1
|
de Jesus CG, da Rocha Rodrigues R, Caseli L, Péres LO. Conducting polymers modulating the catalytic activity of urease in thin composite films. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
2
|
Bensana A, Achi F. Analytical performance of functional nanostructured biointerfaces for sensing phenolic compounds. Colloids Surf B Biointerfaces 2020; 196:111344. [PMID: 32877829 DOI: 10.1016/j.colsurfb.2020.111344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/09/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022]
Abstract
Electrochemical biointerfaces are constructed with a wide range of nanomaterials and conducting polymers that strongly affect the analytical performance of biosensors. The analysis of progress toward electrochemical sensing platforms offers opportunities to provide devices for commercial use. The investigation of different methods for the synthesis of phenol biointerfaces leads to design challenges in the field of monitoring phenolic compounds. This paper review the innovative strategies and feature techniques in the construction of phenolic compound biosensors. The focus was made on the preparation methods of nanostructures and nanomaterials design for catalytic improvements of sensing interfaces. The paper also provides a comprehensive overview in the field of enzyme immobilization approaches at solid supports and technical formation of polymer nanocomposites, as well as applications of hybrid organic-inorganic nanocomposites in phenolic biosensors. This review also highlights the recent progress in the electrochemical detection of phenolic compounds and summarizes analytical performance parameters including sensitivity, storage stability, limit of detection, linear range, and Michaelis-Menten kinetic analysis. It also emphasizes advances from the past decade including technical challenges for the construction of suitable biointerfaces for monitoring phenolic compounds.
Collapse
Affiliation(s)
- Amira Bensana
- Departement of Process Engineering, Laboratoire de Génie des Procédés Chimiques (LGPC), Faculty of Technology, Ferhat Abbas University Sétif-1-, Setif, 19000, Algeria
| | - Fethi Achi
- Laboratory of Valorisation and Promotion of Saharian Ressources (VPSR), Kasdi Merbah University, Ouargla, 30000, Algeria.
| |
Collapse
|
3
|
A new donor-acceptor conjugated polymer-gold nanoparticles biocomposite materials for enzymatic determination of glucose. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Hopkins J, Fidanovski K, Lauto A, Mawad D. All-Organic Semiconductors for Electrochemical Biosensors: An Overview of Recent Progress in Material Design. Front Bioeng Biotechnol 2019; 7:237. [PMID: 31608275 PMCID: PMC6773807 DOI: 10.3389/fbioe.2019.00237] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022] Open
Abstract
Organic semiconductors remain of major interest in the field of bioelectrochemistry for their versatility in chemical and electrochemical behavior. These materials have been tailored using organic synthesis for use in cell stimulation, sustainable energy production, and in biosensors. Recent progress in the field of fully organic semiconductor biosensors is outlined in this review, with a particular emphasis on the synthetic tailoring of these semiconductors for their intended application. Biosensors ultimately function on the basis of a physical, optical or electrochemical change which occurs in the active material when it encounters the target analyte. Electrochemical biosensors are becoming increasingly popular among organic semiconductor biosensors, owing to their good detection performances, and simple operation. The analyte either interacts directly with the semiconductor material in a redox process or undergoes a redox process with a moiety such as an enzyme attached to the semiconductor material. The electrochemical signal is then transduced through the semiconductor material. The most recent examples of organic semiconductor biosensors are discussed here with reference to the material design of polymers with semiconducting backbones, specifically conjugated polymers, and polymer semiconducting dyes. We conclude that direct interaction between the analyte and the semiconducting material is generally more sensitive and cost effective, despite being currently limited by the need to identify, and synthesize selective sensing functionalities. It is also worth noting the potential roles of highly-sensitive, organic transistor devices and small molecule semiconductors, such as the photochromic and redox active molecule spiropyran, as polymer pendant groups in future biosensor designs.
Collapse
Affiliation(s)
- Jonathan Hopkins
- School of Materials Science and Engineering, University of New South Wales Sydney, Sydney, NSW, Australia.,Centre for Advanced Macromolecular Design, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Kristina Fidanovski
- School of Materials Science and Engineering, University of New South Wales Sydney, Sydney, NSW, Australia.,Centre for Advanced Macromolecular Design, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Antonio Lauto
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Damia Mawad
- School of Materials Science and Engineering, University of New South Wales Sydney, Sydney, NSW, Australia.,Centre for Advanced Macromolecular Design, University of New South Wales Sydney, Sydney, NSW, Australia.,Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales Sydney, Sydney, NSW, Australia
| |
Collapse
|