36419078 PMCID: PMC9682697 DOI: 10.1186/s13065-022-00891-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Turkevich gold nanospheres are the original nanospheres that have been modified over time. Its combination with targeting medications such as alendronate, memantine, and tobramycin will provide additional benefits in targeting specific areas in the bone, brain, and microorganisms, respectively. Hence, The reactivity and stability of nanospheres with various drug concentrations (milli-,micro-, and nano-levels) have been studied. With alendronate, the absorbance spectra of nanospheres at [Formula: see text] 520 nm were always stable and no redshifts occurred. In contrast, the spectra with memantine and tobramycin were stable at the nano-level and redshifts occurred at the milli- and micro-levels. HRTEM and DLS revealed that the core diameter was relatively stable in all cases, whereas the hydrodynamic diameter and zeta potential varied with varying drug concentrations. Increasing concentration increased hydrodynamic diameter slightly with memantine (from 64.99 to 98.41 nm), dramatically with tobramycin (from 135.3 to 332.16 nm), and almost negligibly with alendronate (from 52.08 to 58.94 nm ). Zeta Potential, conversely, is reduced as concentration increases. Memantine had the greatest reduction in negativity, followed by tobramycin, but alendronate had a slight increase in negativity. Benefits from this research would be in targeted drug delivery, where stability and reactivity of gold nanospheres are critical.
Collapse
Affiliation(s)
- Dina M. Eissa
- grid.415762.3Ministry of Health and Population, Menoufia, Egypt
| | - Mokhtar M. Mabrouk
- grid.412258.80000 0000 9477 7793Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Elgeish Street, Tanta, 31111 Egypt
| | - El Zeiny M. Ebeid
- grid.412258.80000 0000 9477 7793Chemistry Department, Faculty of Science, Tanta University, Elgeish Street, Tanta, 31111 Egypt
| | - Mohamed A. Abdel Hamid
- grid.412258.80000 0000 9477 7793Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Elgeish Street, Tanta, 31111 Egypt
| |
Collapse
|
11
|
Amini SM, Mohammadi E, Askarian-Amiri S, Azizi Y, Shakeri-Zadeh A, Neshastehriz A. Investigating the in vitro photothermal effect of green synthesized apigenin-coated gold nanoparticle on colorectal carcinoma. IET Nanobiotechnol 2021; 15:329-337. [PMID: 34694668 PMCID: PMC8675836 DOI: 10.1049/nbt2.12016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/29/2020] [Accepted: 11/03/2020] [Indexed: 11/19/2022] Open
Abstract
Applying toxic chemical to the synthesis of stable gold nanoparticles is one of the limitations of gold nanoparticles for therapeutic applications such as photothermal therapy. Plant compounds such as apigenin (API) with therapeutic potential can be applied in the synthesis of gold nanoparticles. API‐coated gold nanoparticles (Api@AuNPs) with an average size of 19.1 nm and a surface charge of −4.3 mV have been synthesized by a simple and efficient technique. The stability of Api@AuNPs in the biological environment was verified through UV‐Vis spectroscopy. Based on Raman and FTIR spectroscopy analysis, chemical binding of API on the surface of Api@AuNPs through hydroxyl and carbonyl functional groups was found to be the main reason for the stability of the Api@AuNPs in comparison with citrate‐coated gold nanoparticles (Cit@AuNPs). The synthesized Api@AuNPs do not cause major toxic effects up to 128 ppm. Api@AuNP‐mediated photothermal therapy leads to the indiscriminate eradication of almost half of both mouse fibroblastic (L929) and colorectal cancer (CT26) cells. Flow‐cytometry analysis revealed that the cell death mechanism is mainly apoptosis. In the apoptosis triggered cell death in photothermal treatment, Api@AuNPs are preferred over commonly used gold nanoparticles in photothermal treatments which mostly trigger the necrosis cell death pathway.
Collapse
Affiliation(s)
- Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Elham Mohammadi
- Radiation Biology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Yaser Azizi
- Physiology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shakeri-Zadeh
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ali Neshastehriz
- Radiation Biology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
12
|
|
13
|
Abstract
Bacteriophages are viruses whose ubiquity in nature and remarkable specificity to their host bacteria enable an impressive and growing field of tunable biotechnologies in agriculture and public health. Bacteriophage capsids, which house and protect their nucleic acids, have been modified with a range of functionalities (e.g., fluorophores, nanoparticles, antigens, drugs) to suit their final application. Functional groups naturally present on bacteriophage capsids can be used for electrostatic adsorption or bioconjugation, but their impermanence and poor specificity can lead to inconsistencies in coverage and function. To overcome these limitations, researchers have explored both genetic and chemical modifications to enable strong, specific bonds between phage capsids and their target conjugates. Genetic modification methods involve introducing genes for alternative amino acids, peptides, or protein sequences into either the bacteriophage genomes or capsid genes on host plasmids to facilitate recombinant phage generation. Chemical modification methods rely on reacting functional groups present on the capsid with activated conjugates under the appropriate solution pH and salt conditions. This review surveys the current state-of-the-art in both genetic and chemical bacteriophage capsid modification methodologies, identifies major strengths and weaknesses of methods, and discusses areas of research needed to propel bacteriophage technology in development of biosensors, vaccines, therapeutics, and nanocarriers.
Collapse
Affiliation(s)
| | - Julie M. Goddard
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Sam R. Nugen
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
14
|
Ghedini E, Pizzolato M, Longo L, Menegazzo F, Zanardo D, Signoretto M. Which Are the Main Surface Disinfection Approaches at the Time of SARS-CoV-2? FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2020.589202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Among many guidelines issued by the World Health Organization to prevent contagion from novel coronavirus (SARS-CoV-2), disinfection of animate and inanimate surfaces has emerged as a key issue. One effective approach to prevent its propagation can be achieved by disinfecting air, skin, or surfaces. A thorough and rational application of an Environmental Protection Agent for disinfection of surfaces, as well as a good personal hygiene, including cleaning hands with appropriate products (e.g., 60–90% alcohol-based product) should minimize transmission of viral respiratory pathogens such as SARS-CoV-2. Critical issues, associated with the potential health hazard of chemical disinfectants and the ineffective duration of most of the treatments, have fostered the introduction of innovative and alternative disinfection approaches. The present review aims to provide an outline of methods currently used for inanimate surface disinfection with a look to the future and a focus on the development of innovative and effective disinfection approaches (e.g., metal nanoparticles, photocatalysis, self-cleaning, and self-disinfection) with particular focus on SARS-CoV-2. The research reviews are, usually, focused on a specific category of disinfection methods, and therefore they are limited. On the contrary, a panoramic review with a wider focus, as the one here proposed, can be an added value for operators in the sector and generally for the scientific community.
Collapse
|
15
|
Su B, Wang Y, Pei H, Sun Z, Cao H, Zhang C, Chen Q, Liu X. Phage-mediated double-nanobody sandwich immunoassay for detecting alpha fetal protein in human serum. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4742-4748. [PMID: 32924033 DOI: 10.1039/d0ay01407a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Alpha fetal protein (AFP) is a significant biomarker of liver cancer. Herein we developed a novel phage-mediated double-nanobody sandwich immunoassay (P-ELISA) for sensitive detection of AFP in serum, where the phage displayed the nanobody for antigen recognition and multiple copies of major coat protein pVIII for signal amplification. The expressed nanobody Nb-A1 and the phage-displayed nanobody phage-A2 served as the capture antibody and detection antibody, respectively. Based on the optimal experimental conditions, the P-ELISA has a half maximal saturation concentration of 24.85 ng mL-1 and a limit of detection of 0.237 ng mL-1 for AFP. The P-ELISA is highly selective for AFP and ignorable cross-reactions were observed with other tested cancer biomarkers. After elimination of the matrix effect by 30-fold dilution with 0.5 × PBS, clinical serum samples were analyzed by the P-ELISA. The results correlated well with those of the AFP commercial ELISA kit and the Roche E601 automatic chemiluminescence analyzer. Thus, it showed the potential of the recombinant phage for highly sensitive and selective detection of AFP and provides a novel detection model for the other disease-related biomarkers.
Collapse
Affiliation(s)
- Benchao Su
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
El-Borady OM, Ayat MS, Shabrawy MA, Millet P. Green synthesis of gold nanoparticles using Parsley leaves extract and their applications as an alternative catalytic, antioxidant, anticancer, and antibacterial agents. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.09.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Karimi Zarchi AA, Amini SM, Salimi A, Kharazi S. Synthesis and characterisation of liposomal doxorubicin with loaded gold nanoparticles. IET Nanobiotechnol 2019; 12:846-849. [PMID: 30104461 DOI: 10.1049/iet-nbt.2017.0321] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Developing nanostructures for cancer treatment is growing significantly. Liposomal doxorubicin is a drug that is used in the clinic and represents a lot of benefits over doxorubicin. The development of multifunctional liposomes with different cancer treatment capability enables broader applications of doxorubicin chemotherapy. Many efforts were carried to prepare more effective liposomal formulation through loading gold nanoparticles (GNPs) in the formulation. Here, GNPs with an average size of 6 nm were loaded in liposomal formulation alongside doxorubicin. The hydrodynamic diameter of final formulation was 177.3 ± 33.9 nm that in comparison with liposomes without GNPs (112.5 ± 10.3 nm), GNPs-loaded liposomes showed the bigger hydrodynamic diameter. GNPs-loaded liposomes are slightly positively charged (4.4 ± 1.1 mV), while liposomes without loading the GNPs were negatively charged (-18.5 ± 1.6 mV). Doxorubicin was loaded in this formulation through active loading technique. Doxorubicin loading efficiency in gold-loaded liposomes is slightly lesser than liposomes without GNPs, but still considerably high in comparison to passive loading techniques.
Collapse
Affiliation(s)
- Ali Akbar Karimi Zarchi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Mohamad Amini
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Ali Salimi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sharmin Kharazi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
18
|
Amini SM, Akbari A. Metal nanoparticles synthesis through natural phenolic acids. IET Nanobiotechnol 2019; 13:771-777. [PMID: 31625516 PMCID: PMC8676617 DOI: 10.1049/iet-nbt.2018.5386] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 10/24/2023] Open
Abstract
For being applied in medicine as therapeutic agents, nanostructures need to be biocompatible and eco-friendly. Plant-derived phenolic acids have been utilised for green synthesis of metallic or metallic oxide nanoparticles (NPs). The phenolic acids play role as both reducing agents and stabilisers in the process of NPs synthesis. Many experiments have been dedicated to develop efficient green synthesis techniques for producing metal NPs. Using phenolic acids represents a reproducible, simple, profitable, and cost-effective strategy to synthesise metal NPs. As a phytochemical for metal NPs synthesis, phenolic acids are antioxidants that represent many health benefits. However, limited studies have been dedicated to the synthesis and characterisation of NPs produced by phenolic acids. Thus, this review focused on phenolic acids mediated nanomaterial synthesis and its biomedical applications. It should be noted the mechanism of metal ion bioreduction, phenolic acids surface adsorption, characterisation, and toxicity of metal NPs made with different phenolic acids have been discussed in this review.
Collapse
Affiliation(s)
- Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Amini SM. Preparation of antimicrobial metallic nanoparticles with bioactive compounds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109809. [PMID: 31349497 DOI: 10.1016/j.msec.2019.109809] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/08/2019] [Accepted: 05/27/2019] [Indexed: 01/25/2023]
Abstract
Despite the all recent advancements in medicine, infectious diseases continue to be major causes of death worldwide. Developing nanomaterials as preventive and therapeutic agents against infectious diseases has been one of the research priorities in medicine. However, the application of metal nanoparticles as antimicrobial agents is hampered due to environmental and safety concerns. Using green chemistry, researchers can produce biocompatible nanoparticles that have fewer detrimental effects on human health and the environment. Although chemical compounds have been considered as traditional sources for producing nanomaterials, a wide variety of biocompatible plant-derived secondary metabolites have recently been introduced that can be used to synthesize and stabilize metal nanoparticles. These metabolites have shown potent antibacterial effects making them suitable substitutes for the chemical agents in nanoparticle synthesis. This review has focused on the antimicrobial properties of metal nanoparticles synthesized using plant-derived secondary metabolites instead of crude extract. The mechanisms of metal nanoparticles synthesis and antimicrobial activity are also discussed for different phytochemicals and metal nanoparticles. Finally, the evaluation of the toxicity and safety of phytochemicals coated metal nanoparticles has been conducted. I believe that this is the first review on the antimicrobial and other biological properties of metal nanoparticles synthesized or coated utilizing specific plant-derived secondary metabolites.
Collapse
Affiliation(s)
- Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Amini SM. Gold nanostructures absorption capacities of various energy forms for thermal therapy applications. J Therm Biol 2018; 79:81-84. [PMID: 30612690 DOI: 10.1016/j.jtherbio.2018.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/04/2018] [Accepted: 12/09/2018] [Indexed: 02/06/2023]
Abstract
This mini-review has investigated the recent progress regarding gold nanostructures capacities of energy absorption for thermal therapy applications. Unselective thermal therapy of malignant and normal tissues could lead to irreversible damage to healthy tissues without effective treatment on target malignant tissues. In recent years, there has been a considerable progress in the field of cancer thermal therapy for treating target malignant tissues using nanostructures. Due to the remarkable physical properties of the gold nanoparticle, it has been considered as an exceptional element for thermal therapy techniques. Different types of gold nanoparticles have been used as energy absorbent for thermal therapy applications under several types of energy exposures. Electromagnetic, ultrasound, electric and magnetic field are examples for these energy sources. Well-known plasmonic photothermal therapy which applies electromagnetic radiation is under clinical investigation for the treatment of various medical conditions. However, there are many other techniques in this regard which should be explored.
Collapse
Affiliation(s)
- Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Medical Nanotechnology Department, School of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|