1
|
Roschenko V, Schorr D, Wojcik M, Amin MU, Bakowsky U, Preis E. An innovative approach to detect circulating tumor cells. Colloids Surf B Biointerfaces 2024; 241:114059. [PMID: 38941652 DOI: 10.1016/j.colsurfb.2024.114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/10/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
In cancer research, circulating tumor cells (CTCs) were identified as the main drivers of metastasis. They are vital for early detection and prevention of metastasis during cancer treatment. Even though continuous progress in research offers more and more tools to combat cancer, we still lack a proper arsenal of therapeutics. Especially in tumors with close to no targeting options, like triple-negative breast cancer, early detection is often the main difference between successful and failed therapy. When such tumors are detected too late, they may have already produced plenty of CTCs, likely causing metastasis, which is the primary reason for tumor-associated deaths. Detecting those CTCs early on could substantially impact therapy outcomes and the 5-year survival rate. In our study, we developed and evaluated a reliable and affordable CTC screening method based on flow cytometry and 5-aminolevulinic acid (5-ALA) staining. We successfully established a circulation model for 5-ALA and CTCs research and demonstrated that the method can detect an average of 11 ± 3.3 CTCs out of 10,000 peripheral blood mononuclear cells, representing as low as approximately 0.1 % with a reasonable number of false positive events. Additionally, we present initial results on a theranostic approach using 5-ALA converted to protoporphyrin IX. The outcomes of this study might contribute significantly to the further development of CTC detection and the overall detection and treatment of cancer.
Collapse
Affiliation(s)
- Valeri Roschenko
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany.
| | - David Schorr
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany.
| | - Matthias Wojcik
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany.
| | - Muhammad Umair Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany.
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany.
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany.
| |
Collapse
|
2
|
Hemetsberger A, Preis E, Engelhardt K, Gutberlet B, Runkel F, Bakowsky U. Highly Stable Liposomes Based on Tetraether Lipids as a Promising and Versatile Drug Delivery System. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6995. [PMID: 36234336 PMCID: PMC9571198 DOI: 10.3390/ma15196995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Conventional liposomes often lack stability, limiting their applicability and usage apart from intravenous routes. Nevertheless, their advantages in drug encapsulation and physicochemical properties might be helpful in oral and pulmonary drug delivery. This study investigated the feasibility and stability of liposomes containing tetraether lipids (TEL) from Thermoplasma acidophilum. Liposomes composed of different molar ratios of TEL:Phospholipon 100H (Ph) were produced and exposed to various temperature and pH conditions. The effects on size, polydispersity index, and zeta potential were examined by dynamic and electrophoretic light scattering. Autoclaving, which was considered an additional process step after fabrication, could minimize contamination and prolong shelf life, and the stability after autoclaving was tested. Moreover, 5(6)-carboxyfluorescein leakage was measured after incubation in the presence of fetal calf serum (FCS) and lung surfactant (Alveofact). The incorporation of TEL into the liposomes significantly impacted the stability against low pH, higher temperatures, and even sterilization by autoclaving. The stability of liposomes containing TEL was confirmed by atomic force microscopy as images revealed similar sizes and morphology before and after incubation with FCS. It could be concluded that increasing the molar ratio in the TEL:Ph liposome formulations improved the structural stability against high temperature, low pH, sterilization via autoclaving, and the presence of FCS and lung surfactant.
Collapse
Affiliation(s)
- Aybike Hemetsberger
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Konrad Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Bernd Gutberlet
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Frank Runkel
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany
- Faculty of Biology and Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| |
Collapse
|
3
|
Vesicular and Planar Membranes of Archaea Lipids: Unusual Physical Properties and Biomedical Applications. Int J Mol Sci 2022; 23:ijms23147616. [PMID: 35886964 PMCID: PMC9319432 DOI: 10.3390/ijms23147616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Liposomes and planar membranes made of archaea or archaea-like lipids exhibit many unusual physical properties compared to model membranes composed of conventional diester lipids. Here, we review several recent findings in this research area, which include (1) thermosensitive archaeosomes with the capability to drastically change the membrane surface charge, (2) MthK channel's capability to insert into tightly packed tetraether black lipid membranes and exhibit channel activity with surprisingly high calcium sensitivity, and (3) the intercalation of apolar squalane into the midplane space of diether bilayers to impede proton permeation. We also review the usage of tetraether archaeosomes as nanocarriers of therapeutics and vaccine adjuvants, as well as the biomedical applications of planar archaea lipid membranes. The discussion on archaeosomal therapeutics is focused on partially purified tetraether lipid fractions such as the polar lipid fraction E (PLFE) and glyceryl caldityl tetraether (GCTE), which are the main components of PLFE with the sugar and phosphate removed.
Collapse
|
4
|
Abu Dayyih A, Alawak M, Ayoub AM, Amin MU, Abu Dayyih W, Engelhardt K, Duse L, Preis E, Brüßler J, Bakowsky U. Thermosensitive liposomes encapsulating hypericin: Characterization and photodynamic efficiency. Int J Pharm 2021; 609:121195. [PMID: 34673168 DOI: 10.1016/j.ijpharm.2021.121195] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/20/2021] [Accepted: 10/06/2021] [Indexed: 12/22/2022]
Abstract
The potent photodynamic properties of Hypericin (Hyp) elicit a range of light-dose-dependent anti-tumor activities. However, its low water solubility hampers its broad application. Therefore, the administration of Hyp into biological systems requires drug carriers that would enable sufficient bioavailability. Stimuli-triggered nanocarriers, which are sensitive to endogenous or exogenous stimuli, have become an attractive replacement for conventional therapeutic regimens. Herein, we produced optimized Hyp thermosensitive liposomes (Hyp-TSL), self-assembled from DPPC, DSPC, DSPE-PEG2000. Hyp-TSL displayed a hydrodynamic diameter below 100 nm with an adequate encapsulation efficiency of 94.5 % and good colloidal stability. Hyp-TSL exhibited thermal sensitivity over a narrow range with a phase transition temperature of 41.1 °C, in which liposomal destruction was evident in AFM images after elevated temperature above the phase transition temperature. The uptake of TSL-Hyp into MDA-MB-231 cells was significantly increased with hyperthermic treatment of 42 °C when compared to the uptake at a average physiological temperature of 37 °C. Consequent enhancement of cellular reactive oxygen species was observed after hyperthermic treatment at 42 °C. The half-maximal inhibitory concentration of Hyp TSL was reduced by 3.8 fold after hyperthermic treatment at 42 °C in comparison to treatment at 37 °C. Hyp-TSL were considered safe for intravenous applications as compared by hemocompatibility studies, where coagulation time was <50 s and hemolytic potential was <10%. Conclusively, the enhancement in tumor drug availability correlated with improved therapeutic outcomes.
Collapse
Affiliation(s)
- Alice Abu Dayyih
- Department of Pharmaceutics and Biopharmaceutics, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Mohamad Alawak
- Department of Pharmaceutics and Biopharmaceutics, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Abdallah M Ayoub
- Department of Pharmaceutics and Biopharmaceutics, Philipps Universität Marburg, 35037 Marburg, Germany; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Muhammad U Amin
- Department of Pharmaceutics and Biopharmaceutics, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Wael Abu Dayyih
- College of Pharmacy, Mutah University, 61710 Alkarak, Jordan
| | - Konrad Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Lili Duse
- Department of Pharmaceutics and Biopharmaceutics, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Jana Brüßler
- Department of Pharmaceutics and Biopharmaceutics, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, Philipps Universität Marburg, 35037 Marburg, Germany.
| |
Collapse
|
5
|
Liposome Photosensitizer Formulations for Effective Cancer Photodynamic Therapy. Pharmaceutics 2021; 13:pharmaceutics13091345. [PMID: 34575424 PMCID: PMC8470396 DOI: 10.3390/pharmaceutics13091345] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising non-invasive strategy in the fight against that which circumvents the systemic toxic effects of chemotherapeutics. It relies on photosensitizers (PSs), which are photoactivated by light irradiation and interaction with molecular oxygen. This generates highly reactive oxygen species (such as 1O2, H2O2, O2, ·OH), which kill cancer cells by necrosis or apoptosis. Despite the promising effects of PDT in cancer treatment, it still suffers from several shortcomings, such as poor biodistribution of hydrophobic PSs, low cellular uptake, and low efficacy in treating bulky or deep tumors. Hence, various nanoplatforms have been developed to increase PDT treatment effectiveness and minimize off-target adverse effects. Liposomes showed great potential in accommodating different PSs, chemotherapeutic drugs, and other therapeutically active molecules. Here, we review the state-of-the-art in encapsulating PSs alone or combined with other chemotherapeutic drugs into liposomes for effective tumor PDT.
Collapse
|
6
|
Preis E, Schulze J, Gutberlet B, Pinnapireddy SR, Jedelská J, Bakowsky U. The chorioallantoic membrane as a bio-barrier model for the evaluation of nanoscale drug delivery systems for tumour therapy. Adv Drug Deliv Rev 2021; 174:317-336. [PMID: 33905805 DOI: 10.1016/j.addr.2021.04.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/29/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
In 2010, the European Parliament and the European Union adopted a directive on the protection of animals used for scientific purposes. The directive aims to protect animals in scientific research, with the final goal of complete replacement of procedures on live animals for scientific and educational purposes as soon as it is scientifically viable. Furthermore, the directive announces the implementation of the 3Rs principle: "When choosing methods, the principles of replacement, reduction and refinement should be implemented through a strict hierarchy of the requirement to use alternative methods." The visibility, accessibility, and the rapid growth of the chorioallantoic membrane (CAM) offers a clear advantage for various manipulations and for the simulation of different Bio-Barriers according to the 3R principle. The extensive vascularisation on the CAM provides an excellent substrate for the cultivation of tumour cells or tumour xenografts which could be used for the therapeutic evaluation of nanoscale drug delivery systems. The tumour can be targeted either by topical application, intratumoural injection or i.v. injection. Different application sites and biological barriers can be examined within a single model.
Collapse
Affiliation(s)
- Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Jan Schulze
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Bernd Gutberlet
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Shashank Reddy Pinnapireddy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; CSL Behring Innovation GmbH, Emil-von-Behring-Str. 76, 35041 Marburg, Germany
| | - Jarmila Jedelská
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; Center for Tumor Biology and Immunology, Core Facility for Small Animal MRI, Hans-Meerwein Str. 3, 35043 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| |
Collapse
|
7
|
Ambreen G, Duse L, Tariq I, Ali U, Ali S, Pinnapireddy SR, Bette M, Bakowsky U, Mandic R. Sensitivity of Papilloma Virus-Associated Cell Lines to Photodynamic Therapy with Curcumin-Loaded Liposomes. Cancers (Basel) 2020; 12:cancers12113278. [PMID: 33167593 PMCID: PMC7694491 DOI: 10.3390/cancers12113278] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Globally, the burden of papilloma virus-associated cancers is high. About 5% of all cancers worldwide are caused by the human papillomavirus (HPV). Photodynamic therapy (PDT) is considered as a useful therapeutic option to treat cancers, particularly those near the tissue surface, since it is typically well tolerated and less invasive with a lower risk of severe complications as compared to conventional treatment strategies. PDT requires the combination of a photosensitizer, light of a specific wavelength, and tissue oxygen. In the present study, we examined the effectiveness of PDT together with a curcumin (liposome)-based photosensitizer in three papilloma virus-associated cell lines. PDT with curcumin liposomes could inhibit proliferation, cell migration, and colony formation of the tested tumor cells. The results suggest that curcumin-encapsulated liposomes in conjunction with PDT could be a useful tool for the treatment of papilloma virus-associated tumors. Abstract Photodynamic therapy (PDT) is a minimally invasive therapeutic approach used in the treatment of various medical conditions and cancerous diseases, involving light, a photosensitizing substance, and oxygen. Curcumin, a naturally occurring compound, carries antitumor activities and potentially could be exploited as a photosensitizer in PDT. Only little is known about liposomal-encapsulated curcumin that could help in increasing the efficacy, stability, and bioavailability of this compound. This study investigates the in vitro effects of curcumin-loaded liposomes in combination with PDT. Three papilloma virus-associated cell lines were treated with curcumin-loaded liposomes corresponding to a curcumin concentration of 0–100 µmol/L for 4 h followed by illumination at 457 nm (blue) for 45, 136, and 227 s at a fluence of 220.2 W/m2 (100 mA) corresponding to 1, 3 and 5 J·cm−2. After 24 h, the biological outcome of the treatment was assessed with the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), SYTO9/PI (propidium iodide), Annexin V-FITC (fluorescein isothiocyanate)/PI, clonogenic survival, and scratch (wound closure) assays. Photoactivation of curcumin-loaded liposomes led to a significant reduction in colony formation and migratory abilities, as well as to an increase in tumor cell death. The results point to the combination of curcumin-loaded liposomes with PDT as a potentially useful tool for the treatment of papillomavirus-associated malignancies.
Collapse
Affiliation(s)
- Ghazala Ambreen
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, 35037 Marburg, Germany; (G.A.); (L.D.); (I.T.); (U.A.); (S.A.); (S.R.P.)
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, 35033 Marburg, Germany
| | - Lili Duse
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, 35037 Marburg, Germany; (G.A.); (L.D.); (I.T.); (U.A.); (S.A.); (S.R.P.)
| | - Imran Tariq
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, 35037 Marburg, Germany; (G.A.); (L.D.); (I.T.); (U.A.); (S.A.); (S.R.P.)
- Punjab University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, 54000 Lahore, Pakistan
| | - Uzma Ali
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, 35037 Marburg, Germany; (G.A.); (L.D.); (I.T.); (U.A.); (S.A.); (S.R.P.)
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, 35033 Marburg, Germany
| | - Sajid Ali
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, 35037 Marburg, Germany; (G.A.); (L.D.); (I.T.); (U.A.); (S.A.); (S.R.P.)
- Faculty of Pharmacy, The University of Lahore, 54000 Lahore, Pakistan
| | - Shashank R. Pinnapireddy
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, 35037 Marburg, Germany; (G.A.); (L.D.); (I.T.); (U.A.); (S.A.); (S.R.P.)
- CSL Behring GmbH, 35041 Marburg, Germany
| | - Michael Bette
- Institute of Anatomy and Cell Biology, Philipps-Universität Marburg, 35037 Marburg, Germany;
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, 35037 Marburg, Germany; (G.A.); (L.D.); (I.T.); (U.A.); (S.A.); (S.R.P.)
- Correspondence: (U.B.); (R.M.); Tel.: +4964212825884 (U.B.); +4964215861400 (R.M.)
| | - Robert Mandic
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, 35033 Marburg, Germany
- Correspondence: (U.B.); (R.M.); Tel.: +4964212825884 (U.B.); +4964215861400 (R.M.)
| |
Collapse
|
8
|
Alawak M, Mahmoud G, Dayyih AA, Duse L, Pinnapireddy SR, Engelhardt K, Awak I, Wölk C, König AM, Brüßler J, Bakowsky U. Magnetic resonance activatable thermosensitive liposomes for controlled doxorubicin delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111116. [PMID: 32600717 DOI: 10.1016/j.msec.2020.111116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/19/2020] [Accepted: 05/23/2020] [Indexed: 01/10/2023]
Abstract
To limit the massive cytotoxicity of chemotherapeutic agents, it is desirable to establish an appropriate subtle blend of formulation design based on a dual-responsive strategy. In this study, a combined therapeutic platform based on magnetic thermosensitive liposomes (LipTS-GD) was developed. The incorporation of chelated-gadolinium imparted magnetic properties to thermosensitive liposomes (LipTS). The application of an ultra high field magnetic resonance imaging (UHF-MRI) induced hyperthermia, thus provided an improved chemotherapeutic effect of Doxorubicin (DOX). The paramagnetic platform demonstrated thermal sensitivity over a narrow temperature range starting at 37.8 °C, hence the release of DOX from LipTS-GD can be well triggered by inducing hyperthermia using UHF-MRI application. The prepared LipTS-GD were below 200 nm in diameter and an adequate release of DOX reaching 68% was obtained after 1 h UHF-MRI exposure. Profoundly, triple-negative breast cancer (TNBC) cells that were treated with LipTS-GD and subjected thereafter to UHF-MRI exposure for 60 min showed 36% viability. Hemocompatibility studies of LipTS-GD showed a physiological coagulation time and minimal hemolytic potential. Conclusively, LipTS-GD guided local delivery of DOX to solid tumors will potentially raise the therapeutic index, thus reducing the required dose and frequency of DOX administered systemically without influencing the adjacent tissues.
Collapse
Affiliation(s)
- Mohamad Alawak
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Gihan Mahmoud
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Ain Helwan, 11795 Cairo, Egypt
| | - Alice Abu Dayyih
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Lili Duse
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | | | - Konrad Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | | | - Christian Wölk
- Martin Luther University Halle-Wittenberg, Institute of Pharmacy, 06120 Halle, Germany
| | - Alexander M König
- Department of Diagnostic and Interventional Radiology, University of Marburg, 35032 Marburg, Germany
| | - Jana Brüßler
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany.
| |
Collapse
|
9
|
Wavelength dependent photo-cytotoxicity to ovarian carcinoma cells using temoporfin loaded tetraether liposomes as efficient drug delivery system. Eur J Pharm Biopharm 2020; 150:50-65. [DOI: 10.1016/j.ejpb.2020.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 01/10/2023]
|
10
|
R Mokoena D, P George B, Abrahamse H. Enhancing Breast Cancer Treatment Using a Combination of Cannabidiol and Gold Nanoparticles for Photodynamic Therapy. Int J Mol Sci 2019; 20:E4771. [PMID: 31561450 PMCID: PMC6801525 DOI: 10.3390/ijms20194771] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022] Open
Abstract
Indisputably, cancer is a global crisis that requires immediate intervention. Despite the use of conventional treatments over the past decades, it is acceptable to admit that these are expensive, invasive, associated with many side effects and, therefore, a reduced quality of life. One of the most possible solutions to this could be the use of gold nanoparticle (AuNP) conjugated photodynamic therapy (PDT) in combination with cannabidiol (CBD), a Cannabis derivative from the Cannabis sativa. Since the use of Cannabis has always been associated with recreation and psychoactive qualities, the positive effects of Cannabis or its derivatives on cancer treatment have been misunderstood and hence misinterpreted. On the other hand, AuNP-PDT is the most favoured form of treatment for cancer, due to its augmented specificity and minimal risk of side effects compared to conventional treatments. However, its use requires the consideration of several physical, biologic, pharmacologic and immunological factors, which may hinder its effectiveness if not taken into consideration. In this review, the role of gold nanoparticle mediated PDT combined with CBD treatment on breast cancer cells will be deliberated.
Collapse
Affiliation(s)
- Dimakatso R Mokoena
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box: 17011, Johannesburg 2028, South Africa.
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box: 17011, Johannesburg 2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box: 17011, Johannesburg 2028, South Africa.
| |
Collapse
|
11
|
Plenagl N, Seitz BS, Duse L, Pinnapireddy SR, Jedelska J, Brüßler J, Bakowsky U. Hypericin inclusion complexes encapsulated in liposomes for antimicrobial photodynamic therapy. Int J Pharm 2019; 570:118666. [PMID: 31494239 DOI: 10.1016/j.ijpharm.2019.118666] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 09/04/2019] [Indexed: 10/26/2022]
Abstract
The naturally occurring anthraquinone derivative hypericin is a highly potent photosensitiser. Several in vitro studies show high phototoxicity of the pigment towards gram-positive bacteria. Nevertheless, the highly lipophilic nature and poor bioavailability prevent its application in daily clinical practice thus leading to a limited therapeutic value of hypericin. Liposomal encapsulation could help overcome these limitations and would make hypericin available for daily clinical practice. The use of liposomes as carriers for hypericin in antimicrobial photodynamic therapy (aPDT) is quite new. The aim of this work was to improve the photodynamic efficiency of the previously mentioned carriers by entrapping hypericin in the aqueous compartment of the liposomes. Therefore, a water-soluble inclusion complex of hypericin and (2-hydroxypropyl)-beta-cyclodextrin (Hyp-HPβCD) was prepared. After encapsulation of the inclusion complex into DSPC and DSPC/DPPC/DSPE-PEG liposomes with the dehydration-rehydration vesicle (DRV) method, the formulations were physicochemical characterised. The photodynamic efficiency towards the gram-positive model strain Staphylococcus saprophyticus subsp. bovis. was tested on planktonic cells as well as on biofilms. DSPC liposomes achieved a 4.1log reduction and the DSPC/DPPC/DSPE-PEG liposomes a 2.6log reduction in growth of planktonic bacteria, while Hyp-HPβCD showed total eradication. Even bacterial cells growing in a biofilm could be treated effectively in vitro.
Collapse
Affiliation(s)
- Nikola Plenagl
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Benjamin Sebastian Seitz
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Lili Duse
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Shashank Reddy Pinnapireddy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Jarmila Jedelska
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Jana Brüßler
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany.
| |
Collapse
|
12
|
A multifunctional lipid that forms contrast-agent liposomes with dual-control release capabilities for precise MRI-guided drug delivery. Biomaterials 2019; 221:119412. [PMID: 31419656 DOI: 10.1016/j.biomaterials.2019.119412] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/18/2019] [Accepted: 08/03/2019] [Indexed: 01/04/2023]
Abstract
Monitoring of nanoparticle-based therapy in vivo and controlled drug release are urgently needed for the precise treatment of disease. We have synthesized a multifunctional Gd-DTPA-ONB (GDO) lipid by introducing the Gd-DTPA contrast agent moiety into an o-nitro-benzyl ester lipid. By design, liposomes formed from the GDO lipid combine MRI tracking ability and dual-trigger release capabilities with maximum sensitivity (because all lipids bear the cleavable moiety) without reducing the drug encapsulation rate. We first confirmed that both photo-treatment and pH-triggered hydrolysis are able to cleave the GDO lipid and lyse GDO liposomes. We then investigated the efficiency of drug release via the combined release processes for GDO liposomes loaded with doxorubicin (DOX). Relative to neutral pH, the release efficiency in acidic environment increased by 10.4% (at pH = 6.5) and 13.3% (at pH = 4.2). This pH-dependent release response is conducive to distinguishing pathological tissue such as tumors and endolysosomal compartments. The photo-induced release efficiency increases with illumination time as well as with distance of the pH from neutral. Photolysis increased the release efficiency by 13.8% at pH = 4.2, which is remarkable considering the already increased amount of drug release in the acidic environment. In addition, the relaxation time of GDO liposomes was 4.1 times that of clinical Gd-DTPA, with brighter T1-weighted imaging in vitro and in vivo. Real-time MRI imaging and in vivo fluorescence experiments demonstrated tumor targeting and MRI guided release. Furthermore, significant tumor growth inhibition in a treatment experiment using DOX-loaded GDO liposomes clearly demonstrated the benefit of photo-treatment for efficacy: the tumor size in the photo-treatment group was 3.7 times smaller than in the control group. The present study thus highlights the benefit of the design idea of combining efficient imaging/guiding, targeting, and triggerable release functions in one lipid molecule for drug delivery applications.
Collapse
|
13
|
Hayashi K, Watanabe M, Iwasaki T, Shudou M, Uda RM. Endosomal escape by photo-activated fusion of liposomes containing a malachite green derivative: a novel class of photoresponsive liposomes for drug delivery vehicles. Photochem Photobiol Sci 2019; 18:1471-1478. [PMID: 30964475 DOI: 10.1039/c8pp00495a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We conducted photo-activated delivery of drugs based on the fusion of liposomes with endocytic membranes, thus allowing the direct release of encapsulated drugs inside the cytoplasm. As described in our earlier works, liposomes can be photoresponsive and fusogenic following the incorporation of a malachite green derivative carrying a long alkyl chain (MGL) into the lipid membrane. We prepared MGL liposomes using 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine and encapsulated doxorubicin (DOX). Though the shape of MGL liposomes became elliptical after encapsulating DOX, UV irradiation did not enhance DOX leakage from MGL liposomes. We demonstrated the cellular uptake of MGL liposomes into murine cells derived from colon cancer (Colon 26 cells) using flow cytometry, and we found that the uptake was governed by a clathrin-dependent endocytosis pathway. Confocal fluorescence microscopic observations of Colon 26 cells treated with MGL liposomes encapsulating DOX revealed that DOX was localized in endosomes under dark conditions, while DOX was observed in the cytosol and nucleus after UV irradiation. The viability of Colon 26 cells treated with MGL liposomes encapsulating DOX was reduced by UV irradiation, indicating photo-induced enhancement of anti-cancer efficacy.
Collapse
Affiliation(s)
- Keita Hayashi
- Department of Chemical Engineering, National Institute of Technology, Nara college, Yata 22, Yamato-koriyama, Nara 639-1080, Japan.
| | | | | | | | | |
Collapse
|
14
|
Goergen N, Wojcik M, Drescher S, Pinnapireddy SR, Brüßler J, Bakowsky U, Jedelská J. The Use of Artificial Gel Forming Bolalipids as Novel Formulations in Antimicrobial and Antifungal Therapy. Pharmaceutics 2019; 11:E307. [PMID: 31266209 PMCID: PMC6680875 DOI: 10.3390/pharmaceutics11070307] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 12/23/2022] Open
Abstract
The alarming growth of multi-drug resistant bacteria has led to a quest for alternative antibacterial therapeutics. One strategy to circumvent the already existing resistance is the use of photodynamic therapy. Antimicrobial photodynamic therapy (aPDT) involves the use of non-toxic photosensitizers in combination with light and in situ oxygen to generate toxic radical species within the microbial environment which circumvents the resistance building mechanism of the bacteria. Hydrogels are used ubiquitously in the biological and pharmaceutical fields, e.g., for wound dressing material or as drug delivery systems. Hydrogels formed by water-insoluble low-molecular weight gelators may potentially provide the much-needed benefits for these applications. Bolalipids are a superior example of such gelators. In the present work, two artificial bolalipids were used, namely PC-C32-PC and Me2PE-C32-Me2PE, which self-assemble in water into long and flexible nanofibers leading to a gelation of the surrounding solvent. The aim of the study was to create stable hydrogel formulations of both bolalipids and to investigate their applicability as a novel material for drug delivery systems. Furthermore, methylene blue-a well-known photosensitizer-was incorporated into the hydrogels in order to investigate the aPDT for the treatment of skin and mucosal infections using a custom designed LED device.
Collapse
Affiliation(s)
- Nathalie Goergen
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Matthias Wojcik
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Simon Drescher
- Institute of Pharmacy, Biophysical Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
| | | | - Jana Brüßler
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Jarmila Jedelská
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany.
| |
Collapse
|
15
|
Plenagl N, Duse L, Seitz BS, Goergen N, Pinnapireddy SR, Jedelska J, Brüßler J, Bakowsky U. Photodynamic therapy - hypericin tetraether liposome conjugates and their antitumor and antiangiogenic activity. Drug Deliv 2019; 26:23-33. [PMID: 30691327 PMCID: PMC6352941 DOI: 10.1080/10717544.2018.1531954] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Photodynamic therapy (PDT) is an established noninvasive tumor treatment. The hydrophobic natural occurring pigment hypericin shows a lot of attractive properties for the application in PDT. Hence, the administration to biological systems or patients requires the formulation in drug carriers enabling sufficient bioavailability. Therefore, free hypericin was encapsulated by the thin film hydration method or a hypericin-hydroxypropyl-β-cyclodextrin inclusion complex (Hyp-HPβCD) was incorporated by dehydration-rehydration vesicle method in either conventional or ultra-stable tetraether lipid (TEL) liposomes. The hydrodynamic diameter of the prepared nanoformulations ranged between 127 and 212 nm. These results were confirmed by atomic force microscopy. All liposomes showed a good stability under physiological conditions. TEL liposomes which tend to build more rigid bilayers, generate higher encapsulation efficiencies than their conventional counterparts. Furthermore, the suitability for intravenous application was confirmed by hemocompatibility studies resulting in a hemolytic potential less than 20% and a coagulation time less than 50 sec. The uptake of liposomal hypericin into human ovarian carcinoma cells (SK-OV-3) was confirmed using confocal microscopy and further characterized by pathway studies. It was demonstrated that the lipid composition and intraliposomal hypericin localization influenced the anti-vascular effect in the chorioallantoic membrane (CAM). While hypericin TEL liposomes exhibit substantial destruction of the microvasculature drug-in-cyclodextrin TEL liposomes showed no effect. Nevertheless, both formulations yielded severe photocytotoxicity in SK-OV-3 cells in a therapeutic dosage range. Conclusively, hypericin TEL liposomes would be perfectly suited for anti-vascular targeting while Hyp-HPβCD TEL liposomes could deliver the photosensitizer to the tumor site in a more protected manner.
Collapse
Affiliation(s)
- Nikola Plenagl
- a Department of Pharmaceutics and Biopharmaceutics , University of Marburg , Marburg , Germany
| | - Lili Duse
- a Department of Pharmaceutics and Biopharmaceutics , University of Marburg , Marburg , Germany
| | | | - Nathalie Goergen
- a Department of Pharmaceutics and Biopharmaceutics , University of Marburg , Marburg , Germany
| | | | - Jarmila Jedelska
- a Department of Pharmaceutics and Biopharmaceutics , University of Marburg , Marburg , Germany
| | - Jana Brüßler
- a Department of Pharmaceutics and Biopharmaceutics , University of Marburg , Marburg , Germany
| | - Udo Bakowsky
- a Department of Pharmaceutics and Biopharmaceutics , University of Marburg , Marburg , Germany
| |
Collapse
|
16
|
Development of inhalable curcumin loaded Nano-in-Microparticles for bronchoscopic photodynamic therapy. Eur J Pharm Sci 2019; 132:63-71. [PMID: 30797026 DOI: 10.1016/j.ejps.2019.02.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/05/2019] [Accepted: 02/16/2019] [Indexed: 12/18/2022]
Abstract
Photodynamic therapy is amongst the most rapidly developing therapeutic strategies against cancer. However, most photosensitizers are administered intravenously with very few reports about pulmonary applications. To address this issue, an inhalable formulation consisting of nanoparticles loaded with photosensitizer (i.e. curcumin) was developed. The nanoparticles were prepared using nanoprecipitation method. Dynamic light scattering measurements of the curcumin loaded nanoparticles revealed a hydrodynamic diameter of 181.20 ± 11.52 nm. In vitro irradiation experiments with human lung epithelial carcinoma cells (A549) showed a selective cellular toxicity of the nanoparticles upon activation using LED irradiating device. Moreover, curcumin nanoparticles exhibited a dose-dependent photocytotoxicity and the IC50 values of curcumin were directly dependent on the radiation fluence used. The nanoparticles were subsequently spray dried using mannitol as a stabilizer to produce Nano-in-Microparticles with appropriate aerodynamic properties for a sufficient deposition in the lungs. This was confirmed using the next generation impactor, which revealed a large fine particle fraction (64.94 ± 3.47%) and a mass median aerodynamic diameter of 3.02 ± 0.07 μm. Nano-in-Microparticles exhibited a good redispersibility and disintegrated into the original nanoparticles upon redispersion in aqueous medium. The Langmuir monolayer experiments revealed an excellent compatibility of the nanoparticles with the lung surfactant. Results from this study showed that the Nano-in-Microparticles are promising drug carriers for the photodynamic therapy of lung cancer.
Collapse
|
17
|
Mahmoud G, Jedelská J, Omar SM, Strehlow B, Schneider M, Bakowsky U. Stabilized tetraether lipids based particles guided prophyrins photodynamic therapy. Drug Deliv 2018; 25:1526-1536. [PMID: 29996694 PMCID: PMC6058496 DOI: 10.1080/10717544.2018.1482970] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 11/11/2022] Open
Abstract
Photodynamic therapy (PDT) that involves ergonomically delivered light in the presence of archetypical photosensitizer such as Protoporphyrin IX (PpIX) is a time-honored missile strategy in cancer therapeutics. Yet, the premature release of PpIX is one of the most abundant dilemma encounters the therapeutic outcomes of PDT due to associated toxicity and redistribution to serum proteins. In this study, ultrastable tetraether lipids (TELs) based liposomes were developed. PpIX molecules were identified to reside physically in the monolayer; thereby the inherent π-π stacking that leads to aggregation of PpIX in aqueous milieu was dramatically improved. TEL29.9 mol% and TEL62mol% based liposomes revealed PpIX sustained release diffusion pattern from spherical particles as confirmed by converged fitting to Baker & Lonsdale model. Stability in presence of human serum albumins, a key element for PDT accomplishment was emphasized. The epitome candidates were selected for vascular photodynamic (vPDT) in in-Ovo chick chorioallantoic membrane. Profoundly, TEL62mol% based liposomes proved to be the most effective liposomes that demonstrated localized effect within the irradiated area without eliciting quiescent vasculatures damages. Cellular photodynamic therapy (cPDT) revealed that various radiant exposure doses of 134, 202, 403 or 672 mJ.cm-2 could deliberately modulate the photo-responses of PpIX in TEL-liposomes.
Collapse
Affiliation(s)
- Gihan Mahmoud
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Jarmila Jedelská
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
| | - Samia Mohamed Omar
- Department of Pharmaceutics, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Boris Strehlow
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
| |
Collapse
|