1
|
Yang Y, Zou B, Fan X, Ma X, Li S, Zhang X, Li J, Wu D. Design of Decanoic Acid/Polysorbate 80 Composite Vesicles as Cosmetics Carrier: Stability, Skin Permeability, Antioxidant and Antibacterial Activity. Molecules 2025; 30:624. [PMID: 39942728 PMCID: PMC11821021 DOI: 10.3390/molecules30030624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Fatty acid vesicles are natural biomaterials which possess unique bilayer structures and offer biomimetic advantages for drug and gene delivery. Nevertheless, the formation of fatty acid vesicles is limited to neutral alkaline circumstances and cannot adapt to the acidic environment of the living system. In this work, the non-ionic surfactant polysorbate 80 (TW80) was introduced, extending the pH window of vesicles formed by decanoic acid (DA) from 6.90-7.80 to 2.28-6.31. The DA/TW80 composite vesicles were used to encapsulate quercetin (QT), achieving an encapsulation efficiency of up to 75.6%. The formation of DA/TW80/QT composite vesicles was confirmed through Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction. Moreover, free QT was released rapidly, while QT encapsulated in the DA/TW80 composite vesicles demonstrated a slower release profile. Skin permeability studies revealed that the cumulative drug penetration within 24 h using the DA/TW80/QT composite vesicles reached approximately 904.7 μg·cm-2, 1.81 times higher than that of a QT solution. Furthermore, the DA/TW80/QT composite vesicles demonstrated enhanced antioxidant activity and greater antibacterial efficacy compared to either the drug or the vesicles alone. The results provide a crucial foundation for the application of drug-loaded vesicles in cosmetics.
Collapse
Affiliation(s)
- Ying Yang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (Y.Y.); (B.Z.); (X.F.); (X.M.); (S.L.); (J.L.); (D.W.)
| | - Bohang Zou
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (Y.Y.); (B.Z.); (X.F.); (X.M.); (S.L.); (J.L.); (D.W.)
| | - Xinyu Fan
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (Y.Y.); (B.Z.); (X.F.); (X.M.); (S.L.); (J.L.); (D.W.)
| | - Xinyue Ma
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (Y.Y.); (B.Z.); (X.F.); (X.M.); (S.L.); (J.L.); (D.W.)
| | - Siqi Li
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (Y.Y.); (B.Z.); (X.F.); (X.M.); (S.L.); (J.L.); (D.W.)
| | - Xiangyu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (Y.Y.); (B.Z.); (X.F.); (X.M.); (S.L.); (J.L.); (D.W.)
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Jinlian Li
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (Y.Y.); (B.Z.); (X.F.); (X.M.); (S.L.); (J.L.); (D.W.)
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Dongmei Wu
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (Y.Y.); (B.Z.); (X.F.); (X.M.); (S.L.); (J.L.); (D.W.)
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
2
|
Zhang D, Meng Y, Hao M, Xia Y. Nanocarriers Made of Natural Fatty Acids: Modulation of Their Release Profiles through Photo-Crosslinking. Angew Chem Int Ed Engl 2025; 64:e202415671. [PMID: 39609104 PMCID: PMC11735881 DOI: 10.1002/anie.202415671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024]
Abstract
Natural fatty acids are attractive carrier materials for drug delivery, but their rapid dissolution and degradation in vivo calls for new strategies to enhance their stability. Here we report a simple and versatile method capable of photo-crosslinking carriers made of natural fatty acids for drug delivery under controlled release. By optimizing the crosslinking density, the nanoscale carriers show a high drug loading efficiency, together with a stable network structure for minimal degradation in a body fluid mimic. Fluorescence microscopy analysis also reveals the exceptional intracellular stability of the crosslinked network, resulting in negligible cytotoxicity toward A549 cells up to 24 h when loaded with a potent anticancer drug. We further extend this strategy to microscale carriers fabricated using electrospray. Upon photo-crosslinking, the carriers show a retarded release of nerve growth factor, resulting in slower neurite outgrowth from dorsal root ganglion. This work holds promise for addressing the efficacy and safety issues critical to nanomedicine and related applications.
Collapse
Affiliation(s)
- Dong Zhang
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA 30332USA
| | - Yuxuan Meng
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGA 30332USA
| | - Min Hao
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA 30332USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA 30332USA
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGA 30332USA
| |
Collapse
|
3
|
Li S, Wang D, Zhang M, Yang Y, Zhang X, Li J, Wu D. Design of oleic acid/alkyl glycoside composite vesicles as cosmetics carrier: stability, skin permeability and antioxidant activity. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:579-604. [PMID: 38217851 DOI: 10.1080/09205063.2024.2302632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/29/2023] [Indexed: 01/15/2024]
Abstract
Biocompatible fatty acids are natural biological materials which exhibit widespread biomedical applications. Nevertheless, their application in vesicle forms is hampered by strong pH sensitivity and poor stability to changes in ionic strength, temperature, and storage. In the investigation, the incorporation of alkyl glycoside (APG), a surfactant with non-ionic properties, into the oleic acid (OA) vesicles was undertaken as a means to address this issue. The newly formed OA/APG composite vesicles form in a pH range of between 5.4 and 7.4, which is close to the pH range of the physiological environment. The stability studies results showed that the OA/APG composite vesicles have excellent stability in terms of ionic strengths, temperature and storage. The formation of NAR-loaded OA/APG composite vesicles was demonstrated through FT-IR, DSC and XRD. In vitro topical delivery and skin retention studies confirmed that the composite vesicles improve skin permeation rate and have better skin permeation behavior. Antioxidant activity experiments confirmed that the antioxidant effect composite vesicles were significantly increased as compared to the naringenin (NAR). This finding has theoretical implications for the use of drug-loaded fatty acid vesicles in cosmetics industries and topical delivery systems.
Collapse
Affiliation(s)
- Siqi Li
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi, China
| | - Di Wang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Meng Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Ying Yang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xiangyu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi, China
| | - Jinlian Li
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi, China
| | - Dongmei Wu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi, China
| |
Collapse
|
4
|
Wang Z, Huang K, Zheng Y, Ye H, Wang J, Tao X, Zhou J, Dang Z, Lu G. Efficient removal of heavy metals in water utilizing facile cross-link conjugated linoleic acid micelles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20665-20677. [PMID: 38381288 DOI: 10.1007/s11356-024-32517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
Micellar-enhanced ultrafiltration (MEUF) technology is an effective method to treat low-concentration heavy metal wastewater. However, the leakage of surfactants in the ultrafiltration (UF) process will inevitably cause secondary pollution. In this study, a biosurfactant of conjugated linoleic acid (CLA) with conjugated double bonds was selected to bind its micelles by simple thermal crosslinking to obtain morphologically stable stearic acid (SA) nanoparticles. The pure SA nanoparticles were obtained by repeated dialysis. The stability of the SA nanoparticles was verified by comparing the particle size distribution and solubility of the materials before and after crosslinking at different pH levels. The effectiveness of SA nanoparticle-enhanced UF in removing heavy metals was verified by exploring the adsorption performance of SA nanoparticles. The dialysis device was used to simplify the UF device, wherein SA nanoparticles were assessed as adsorbents for the elimination of Cu2+, Pb2+, and Cd2+ ions from aqueous solutions under diverse process parameters, including pH, contact time, metal ion concentration, and coexisting ions. The findings indicate that the SA nanoparticles have no evidence of secondary contamination in UF and exhibit compatibility with a broad pH range and coexisting ions. The maximum adsorption capacities for Cu2+, Pb2+, and Cd2+ were determined to be 152.77, 403.56, and 271.46 mg/g, respectively.
Collapse
Affiliation(s)
- Zufei Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Kaibo Huang
- School of Ecology and Environment, Hainan University, Haikou, 570228, People's Republic of China
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou, 570228, China
| | - Yanjie Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Han Ye
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Juan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jiangmin Zhou
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Liu H, Meng X, Li L, Xia Y, Hu X, Fang Y. The incorporated hydrogel of chitosan-oligoconjugated linoleic acid vesicles and the protective sustained release for curcumin in the gel. Int J Biol Macromol 2023; 227:17-26. [PMID: 36502952 DOI: 10.1016/j.ijbiomac.2022.12.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Assemblies of as called "chitosan hydrogel-liposome" are expected for overcoming the burst effect in drug release from chitosan (CS) hydrogels. Herein, a hydrogel delivery system made of chitosan incorporated fatty acid vesicles was constructed for protective sustained release of curcumin (Cur). The curcumin was encapsulated in the prepared oligo-conjugated linoleic acid vesicles (OCLAVs), and then the drug-embedded vesicles were constructed to Cur-OCLAVs-CS hydrogels with CS solution. The fabricated Cur-OCLAVs-CS hydrogel was fluidic at room temperature and could be rapidly gelled at 37 °C. Morphology study proves that the OCLAVs stayed as nano-vesicles in the gel. The Cur-OCLAVs-CS hydrogels effectively declined the burst effect with enhanced antioxidant activity. The Cur (400 μM)-OCLAVs-CS gel presented a cumulative release rate of 51.23 % of curcumin in 96 h, comparing to 93.37 % of that from the Cur-CS gel. Moreover, the corporation of OCLAVs and CS made the gel exhibited strong synergistic effect on the antioxidant activity, with an enhancement of up to 148.1 % on the ferric reducing power. Therefore, the hydrogel carrier made of incorporated fatty acid vesicles-chitosan can be served as an injectable or 3D printable drug delivery system, which may provide a hint to overcome the burst effect that existed in chitosan and other polysaccharide-based gels.
Collapse
Affiliation(s)
- Huan Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xinyu Meng
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lei Li
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yongmei Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xueyi Hu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yun Fang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
6
|
Liu H, Hu X, Li L, Meng X, Fang Y, Xia Y. Micron and nano hybrid ufasomes from conjugated linoleic acid, their vesiculation and encapsulation of ginsenoside Rg3. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4140-4150. [PMID: 34997612 DOI: 10.1002/jsfa.11763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/25/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Unsaturated fatty acids used to form unstable micro-vesicles, while conjugate linoleic acid (CLA)-sodium dodecyl sulfate (SDS) can self-assembly to stable nano-conjugate linoleic acid vesicles (nano-CLAVs). Generally, micro-capsule could geometrically provide higher loading capacity but also generate concerns in construction convenience, sustained release, bioaccessibility and stability. Hence there is a contradiction between loading capacity and encapsulation efficiency. Therefore, the study of the factors that decide the capsule size falling in nano or micron size with same capsule material would be a benefit to food or drug delivery science. RESULTS The micron- and nano-CLAVs were constructed for encapsulation and sustained release of ginsenoside Rg3. The formation mechanism of nano or micron capsule,s the effect of vesicle sizes on encapsulation efficiency, drug loading efficiency and stability of the encapsulated Rg3 were investigated. It was found that with the addition of salt (PBS), the size of CLAVs jumped from nano to micron. Furthermore, the salt concentration is the key factor that decides the vesicle size of nano or micron. The pH at fabrication triggers the vesiculation and dramatically affects the vesicle size over the nano and micron scales. CONCLUSION Compared to the nano-CLAVs, micron vesicles enhanced the loading capacity to 137.6% and the encapsulation efficiency to 138.4%, respectively. Meanwhile, the micron-CLAVs performed similar sustained release of Rg3 as the nano-CLAVs did, and was stable for 120 days at room temperature or sustained 98.9% of capsules after centrifuge at 6090 × g for 20 min. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huan Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| | - Xueyi Hu
- School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| | - Lei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| | - Xinyu Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| | - Yun Fang
- School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| | - Yongmei Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Li L, Fang Y, Xia Y, Bo C, Fan Y. Monosaccharides driving the formation of conjugated linoleic acid vesicles in near-neutral solutions via weak noncovalent bonding interactions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Synergistic effect on antioxidant activity of vitamin C provided with acidic vesiculation of hybrid fatty acids. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
9
|
Palmitic acid–carbon dot hybrid vesicles for absorption of uric acid. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01374-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Sawada D, Hirono A, Asakura K, Banno T. pH-Tolerant giant vesicles composed of cationic lipids with imine linkages and oleic acids. RSC Adv 2020; 10:34247-34253. [PMID: 35519057 PMCID: PMC9056790 DOI: 10.1039/d0ra06822e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/08/2020] [Indexed: 02/05/2023] Open
Abstract
Giant vesicles (GVs) have attracted attention as functional materials because they can encapsulate both hydrophilic and hydrophobic compounds. For next generation functional GVs, both tolerance and stimuli-sensitivity are needed. So far, vesicles tolerant to acidic or basic conditions were generated using a mixture of cationic lipids and fatty acids. Here, to create functional GVs that are tolerant to a wide pH range but sensitively respond at below a specific pH, the behaviour of GVs composed of a cationic lipid with an imine bond and oleic acid was investigated. Even though the GVs prepared by the film swelling method were tolerant to strongly acidic conditions, GVs without oleic acid gradually shrank, accompanied by the generation of oil droplets at the same pH. 1H NMR analysis revealed that during hydration of the film, the imine bond hydrolysed to provide a cationic surfactant and an oil component in the presence of oleic acid due to its own Lewis basicity, suggesting the dissociation of oleic acid. The results of fluorescence spectroscopy using an environment-responsive probe and IR spectroscopy indicated that the GV tolerance originated from the intermolecular interactions of cationic lipids and anionic oleate. Giant vesicles composed of cationic lipids having an imine linkage and oleic acid were stable at strong acidic conditions.![]()
Collapse
Affiliation(s)
- Daichi Sawada
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| | - Ayana Hirono
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| | - Kouichi Asakura
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| | - Taisuke Banno
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| |
Collapse
|
11
|
Self-assembled vesicles of sodium oleate and chitosan quaternary ammonium salt in acidic or alkaline aqueous solutions. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-019-04571-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Vaishnav JK, Mukherjee TK. Surfactant-Induced Self-Assembly of CdTe Quantum Dots into Multicolor Luminescent Hybrid Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6409-6420. [PMID: 31007028 DOI: 10.1021/acs.langmuir.9b00357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Here, we report the interaction of mercaptosuccinic acid (MSA)-capped CdTe quantum dots (QDs) with hexadecyltrimethylammonium bromide (CTAB) surfactant and subsequent formation of self-assembled multicolor luminescent vesicles in aqueous medium. A continuous phase sequence from clear (C1) to turbid (T1), precipitate (P), turbid (T2), and clear (C2) has been observed for QD solution upon increasing the concentration of positively charged CTAB, indicating dynamic equilibrium between various self-assembled supramolecular structures. In contrast, no such changes have been observed in the presence of negatively charged sodium dodecyl sulfate and neutral Triton X-100 surfactants, indicating specific electrostatic interactions behind the observed phase separation behavior. Epi-fluorescence imaging in the C1 and C2 regions reveals the presence of surfactant-induced aggregates of QD. The morphologies and photoluminescence properties of self-assembled supramolecular structures in the T1 and T2 region have been explored by using scanning electron microscopy (SEM), atomic force microscopy (AFM), and confocal laser scanning microscopy (CLSM). SEM and AFM images reveal distinct spherical vesicles in the T1 and T2 regions of the binary mixture. Moreover, CLSM results show that these spherical vesicles are inherently luminescent due to the presence of self-assembled QDs. Fabrication of multicolor luminescent vesicles has been demonstrated by tuning the size of CdTe QD. Using CLSM, we have further demonstrated efficient encapsulation of Rhodamine 6G dye into these self-assembled vesicles without any structural disruption. While these luminescent vesicles are quite stable in neutral and basic pH (pH = 6.5-11), they are unstable in acidic pH (pH = 4.5-5.5). Moreover, it has been observed that this pH-responsive structural change is totally reversible. The present findings of self-assembled luminescent vesicles from QD-CTAB binary mixture may open up new opportunities in various applications such as bioimaging, drug delivery, and sensing.
Collapse
Affiliation(s)
- Jamuna K Vaishnav
- Discipline of Chemistry , Indian Institute of Technology Indore , Simrol Campus, Khandwa Road , Indore 453552 , MP , India
| | - Tushar Kanti Mukherjee
- Discipline of Chemistry , Indian Institute of Technology Indore , Simrol Campus, Khandwa Road , Indore 453552 , MP , India
| |
Collapse
|
13
|
Arnould A, Cousin F, Salonen A, Saint-Jalmes A, Perez A, Fameau AL. Controlling Foam Stability with the Ratio of Myristic Acid to Choline Hydroxide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11076-11085. [PMID: 30149714 DOI: 10.1021/acs.langmuir.8b02261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The interfacial and foam properties of a model system based on the mixture between myristic acid and choline hydroxide have been investigated as a function of the molar ratio ( R) between these two components and temperature. The aim of this study was to obtain insight on the links between the self-assemblies in bulk and in the foam liquid channels, the surfactant packing at the interface, and the resulting foam properties and stability. A multiscale approach was used combining small angle neutron scattering, specular neutron reflectivity, surface tension measurements, and photography. We highlighted three regimes of foam stability in this system by modifying R: high foam stability for R < 1, intermediate at R ∼ 1, and low for R > 1. The different regimes come from the pH variations in bulk linked to R. The pH plays a crucial role at the molecular scale by setting the ionization state of the myristic acid molecules adsorbed at the gas-liquid interface, which in turn controls both the properties of the monolayer and the stability of the films separating the bubbles. The main requirement to obtain stable foams is to set the pH close to the p Ka in order to have a mixture of protonated and ionized molecules giving rise to intermolecular hydrogen bonds. As a result, a dense monolayer is formed at the interface with a low surface tension. R also modifies the structure of self-assembly in bulk and therefore within the foam, but such a morphological change has only a minor effect on the foam stability. This study confirms that foam stability in surfactant systems having a carboxylic acid as polar headgroup is mainly linked to the ionization state of the molecules at the interface.
Collapse
Affiliation(s)
- Audrey Arnould
- Biopolymères Interactions Assemblages INRA , la Géraudière , 44316 Nantes , France
| | - Fabrice Cousin
- Laboratoire Léon-Brillouin , CEA Saclay , 91191 Gif-sur-Yvette CEDEX, France
| | - Anniina Salonen
- Laboratoire de Physique des Solides, UMR 8502, Université of Paris Sud, 91405 Orsay , France
| | - Arnaud Saint-Jalmes
- Institut de Physique de Rennes, UMR CNRS 6251-Université Rennes 1, Rennes 35042 , France
| | - Adrian Perez
- Grupo de Biocoloides, Instituto de Tecnología de Alimentos , Universidad Nacional del Litoral , 1 de Mayo 3250 , Santa Fe 3000 , Argentina
| | - Anne-Laure Fameau
- Biopolymères Interactions Assemblages INRA , la Géraudière , 44316 Nantes , France
| |
Collapse
|