1
|
Arcos Rosero WA, Bueno Barbezan A, Daruich de Souza C, Chuery Martins Rostelato ME. Review of Advances in Coating and Functionalization of Gold Nanoparticles: From Theory to Biomedical Application. Pharmaceutics 2024; 16:255. [PMID: 38399309 PMCID: PMC10892584 DOI: 10.3390/pharmaceutics16020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/27/2023] [Accepted: 01/02/2024] [Indexed: 02/25/2024] Open
Abstract
Nanoparticles, especially gold nanoparticles (Au NPs) have gained increasing interest in biomedical applications. Used for disease prevention, diagnosis and therapies, its significant advantages in therapeutic efficacy and safety have been the main target of interest. Its application in immune system prevention, stability in physiological environments and cell membranes, low toxicity and optimal bioperformances are critical to the success of engineered nanomaterials. Its unique optical properties are great attractors. Recently, several physical and chemical methods for coating these NPs have been widely used. Biomolecules such as DNA, RNA, peptides, antibodies, proteins, carbohydrates and biopolymers, among others, have been widely used in coatings of Au NPs for various biomedical applications, thus increasing their biocompatibility while maintaining their biological functions. This review mainly presents a general and representative view of the different types of coatings and Au NP functionalization using various biomolecules, strategies and functionalization mechanisms.
Collapse
|
2
|
Gold Nanorods for Drug and Gene Delivery: An Overview of Recent Advancements. Pharmaceutics 2022; 14:pharmaceutics14030664. [PMID: 35336038 PMCID: PMC8951391 DOI: 10.3390/pharmaceutics14030664] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Over the past few decades, gold nanomaterials have shown great promise in the field of nanotechnology, especially in medical and biological applications. They have become the most used nanomaterials in those fields due to their several advantageous. However, rod-shaped gold nanoparticles, or gold nanorods (GNRs), have some more unique physical, optical, and chemical properties, making them proper candidates for biomedical applications including drug/gene delivery, photothermal/photodynamic therapy, and theranostics. Most of their therapeutic applications are based on their ability for tunable heat generation upon exposure to near-infrared (NIR) radiation, which is helpful in both NIR-responsive cargo delivery and photothermal/photodynamic therapies. In this review, a comprehensive insight into the properties, synthesis methods and toxicity of gold nanorods are overviewed first. For the main body of the review, the therapeutic applications of GNRs are provided in four main sections: (i) drug delivery, (ii) gene delivery, (iii) photothermal/photodynamic therapy, and (iv) theranostics applications. Finally, the challenges and future perspectives of their therapeutic application are discussed.
Collapse
|
3
|
Bolaños K, Sánchez-Navarro M, Giralt E, Acosta G, Albericio F, Kogan MJ, Araya E. NIR and glutathione trigger the surface release of methotrexate linked by Diels-Alder adducts to anisotropic gold nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112512. [PMID: 34857291 DOI: 10.1016/j.msec.2021.112512] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/02/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
The administration and controlled release of drugs over time remains one of the greatest challenges of science today. In the nanomaterials field, anisotropic gold nanoparticles (AuNPs) with plasmon bands centered at the near-infrared region (NIR), such as gold nanorods (AuNRs) and gold nanoprisms (AuNPrs), under laser irradiation, locally increase the temperature, allowing the release of drugs. In this sense, temporally controlled drug delivery could be promoted by external stimuli using thermo-reversible chemical reactions, such as Diels-Alder cycloadditions from a diene and a dienophile fragment (compound a). In this study, an antitumor drug (methotrexate, MTX) was linked to plasmonic AuNPs by a Diels-Alder adduct (compound c), which after NIR suffers a retro-Diels-Alder reaction, producing release of the drug (compound b). We obtained two nanosystems based on AuNRs and AuNPrs. Both nanoconstructs were coated with BSA-r8 (Bovine Serum Albumin functionalized with Arg8, all-D octa arginine) in order to increase the colloidal stability and promote internalization of the nanosystems on HeLa and SK-BR-3 cells. In addition, the presence of BSA allows protecting the cargo from being released on the extracellular environment and promotes the photothermal release of the drug in the presence of glutathione (GSH). The nanosystems' drug release profile was evaluated after NIR irradiation in the presence and absence of glutathione (GSH), showing a considerable increase of drug release when NIR light and glutathione were combined. This work broadens the range of possibilities of using two complementary strategies for the controlled release of an antitumor drug from AuNRs and AuNPrs: the photothermal cleavage of a thermolabile adduct controlled by an external stimulus (laser irradiation), complemented with the use of the intracellular metabolite GSH.
Collapse
Affiliation(s)
- Karen Bolaños
- Advanced Center of Chronic Diseases, Santiago, Chile; Center for studies on Exercise, Metabolism and Cancer (CEMC), Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile; Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| | - Macarena Sánchez-Navarro
- Institute for Research in Biomedicine-Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Ernest Giralt
- Institute for Research in Biomedicine-Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain; Department of Inorganic and Organic Chemistry, University of Barcelona, Barcelona, Spain
| | - Gerardo Acosta
- Department of Inorganic and Organic Chemistry, University of Barcelona, Barcelona, Spain; CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Spain
| | - Fernando Albericio
- Department of Inorganic and Organic Chemistry, University of Barcelona, Barcelona, Spain; CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Spain; School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Marcelo J Kogan
- Advanced Center of Chronic Diseases, Santiago, Chile; Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| | - Eyleen Araya
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
4
|
Constantin E, Varasteanu P, Mihalache I, Craciun G, Mitran RA, Popescu M, Boldeiu A, Simion M. SPR detection of protein enhanced by seedless synthesized gold nanorods. Biophys Chem 2021; 279:106691. [PMID: 34600311 DOI: 10.1016/j.bpc.2021.106691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Surface plasmon resonance (SPR) is a label-free, real-time bio-sensing technique with high potential in the diagnostic area, especially when a signal amplification strategy is used to improve the detection limit. We report here a simple method for enhancing the detection limit of bovine serum albumin (BSA), by attaching gold nanorods (AuNRs). AuNRs were obtained by a seedless synthesis technique and characterized using scanning electron microscopy (SEM), UV-VIS spectroscopy, FT-IR spectroscopy and dynamic light scattering (DLS). Finite element method (FEM) simulations were employed to explore the enhancement of the SPR signal by adding AuNRs on the SPR sensor's metallic layer. SPR spectroscopy was used to analyze the changes in the refractive index brought by the immobilization of unconjugated BSA and BSA modified with AuNRs. The results confirmed that the AuNRs conjugated with the protein increase the SPR signal ~ 10 times, leading to a limit of detection of 1.081 × 10-8 M (0.713 μg/mL).
Collapse
Affiliation(s)
- Elena Constantin
- National Institute for Research and Development in Microtechnologies - IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania
| | - Pericle Varasteanu
- National Institute for Research and Development in Microtechnologies - IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania; Faculty of Physics, University of Bucharest, 405 Atomistilor Street, 077125 Magurele, Romania
| | - Iuliana Mihalache
- National Institute for Research and Development in Microtechnologies - IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania
| | - Gabriel Craciun
- National Institute for Research and Development in Microtechnologies - IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania
| | - Raul-Augustin Mitran
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Indepedenței, Bucharest 060021, Romania
| | - Melania Popescu
- National Institute for Research and Development in Microtechnologies - IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania.
| | - Adina Boldeiu
- National Institute for Research and Development in Microtechnologies - IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania.
| | - Monica Simion
- National Institute for Research and Development in Microtechnologies - IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania.
| |
Collapse
|
5
|
Akita H. Development of an SS-Cleavable pH-Activated Lipid-Like Material (ssPalm) as a Nucleic Acid Delivery Device. Biol Pharm Bull 2021; 43:1617-1625. [PMID: 33132308 DOI: 10.1248/bpb.b20-00534] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gene and nucleic acid-based medication is an ultimate strategy in the field of personalized medicine. A gene or short interference RNA (siRNA) molecule needs to be delivered to the appropriate organelle (i.e., nucleus and cytoplasm, respectively). We recently focused on improving the intrinsic activity of my original material (ssPalm) in terms of endosomal/lysosomal membrane destabilization activity by chemically modifying the tertiary amine structure. In parallel, I have been expanding the range of applications of ssPalms. The first application is a DNA or RNA vaccine. My crucial finding is that the vitamin E-scaffold ssPalm (ssPalmE) is highly immune-stimulative when combined with DNA. Thereafter, I redesigned the hydrophobic scaffold structure, and found that an oleic acid-scaffold ssPalm (ssPalmO) can confer anti-inflammatory characteristics. Based on this result, I further upgraded the ssPalmO, by inserting a newly designed linker with self-degradable properties.
Collapse
Affiliation(s)
- Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
6
|
Hataminia F, Ghanbari H. Predicting the effect of phototherapy method on breast cancer cells by mathematical modeling: UV-IR non-ionization radiation with gold nanoparticles. Nanotoxicology 2020; 14:1127-1136. [PMID: 33063591 DOI: 10.1080/17435390.2020.1814441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Phototherapy is a minimally invasive oncological treatment strategy in which photon energy is delivered to the tumor tissue. Gold nanoparticles (GNPs) can enhance photothermal or photodynamic phenomena when excited by a wavelength beam in the range of UV-IR. GNPs are used in phototherapy for cancer cell treatment by controlling the physical and chemical conditions. Given the growing application of GNPs for the treatment of breast cancer, predicting the behavior of cancer cells during exposure to GNPs is of prime importance. However, the prediction might be far from reality due to the inherent complexities associated with the conditions of the treatment methods and the mechanisms involved in cell toxicity. This study provides general information by collecting data on the cytotoxicity of GNPs along with this process. Data mining was performed using a mathematical modeling method called SA-LOOCV-GRBF. In this study, eight parameters including particle size, zeta potential, concentration of GNPs in the cell culture medium, incubation time, light exposure time, maximum wavelength absorbance (MAW) of GNPs, irradiation beam wavelength (IW) and light source power density (PD) were measured. In this modeling, these parameters were considered as model inputs, and the cell viability of breast cancer cells after treatment was treated as the model output. As a result, the physical and chemical properties of GNPs as well as their application conditions wield influence on cytotoxicity. The results help select the desired condition for these nanoparticles in the phototherapy of breast cancer cells.
Collapse
Affiliation(s)
- Fatemeh Hataminia
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Garcia-Chica J, D Paraiso WK, Tanabe S, Serra D, Herrero L, Casals N, Garcia J, Ariza X, Quader S, Rodriguez-Rodriguez R. An overview of nanomedicines for neuron targeting. Nanomedicine (Lond) 2020; 15:1617-1636. [PMID: 32618490 DOI: 10.2217/nnm-2020-0088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Medical treatments of neuron-related disorders are limited due to the difficulty of targeting brain cells. Major drawbacks are the presence of the blood-brain barrier and the lack of specificity of the drugs for the diseased cells. Nanomedicine-based approaches provide promising opportunities for overcoming these limitations. Although many previous reviews are focused on brain targeting with nanomedicines in general, none of those are concerned explicitly on the neurons, while targeting neuronal cells in central nervous diseases is now one of the biggest challenges in nanomedicine and neuroscience. We review the most relevant advances in nanomedicine design and strategies for neuronal drug delivery that might successfully bridge the gap between laboratory and bedside treatment in neurology.
Collapse
Affiliation(s)
- Jesus Garcia-Chica
- Department of Basic Sciences, Faculty of Medicine & Health Sciences, Universitat Internacional de Catalunya, 08195, Sant Cugat del Vallès, Spain
- Department of Biochemistry & Physiology, School of Pharmacy & Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
- Department of Inorganic & Organic Chemistry, Faculty of Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
| | - West Kristian D Paraiso
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa, 210-0821, Japan
| | - Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety & Research, National Institute of Health Sciences, Kawasaki, Kanagawa, 210-9501, Japan
| | - Dolors Serra
- Department of Biochemistry & Physiology, School of Pharmacy & Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry & Physiology, School of Pharmacy & Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Núria Casals
- Department of Basic Sciences, Faculty of Medicine & Health Sciences, Universitat Internacional de Catalunya, 08195, Sant Cugat del Vallès, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Jordi Garcia
- Department of Inorganic & Organic Chemistry, Faculty of Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Xavier Ariza
- Department of Inorganic & Organic Chemistry, Faculty of Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Sabina Quader
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa, 210-0821, Japan
| | - Rosalia Rodriguez-Rodriguez
- Department of Basic Sciences, Faculty of Medicine & Health Sciences, Universitat Internacional de Catalunya, 08195, Sant Cugat del Vallès, Spain
| |
Collapse
|
8
|
Dumontel B, Susa F, Limongi T, Canta M, Racca L, Chiodoni A, Garino N, Chiabotto G, Centomo ML, Pignochino Y, Cauda V. ZnO nanocrystals shuttled by extracellular vesicles as effective Trojan nano-horses against cancer cells. Nanomedicine (Lond) 2019; 14:2815-2833. [PMID: 31747855 PMCID: PMC7610546 DOI: 10.2217/nnm-2019-0231] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The effective application of nanoparticles in cancer theranostics is jeopardized by their aggregation in biological media, rapid degradation and clearance. The design of biomimetic nanoconstructs with enhanced colloidal stability and non-immunogenicity is therefore essential. We propose naturally stable cell-derived extracellular vesicles to encapsulate zinc oxide (ZnO) nanocrystals as efficacious nanodrugs, to obtain highly biomimetic and stable Trojan nano-horses (TNHs). Materials & methods Coupling efficiency, biostability, cellular cytotoxicity and internalization were tested. Results In vitro studies showed a high internalization of TNHs into cancer cells and efficient cytotoxic activity thanks to ZnO intracellular release. Conclusion TNHs represent an efficient biomimetic platform for future nanotheranostic applications, with biomimetic extracellular vesicle-lipid envelope, facilitated ZnO cellular uptake and potential therapeutic implications.
Collapse
Affiliation(s)
- Bianca Dumontel
- Department of Applied Science & Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Francesca Susa
- Department of Applied Science & Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Tania Limongi
- Department of Applied Science & Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Marta Canta
- Department of Applied Science & Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Luisa Racca
- Department of Applied Science & Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Angelica Chiodoni
- Center for Sustainable Future Technologies - CSFT@POLITO, Istituto Italiano di Tecnologia, Via Livorno, 60, 10144 Turin, Italy
| | - Nadia Garino
- Department of Applied Science & Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy.,Center for Sustainable Future Technologies - CSFT@POLITO, Istituto Italiano di Tecnologia, Via Livorno, 60, 10144 Turin, Italy
| | - Giulia Chiabotto
- Sarcoma Unit, Division of Medical Oncology, Candiolo Cancer Institute, FPO - IRCCS, Str. Prov.le 142, km. 3.95, Candiolo (TO) 10060, Italy.,Department of Medical Sciences,University of Torino, Torino 10126, Italy
| | - Maria L Centomo
- Sarcoma Unit, Division of Medical Oncology, Candiolo Cancer Institute, FPO - IRCCS, Str. Prov.le 142, km. 3.95, Candiolo (TO) 10060, Italy.,Department of Oncology, University of Torino, Str. Prov.le 142,km. 3.95, Candiolo (TO) 10060, Italy
| | - Ymera Pignochino
- Sarcoma Unit, Division of Medical Oncology, Candiolo Cancer Institute, FPO - IRCCS, Str. Prov.le 142, km. 3.95, Candiolo (TO) 10060, Italy.,Department of Oncology, University of Torino, Str. Prov.le 142,km. 3.95, Candiolo (TO) 10060, Italy
| | - Valentina Cauda
- Department of Applied Science & Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
9
|
Bolaños K, Kogan MJ, Araya E. Capping gold nanoparticles with albumin to improve their biomedical properties. Int J Nanomedicine 2019; 14:6387-6406. [PMID: 31496693 PMCID: PMC6691944 DOI: 10.2147/ijn.s210992] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022] Open
Abstract
Nanotechnology is an emerging field which has created great opportunities either through the creation of new materials or by improving the properties of existing ones. Nanoscale materials with a wide range of applications in areas ranging from engineering to biomedicine have been produced. Gold nanoparticles (AuNPs) have emerged as a therapeutic agent, and are useful for imaging, drug delivery, and photodynamic and photothermal therapy. AuNPs have the advantage of ease of functionalization with therapeutic agents through covalent and ionic binding. Combining AuNPs and other materials can result in nanoplatforms, which can be useful for biomedical applications. Biomaterials such as biomolecules, polymers and proteins can improve the therapeutic properties of nanoparticles, such as their biocompatibility, biodistribution, stability and half-life. Serum albumin is a versatile, non-toxic, stable, and biodegradable protein, in which structural domains and functional groups allow the binding and capping of inorganic nanoparticles. AuNPs coated with albumin have improved properties such as greater compatibility, bioavailability, longer circulation times, lower toxicity, and selective bioaccumulation. In the current article, we review the features of albumin, as well as its interaction with AuNPs, focusing on its biomedical applications.
Collapse
Affiliation(s)
- Karen Bolaños
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
- Departamento de Quimica Farmacologica y Toxicologica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center of Chronic Diseases, Santiago, Chile
| | - Marcelo J Kogan
- Departamento de Quimica Farmacologica y Toxicologica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center of Chronic Diseases, Santiago, Chile
| | - Eyleen Araya
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
- Departamento de Quimica Farmacologica y Toxicologica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| |
Collapse
|