1
|
Jain A, Judy E, Kishore N. Analytical Aspects of ANSA-BSA Association: A Thermodynamic and Conformational Approach. J Phys Chem B 2024; 128:5344-5362. [PMID: 38773936 DOI: 10.1021/acs.jpcb.4c01751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Many studies have demonstrated the manner in which ANS interacts with bovine serum albumin (BSA), although they are limited by the extremely low solubility of dye. The present study demonstrates the binding of ANSA dye with BSA, and since this dye can easily replace ANS, it not only simplifies research but also improves sensor accuracy for serum albumin. A combination of calorimetry and spectroscopy has been employed to establish the thermodynamic signatures associated with the interaction of ANSA with the protein and the consequent conformational changes in the latter. The results of differential scanning calorimetry reveal that when the concentration of ANSA in solution is increased, the thermal stability of the protein increases substantially. The fluorescence data demonstrated a decrease in the binding affinity of ANSA with the protein when pH increased but was unable to identify a change in the mode of interaction of the ligand. ITC has demonstrated that the mode of interaction between ANSA and the protein varies from a single set of binding sites at pH 5 and 7.4 to a sequential binding site at pH 10, emphasizing the potential relevance of protein conformational changes. TCSPC experiments suggested a dynamic type in the presence of ANSA. Molecular docking studies suggest that ANSA molecules are able to find ionic centers in the hydrophobic pockets of BSA. The findings further imply that given its ease of use in experiments, ANSA may be a useful probe for tracking the presence of serum albumin and partially folded protein states.
Collapse
Affiliation(s)
- Anu Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Eva Judy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
2
|
Zheng Q, Xie J, Xiao J, Cao Y, Liu X. Unraveling the underlying mechanism of interactions between astaxanthin geometrical isomers and bovine serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123731. [PMID: 38064963 DOI: 10.1016/j.saa.2023.123731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
The health benefits of astaxanthin (AST) are related to its geometric isomers. Generally, functional activity is realized by the interactions between active substances and transporters. Hereto, bovine serum albumin (BSA), as a model-binding protein and transporter, is able to recognize and transport isomers of active substances through binding with them. However, differences in the binding mechanism of isomers to BSA may affect the functional activities of isomers through the "binding-transport-activity" chain reaction. Thus, this study sought to elucidate the interactions between AST geometrical isomers and BSA using multi-spectroscopy, surface plasmon resonance and molecular docking. The results showed that Z-AST displayed more interacting amino acid residues and lower thermodynamic parameters than all-E-AST. Meanwhile, the order of binding affinity to BSA was 13Z-AST (1.56 × 10-7 M) > 9Z-AST (2.70 × 10-7 M) > all-E-AST (4.01 × 10-7 M), indicating that Z-AST possessed stronger binding ability to BSA. Moreover, AST isomers were located at the junction between subdomains ⅡA and ⅢA of BSA, and showed the same interaction forces (hydrogen bond and van der Waals force) as well as kinetic processes (slow combination, slow dissociation). These interaction parameters provide valuable insights into their pharmacokinetics in vivo, and it was of great significance to explain the potential differences among AST isomers in functional activities.
Collapse
Affiliation(s)
- Qinsheng Zheng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Junting Xie
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
3
|
Racz CP, Racz LZ, Floare CG, Tomoaia G, Horovitz O, Riga S, Kacso I, Borodi G, Sarkozi M, Mocanu A, Roman C, Tomoaia-Cotisel M. Curcumin and whey protein concentrate binding: Thermodynamic and structural approach. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
4
|
Campos de Paula HM, Coelho YL, Benhame de Castro AS, Marques IA, Hudson EA, de Paula Rezende J, Dos Santos Pires AC, Mendes da Silva LH. Dynamics and energetics of bovine lactoferrin and phenylmethane dyes interaction followed by surface plasmon resonance. Colloids Surf B Biointerfaces 2022; 219:112794. [PMID: 36162180 DOI: 10.1016/j.colsurfb.2022.112794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 10/31/2022]
Abstract
Although toxic and dangerous, Phenylmethane (PhM) dyes have a variety of medicinal functions. To optimize the use of these dyes, it is essential to understand their interaction mechanism with proteins. Through surface plasmon resonance, we investigated the kinetics and thermodynamics of interaction between bovine lactoferrin (BLF) and PhM dyes at pH 7.4, which allowed elucidate the effect of the dyes' functional groups on the binding process. Negative ΔG° revealed that at thermodynamic equilibrium the formed [BLF-PhM]° complex was more stable than the free BLF and PhM molecules. The increase in the number of methyl groups in the PhM structure led to an increase in the rates of association (ka) and dissociation (kd) and the binding constant (Kb). A similar effect was observed when comparing methyl violet B (MVB) and methyl violet 6 B (MV6B), in which the charged MV6B structure promoted an increase in the ka, kd, and Kb values. By contrast, an increase in the number of phenyl groups (2-3 rings) led to a decrease in the Kb values. The [BLF-PhM]° formation was entropically driven, indicating that hydrophobic interactions are critical for stabilizing these complexes These results are beneficial for understanding the molecular dynamics of protein-dye interactions.
Collapse
Affiliation(s)
| | - Yara Luiza Coelho
- Colloidal, Macromolecular and Green Chemistry (QUIVECOM), Chemistry Department, Brazil; Chemistry Institute, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, n° 700, Alfenas, MG 37130000, Brazil
| | | | | | - Eliara Acipreste Hudson
- Applied Molecular Thermodynamic (THERMA), Food Technology Department, Federal University of Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Jaqueline de Paula Rezende
- Applied Molecular Thermodynamic (THERMA), Food Technology Department, Federal University of Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil; Food Science Department, Federal University of Lavras, Campus Universitario, Lavras, MG 37200000, Brazil
| | - Ana Clarissa Dos Santos Pires
- Applied Molecular Thermodynamic (THERMA), Food Technology Department, Federal University of Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | | |
Collapse
|
5
|
Application of Congo red dye as a molecular probe to investigate the kinetics and thermodynamics of the formation processes of arachin and conarachin nanocomplexes. Food Chem 2022; 384:132485. [DOI: 10.1016/j.foodchem.2022.132485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/09/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022]
|
6
|
The protective effect of natural phenolic compound on the functional and structural responses of inhibited catalase by a common azo food dye. Food Chem Toxicol 2021; 160:112801. [PMID: 34974130 DOI: 10.1016/j.fct.2021.112801] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 01/15/2023]
Abstract
In this research retrieval effects of natural yellow (NY) on the performance of carmoisine (CAR) inhibited bovine liver catalase (BLC) was studied using multispectral and theoretical methods. Kinetic studies showed that CAR inhibited BLC through competitive inhibition (IC50 value of 2.24 × 10-6 M) while the addition of NY recover the activity of CAR-BLC up to 82% in comparison with the control enzyme. Circular dichroism data revealed that NY can repair the structural changes of BLC, affected by CAR. Furthermore, an equilibrium dialysis study indicated that NY could reduce the stability of the CAR-catalase complex. The surface plasmon resonance (SPR) data analysis indicated a high affinity of NY to BLC compared to CAR and the binding of NY led to a decrease in the affinity of the enzyme to the inhibitor. On the other hand, fluorescence and molecular docking studies showed that the quenching mechanism of BLC by CAR occurs through a static quenching process, and van der Waals forces and hydrogen bonding play a crucial role in the binding of CAR to BLC. MLSD data demonstrated that NY could increase the binding energy of CAR-BLC complex from -7.72 kJ mol-1 to -5.9 kJ mol-1, leading to complex instability and catalase activity salvage.
Collapse
|
7
|
Magalhães OF, De Paula HMC, Rezende JDP, Coelho YL, Mendes TADO, Da Silva LHM, Pires ACDS. Energetic and molecular dynamic characterization of lysozyme/β-carotene interaction. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
de Castro ASB, de Paula HMC, Coelho YL, Hudson EA, Pires ACS, da Silva LHM. Kinetic and thermodynamic of lactoferrin - Ethoxylated-nonionic surfactants supramolecular complex formation. Int J Biol Macromol 2021; 187:325-331. [PMID: 34280448 DOI: 10.1016/j.ijbiomac.2021.07.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 11/19/2022]
Abstract
Understanding nonionic surfactant-protein interactions is fundamental from both technological and scientific points of view. However, there is a complete absence of kinetic data for such interactions. We employed surface plasmon resonance (SPR) to determine the kinetic and thermodynamic parameters of bovine lactoferrin-Brij58 interactions at various temperatures under physiological conditions (pH 7.4). The adsorption process was accelerated with increasing temperature, while the desorption rate decreased, resulting in a more thermodynamically stable complex. The kinetic energetic parameters obtained for the formation of the activated complex, [bLF-Brij58]‡, indicated that the potential energy barrier for [bLF-Brij58]‡ formation arises primarily from the reduction in system entropy. [bLF-Brij58]○ formation was entropically driven, indicating that hydrophobic interactions play a fundamental role in bLF interactions with Brij58.
Collapse
Affiliation(s)
- Alan Stampini Benhame de Castro
- Colloidal, macromolecular and Green Chemistry (QUIVECOM), Chemistry Department, Federal University of Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Hauster Maximiler Campos de Paula
- Colloidal, macromolecular and Green Chemistry (QUIVECOM), Chemistry Department, Federal University of Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Yara Luiza Coelho
- Colloidal, macromolecular and Green Chemistry (QUIVECOM), Chemistry Department, Federal University of Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil; Colloid Chemistry Group, Chemistry Institute, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700, 37130-000 Alfenas, MG, Brazil
| | - Eliara Acipreste Hudson
- Applied Molecular Thermodynamic (THERMA), Food Technology Department, Federal University of Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Ana Clarissa S Pires
- Applied Molecular Thermodynamic (THERMA), Food Technology Department, Federal University of Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Luis Henrique M da Silva
- Colloidal, macromolecular and Green Chemistry (QUIVECOM), Chemistry Department, Federal University of Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil.
| |
Collapse
|
9
|
Khanna S, Singh AK, Behera SP, Gupta S. Thermoresponsive BSA hydrogels with phase tunability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111590. [PMID: 33321635 DOI: 10.1016/j.msec.2020.111590] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 09/22/2020] [Accepted: 09/26/2020] [Indexed: 12/26/2022]
Abstract
Amyloids are fibrillar structures formed due to protein aggregation or misfolding when the molecules undergo a conformational change from α-helix to β-sheet. Although this self-assembly is associated with many neurodegenerative diseases in vivo, the highly ordered amyloidic structures formed in vitro are ideal scaffolds for many bionanotechnological applications. Amyloid fibrillar networks under specific stimuli can also form stable hydrogels. We have used bovine serum albumin (BSA) as a model amyloidogenic protein to obtain thermally-induced hydrogels that display tunable sol-gel-sol transitions spanning over minutes to days. High concentrations of BSA (14-22% w/v) were heated at 65 °C for less than 3 min without any cross-linking agent to yield soft, injectable gels that were non-toxic to mammalian cells. A detailed investigation of temperature, concentration, incubation time and ionic strength on the formation and reversal of these gels was carried out using visual inspection, rheology, electron microscopy, fluorescence spectroscopy, UV-visible spectroscopy and circular dichroism spectroscopy. The optimum gelation temperature (Tg) for phase reversal of BSA gels was found to lie between 60 and 70 °C. An increase in protein concentration led to a reduction in the gelation time and increase in the gel-to-rev sol transition time. Gels heated for longer duration than their minimum gelation time yielded irreversible gels suggesting that low incubation periods were favourable for partial protein denaturation and hydrogel formation. This was supported by time-resolved secondary and tertiary structural ensemble studies. Further, the hydrogel networks demonstrated a zero-order drug release kinetics and the rev sol was found to be cytocompatible with HaCaT skin cell lines. Overall, our approach demonstrates rapid, crosslinker-free thermoresponsive BSA gelation with wide tunability and control on the time and material property, ideal for topical drug delivery applications.
Collapse
Affiliation(s)
- Shruti Khanna
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ajay Kumar Singh
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Soumya Prakash Behera
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shalini Gupta
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
10
|
Rezende JDP, Coelho YL, de Paula HMC, da Silva LHM, Pires ACDS. Temperature modulation of lutein-lysozyme hydrophobic-hydrophilic interaction balance. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Surface plasmon resonance study of interaction between lactoferrin and naringin. Food Chem 2019; 297:125022. [DOI: 10.1016/j.foodchem.2019.125022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 12/20/2022]
|
12
|
Thermodynamic and kinetic study of epigallocatechin-3-gallate-bovine lactoferrin complex formation determined by surface plasmon resonance (SPR): A comparative study with fluorescence spectroscopy. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.065] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Rezende JDP, Hudson EA, De Paula HMC, Meinel RS, Da Silva AD, Da Silva LHM, Pires ACDS. Human serum albumin-resveratrol complex formation: Effect of the phenolic chemical structure on the kinetic and thermodynamic parameters of the interactions. Food Chem 2019; 307:125514. [PMID: 31639576 DOI: 10.1016/j.foodchem.2019.125514] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022]
Abstract
The thermodynamics and kinetics of binding between human serum albumin (HSA) and resveratrol (RES) or its analog (RESAn1) were investigated by surface plasmon resonance (SPR). The binding constant and the kinetic constants of association and dissociation indicated that RESAn1 has higher affinity toward HSA than does RES. The formation of these complexes was entropically driven ( [Formula: see text] , [Formula: see text] KJ mol-1). However, for both polyphenols, the activation energy (Eact) of association (a) of free molecules was higher than that for dissociation (d) of the stable complex ( [Formula: see text] KJ mol-1), and the rate of association was faster than that of dissociation since the activation Gibbs free energy (ΔG‡) was lower for the former (ΔGaHSA-RES‡≅54.73,ΔGdHSA-RES‡≅73.83,ΔGaHSA-RESAn1‡≅54.14,ΔGdHSA-RESAn1‡≅73.97 KJ mol-1). This study showed that small differences in the structure of polyphenols such as RES and RESAn1 influenced the thermodynamics and kinetics of the complex formation with HSA.
Collapse
Affiliation(s)
- Jaqueline de Paula Rezende
- Applied Molecular Thermodynamics Group (THERMA), Department of Food Technology, Federal University of Viçosa, Av. P. H. Rolfs s/n, 36570900 Viçosa, MG, Brazil
| | - Eliara Acipreste Hudson
- Applied Molecular Thermodynamics Group (THERMA), Department of Food Technology, Federal University of Viçosa, Av. P. H. Rolfs s/n, 36570900 Viçosa, MG, Brazil
| | - Hauster Maximiler Campos De Paula
- Colloidal and Macromolecular Green Chemistry Group (QUIVECOM), Department of Chemistry, Federal University of Viçosa, Av. P. H. Rolfs s/n, 36570900 Viçosa, MG, Brazil
| | - Raissa Soares Meinel
- Department of Chemistry, Institute of Exact Sciences (I.C.E.), Federal University of Juiz de Fora, 36036-900 Juiz de Fora, MG, Brazil
| | - Adilson David Da Silva
- Department of Chemistry, Institute of Exact Sciences (I.C.E.), Federal University of Juiz de Fora, 36036-900 Juiz de Fora, MG, Brazil
| | - Luis Henrique Mendes Da Silva
- Colloidal and Macromolecular Green Chemistry Group (QUIVECOM), Department of Chemistry, Federal University of Viçosa, Av. P. H. Rolfs s/n, 36570900 Viçosa, MG, Brazil.
| | - Ana Clarissa Dos Santos Pires
- Applied Molecular Thermodynamics Group (THERMA), Department of Food Technology, Federal University of Viçosa, Av. P. H. Rolfs s/n, 36570900 Viçosa, MG, Brazil.
| |
Collapse
|
14
|
Lactoferrin-phenothiazine dye interactions: Thermodynamic and kinetic approach. Int J Biol Macromol 2019; 136:559-569. [DOI: 10.1016/j.ijbiomac.2019.06.097] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/31/2019] [Accepted: 06/13/2019] [Indexed: 01/12/2023]
|
15
|
Energetic parameters of β-casein/quercetin activated and thermodynamically stable complex formation accessed by Surface Plasmon Resonance. Colloids Surf B Biointerfaces 2019; 181:798-805. [DOI: 10.1016/j.colsurfb.2019.06.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/16/2019] [Accepted: 06/20/2019] [Indexed: 12/25/2022]
|
16
|
Hudson EA, de Paula HMC, da Silva RM, Pires ACDS, da Silva LHM. Curcumin-micellar casein multisite interactions elucidated by surface plasmon resonance. Int J Biol Macromol 2019; 133:860-866. [DOI: 10.1016/j.ijbiomac.2019.04.166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 11/24/2022]
|