1
|
Siani P, Di Valentin C. Effect of dopamine-functionalization, charge and pH on protein corona formation around TiO 2 nanoparticles. NANOSCALE 2022; 14:5121-5137. [PMID: 35302136 PMCID: PMC8969454 DOI: 10.1039/d1nr07647g] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Inorganic nanoparticles (NPs) are gaining increasing attention in nanomedicine because of their stimuli responsiveness, which allows combining therapy with diagnosis. However, little information is known about their interaction with intracellular or plasma proteins when they are introduced in a biological environment. Here we present atomistic molecular dynamics (MD) simulations investigating the case study of dopamine-functionalized TiO2 nanoparticles and two proteins that are overexpressed in cancer cells, i.e. PARP1 and HSP90, since experiments proved them to be the main components of the corona in cell cultures. The mechanism and the nature of the interaction (electrostatic, van der Waals, H-bonds, etc.) is unravelled by defining the protein residues that are more frequently in contact with the NPs, the extent of contact surface area and the variations in the protein secondary structures, at different pH and ionic strength conditions of the solution where they are immersed to simulate a realistic biological environment. The effects of the NP surface functionalization and charge are also considered. Our MD results suggest that less acidic intracellular pH conditions in the presence of cytosolic ionic strength enhance PARP1 interaction with the nanoparticle, whereas the HSP90 contribution is partly weakened, providing a rational explanation to existing experimental observations.
Collapse
Affiliation(s)
- Paulo Siani
- Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Cozzi 55, 20125 Milano, Italy.
| | - Cristiana Di Valentin
- Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Cozzi 55, 20125 Milano, Italy.
| |
Collapse
|
2
|
Soto Veliz D, Kummala R, Abitbol T, Toivakka M. Influence of mineral coatings on fibroblast behaviour: The importance of coating formulation and experimental design. Colloids Surf B Biointerfaces 2021; 208:112059. [PMID: 34454364 DOI: 10.1016/j.colsurfb.2021.112059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/21/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022]
Abstract
Mineral coatings manipulate surface properties such as roughness, porosity, wettability and surface energy. Properties that are known to determine cell behaviour. Therefore, mineral coatings can potentially be used to manipulate cell fate. This paper studies mineral-cell interactions through coatings in a stacked cell culture platform. Minerals were chosen according to their influence on Human Dermal Fibroblasts (HDFs): calcium carbonate, calcium sulphates, and kaolin. Mineral coatings were formulated with the additives latex, sorbitol, polyvinyl alcohol (PVOH) and TEMPO-oxidised cellulose nanofibrils (CNF-T). The coatings were placed as a bottom or top of the device, for a direct or indirect interaction with HDFs, respectively. Cells were seeded, in various densities, to the bottom of the device; and cell density and confluency were monitored in time. Overall, results show that the coating interaction is influenced at first by the cell seeding density. Scarce cell seeding density limits adaptability to the new environment, while an abundant one encourages confluency in time. In between those densities, coating formulation plays the next major role. Calcium carbonate promoted HDFs growth the most as expected, but the response to the rest of minerals depended on the coating additive. CNF-T encouraged proliferation even for kaolin, a mineral with long-term toxicity to HDFs, while PVOH induced a detrimental effect on HDF growth regardless of the mineral. At last, the placement of the coated layer provided insights on the contact-dependency of each response. This study highlights the importance of the experimental design, including coating formulation, when investigating cellular response to biomaterials.
Collapse
Affiliation(s)
- Diosangeles Soto Veliz
- Laboratory of Natural Materials Technology, Åbo Akademi University, Porthaninkatu 3, 20500 Turku, Finland.
| | - Ruut Kummala
- Laboratory of Natural Materials Technology, Åbo Akademi University, Porthaninkatu 3, 20500 Turku, Finland; Bayer Oy, 20210 Turku, Finland
| | | | - Martti Toivakka
- Laboratory of Natural Materials Technology, Åbo Akademi University, Porthaninkatu 3, 20500 Turku, Finland
| |
Collapse
|
4
|
Shifeng L, Hong X, Xue Y, Siyu N, Qiaodan Z, Dingjie X, Lijuan Z, Zhongqiu W, Xuemin G, Wenchen C, Guizhen Z, Dan L, Ruimin W, Fang Y. Ac-SDKP increases α-TAT 1 and promotes the apoptosis in lung fibroblasts and epithelial cells double-stimulated with TGF-β1 and silica. Toxicol Appl Pharmacol 2019; 369:17-29. [PMID: 30826375 DOI: 10.1016/j.taap.2019.02.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/24/2019] [Accepted: 02/27/2019] [Indexed: 12/25/2022]
Abstract
Crystalline silica (SiO2) particles have very strong toxicity to the lungs, and silicosis is an excessive pulmonary interstitial remodeling disease that follows persistent SiO2 injury. We showed here that DNA double strand breaks (DSBs) and apoptosis were aggravated during rat silicosis induced by SiO2 exposure. Ac-SDKP attenuates lung parenchymal distortion and collagen deposition, and decreases the expression of γH2AX, p21, and cleaved caspase-3, as well as improves the reduction of pulmonary function caused by silicosis. In vitro, we found an evolution of smooth muscle actin α (α-SMA), collagen type I (Col I) in both A549 and MRC-5 cells in response to transforming growth factor-beta 1 (TGF-β1) + SiO2. Only A549 cells showed any reduction in the rate of apoptosis induced by the double stimulation, because of the anti-apoptotic effects of TGF-β1. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is an anti-fibrotic tetrapeptide. It also has the ability to promote the apoptosis of leukemia cells. However its role in promoting cell apoptosis in silicosis is still unknown. We here found that Ac-SDKP could induce cell apoptosis and inhibit fibrotic response in A549 and MRC-5 cells treated with TGF-β1 + SiO2, and these effects depended on regulation of α-tubulin acetyltransferase 1 (α-TAT1). These findings suggest that Ac-SDKP may have therapeutic value in the treatment of silicotic fibrosis.
Collapse
Affiliation(s)
- Li Shifeng
- Basic Medical College, Hebei Medical University, Shijiazhuang, China
| | - Xu Hong
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, China
| | - Yi Xue
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Department of Basic Medicine, Xiamen Medical College, Xiamen, China
| | - Niu Siyu
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, China
| | - Zhang Qiaodan
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, China
| | - Xu Dingjie
- College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Zhang Lijuan
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, China
| | - Wei Zhongqiu
- Basic Medicine College, North China University of Science and Technology, Tangshan, China
| | - Gao Xuemin
- Basic Medical College, Hebei Medical University, Shijiazhuang, China
| | - Cai Wenchen
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Zhang Guizhen
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, China
| | - Li Dan
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, China
| | - Wang Ruimin
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, China
| | - Yang Fang
- Basic Medical College, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|