1
|
Tu Y, Ren H, He Y, Ying J, Chen Y. Interaction between microorganisms and dental material surfaces: general concepts and research progress. J Oral Microbiol 2023; 15:2196897. [PMID: 37035450 PMCID: PMC10078137 DOI: 10.1080/20002297.2023.2196897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Bacterial adhesion to dental materials’ surfaces is the initial cause of dental materials-related infections. Therefore, inhibiting bacterial adhesion is a critical step in preventing and controlling these infections. To this end, it is important to know how the properties of dental materials affect the interactions between microorganisms and material surfaces to produce materials without biological contamination. This manuscript reviews the mechanism of bacterial adhesion to dental materials, the relationships between their surface properties and bacterial adhesion, and the impact of bacterial adhesion on their surface properties. In addition, this paper summarizes how these surface properties impact oral biofilm formation and proposes designing intelligent dental material surfaces that can reduce biological contamination.
Collapse
Affiliation(s)
- Yan Tu
- Department of Endodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Huaying Ren
- Department of Endodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yiwen He
- School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Ying
- School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yadong Chen
- Department of Endodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
- CONTACT Yadong Chen Department of Endodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou310000, China
| |
Collapse
|
2
|
Mu M, Liu S, DeFlorio W, Hao L, Wang X, Salazar KS, Taylor M, Castillo A, Cisneros-Zevallos L, Oh JK, Min Y, Akbulut M. Influence of Surface Roughness, Nanostructure, and Wetting on Bacterial Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5426-5439. [PMID: 37014907 PMCID: PMC10848269 DOI: 10.1021/acs.langmuir.3c00091] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/22/2023] [Indexed: 05/11/2023]
Abstract
Bacterial fouling is a persistent problem causing the deterioration and failure of functional surfaces for industrial equipment/components; numerous human, animal, and plant infections/diseases; and energy waste due to the inefficiencies at internal and external geometries of transport systems. This work gains new insights into the effect of surface roughness on bacterial fouling by systematically studying bacterial adhesion on model hydrophobic (methyl-terminated) surfaces with roughness scales spanning from ∼2 nm to ∼390 nm. Additionally, a surface energy integration framework is developed to elucidate the role of surface roughness on the energetics of bacteria and substrate interactions. For a given bacteria type and surface chemistry; the extent of bacterial fouling was found to demonstrate up to a 75-fold variation with surface roughness. For the cases showing hydrophobic wetting behavior, both increased effective surface area with increasing roughness and decreased activation energy with increased surface roughness was concluded to enhance the extent of bacterial adhesion. For the cases of superhydrophobic surfaces, the combination of factors including (i) the surpassing of Laplace pressure force of interstitial air over bacterial adhesive force, (ii) the reduced effective substrate area for bacteria wall due to air gaps to have direct/solid contact, and (iii) the reduction of attractive van der Waals force that holds adhering bacteria on the substrate were summarized to weaken the bacterial adhesion. Overall, this study is significant in the context of designing antifouling coatings and systems as well as explaining variations in bacterial contamination and biofilm formation processes on functional surfaces.
Collapse
Affiliation(s)
- Minchen Mu
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Shuhao Liu
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - William DeFlorio
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Li Hao
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou, Guangdong 510225, P. R. China
| | - Xunhao Wang
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Karla Solis Salazar
- Department
of Food Science and Technology, Texas A&M
University, College Station, Texas 77843, United States
| | - Matthew Taylor
- Department
of Food Science and Technology, Texas A&M
University, College Station, Texas 77843, United States
| | - Alejandro Castillo
- Department
of Food Science and Technology, Texas A&M
University, College Station, Texas 77843, United States
| | - Luis Cisneros-Zevallos
- Department
of Horticultural Sciences, Texas A&M
University, College Station, Texas 77843, United States
| | - Jun Kyun Oh
- Department
of Polymer Science and Engineering, Dankook
University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 16890, Republic of Korea
| | - Younjin Min
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Mustafa Akbulut
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
3
|
Xue VW, Yin IX, Niu JY, Lo ECM, Chu CH, Zhao IS. Effects of a 445 nm diode laser and silver diamine fluoride in preventing enamel demineralisation and inhibiting cariogenic bacteria. J Dent 2022; 126:104309. [PMID: 36162639 DOI: 10.1016/j.jdent.2022.104309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE To study the effects of a 445 nm diode laser (L) and silver diamine fluoride (F) on preventing enamel demineralisation and inhibiting cariogenic bacteria. METHODS Thirty-three enamel slices were sectioned each into four blocks for four groups to receive L with F (LF), F, L and Water (W, control). Ten blocks from each group were used to evaluate demineralization. Surface morphology, lesion depth and nanohardness of the blocks after pH-cycling were studied by scanning electron microscopy (SEM), nanohardness test, and micro-computed tomography, respectively. Twenty-three blocks per group were used for biofilm assessment. Morphology, viability, and growth kinetics of the Streptococcus mutans biofilm were assessed by SEM, confocal laser scanning microscopy, and the counting of colony-forming units (CFUs), respectively. RESULTS SEM images of LF-treated enamel showed an intact surface compared with other groups. Nanohardness (GPa) for LF, F, L and W were 1.43±0.17, 1.01±0.11, 1.04±0.13 and 0.73±0.14, respectively (p<0.001; LF>F, L>W). Their lesion depths (µm) were 46±8, 52±6, 88±13 and 111±9, respectively (p<0.001; LF, F<L<W). SEM showed few bacteria for LF and F compared with other groups. Their dead-live ratio were 1.67±0.13, 1.60±0.15, 0.39±0.05 and 0.32±0.05, respectively (p<0.001; LF, F>L>W). Log CFUs for LF, F, L and W were 4.2±0.3, 4.5±0.2, 7.9±0.3 and 9.4±0.2, respectively (p<0.05; LF<F<L<W). Two-way ANOVA analysis revealed an interaction effect on nanohardness and Log CFUs between the laser irradiation and SDF treatment (p<0.001). CONCLUSION This study showed a superior caries preventive effect of a combined treatment of the diode laser and SDF. Because diode laser and SDF are affordable and readily available, clinicians can provide this treatment to their patients for caries prevention. CLINICAL SIGNIFICANCE STATEMENT Diode lasers are handy, afforable and readily avaliable to clinicians. This study provides information of use of 445 nm diode laser for caries prevetion. The laser irradiation hopefully can be added before conventional topical SDF application.
Collapse
Affiliation(s)
- Vicky Wenqing Xue
- School of Dentistry, Shenzhen University Health Science Center, Shenzhen, 518000, China; Faculty of Dentistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Iris Xiaoxue Yin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, 999077, China
| | - John Yun Niu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Edward Chin Man Lo
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, 999077, China.
| | - Irene Shuping Zhao
- School of Dentistry, Shenzhen University Health Science Center, Shenzhen, 518000, China.
| |
Collapse
|
4
|
Huang H, Huang C, Xu C, Liu R. Development and characterization of lotus-leaf-inspired bionic antibacterial adhesion film through beeswax. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Wu Y, Hong L, Hu X, Li Y, Yang C. Efficient Antimicrobial Effect of Alginate-Catechol/Fe 2+ Coating on Hydroxyapatite toward Oral Care Application. ACS APPLIED BIO MATERIALS 2022; 5:2152-2162. [PMID: 35446545 DOI: 10.1021/acsabm.1c01254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reducing the formation of oral bacterial biofilms is critical to prevent common dental diseases. Though many strategies for restricting bacterial adhesion on tooth surfaces have been reported, a simple method for efficient oral bacteriostasis is still highly expected. Herein, we have proved a soft gel made of an alginate-catechol conjugate (SA-DA) and the ferrous cation (Fe2+) as an effective antibacterial coating on hydroxyapatite (HAP, a tooth model). As suggested by quartz crystal microbalance (QCM) measurements, SA-DA/Fe2+ coating possessed a high binding affinity to HAP without destruction by either immersion in artificial saliva or simulated tooth brushing. Significantly less protein (bovine serum albumin) and Streptococcus mutans (S. mutans, an oral bacterial model) could be found on HAP after coating with SA-DA/Fe2+, indicating that the prepared gel could resist well the adhesion of biofouling and microbes due to its hydrophilicity. Notably, such an antibacterial effect (around 70% S. mutans was inhibited) could be maintained for 3 d, which resulted from the extremely good stability of SA-DA/Fe2+ coating, as confirmed by QCM analysis. Our results may offer possibilities for developing applications in order to further improve oral hygiene.
Collapse
Affiliation(s)
- Yingchang Wu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Liu Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yunxing Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Dhingra S, Sharma S, Saha S. Infection Resistant Surface Coatings by Polymer Brushes: Strategies to Construct and Applications. ACS APPLIED BIO MATERIALS 2022; 5:1364-1390. [DOI: 10.1021/acsabm.1c01006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shaifali Dhingra
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shivangi Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
7
|
Mohseni M, Shokrollahi P, Barzin J. Impact of Supramolecular Interactions on Delivery of Dexamethasone from a Physical Network of Gelatin/ZnHAp Composite Scaffold. Int J Pharm 2022; 615:121520. [DOI: 10.1016/j.ijpharm.2022.121520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/06/2022] [Accepted: 01/23/2022] [Indexed: 10/19/2022]
|
8
|
Wang Y, Samaranayake LP, Dykes GA. Tea extracts modulate oral biofilm development by altering bacterial hydrophobicity and aggregation. Arch Oral Biol 2020; 122:105032. [PMID: 33418435 DOI: 10.1016/j.archoralbio.2020.105032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES This study aims to investigate the effects of tea extracts on biofilm formation by oral streptococci and the potential mechanisms behind the effects. DESIGN We examined the effects of five types of tea extracts (green, oolong, black, pu-erh and chrysanthemum tea) on cell surface hydrophobicity and auto-aggregation of three different streptococcal species (Streptococcus mutans, Streptococcus salivarius and Streptococcus mitis) and evaluated their biofilm formation on four disparate hard surfaces (glass, stainless steel, hydroxyapatite and titanium). The correlation between biofilm formation and the cellular properties were investigated in order to study the mechanisms by which the tea extracts affect biofilm formation. RESULTS Results show that the tea extracts reduced cell surface hydrophobicity (by up to 57.9 %) and, in some cases, altered cellular auto-aggregation (by up to 12 %) and biofilm formation (by up to 2.61 log CFU cm-2). Specifically, oolong tea extract was found to enhance biofilm formation by increasing cellular auto-aggregation and pu-erh tea extract retarded biofilm formation by increasing auto-aggregation. Biofilm formation correlated well to cell surface hydrophobicity and auto-aggregation in combination, but not to either one alone as determined by multiple linear regression analysis. CONCLUSIONS Tea extracts have the ability to modulate streptococcal biofilm formation by altering cell surface hydrophobicity and cellular aggregation.
Collapse
Affiliation(s)
- Yi Wang
- School of Dentistry, the University of Queensland, Brisbane, Queensland 4006, Australia.
| | | | - Gary A Dykes
- Graduate Research School, Curtin University, Perth, Western Australia 6845, Australia.
| |
Collapse
|
9
|
Zhou L, Wong HM, Li QL. Anti-Biofouling Coatings on the Tooth Surface and Hydroxyapatite. Int J Nanomedicine 2020; 15:8963-8982. [PMID: 33223830 PMCID: PMC7671468 DOI: 10.2147/ijn.s281014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/21/2020] [Indexed: 01/02/2023] Open
Abstract
Dental plaque is one type of biofouling on the tooth surface that consists of a diverse population of microorganisms and extracellular matrix and causes oral diseases and even systematic diseases. Numerous studies have focused on preventing bacteria and proteins on tooth surfaces, especially with anti-biofouling coatings. Anti-biofouling coatings can be stable and sustainable over the long term on the tooth surface in the complex oral environment. In this review, numerous anti-biofouling coatings on the tooth surface and hydroxyapatite (as the main component of dental hard tissue) were summarized based on their mechanisms, which include three major strategies: antiprotein and antibacterial adhesion through chemical modification, contact killing through the modification of antimicrobial agents, and antibacterial agent release. The first strategy of coatings can resist the adsorption of proteins and bacteria. However, these coatings use passive strategies and cannot kill bacteria. The second strategy can interact with the cell membrane of bacteria to cause bacterial death. Due to the possibility of delivering a high antibacterial agent concentration locally, the third strategy is recommended and will be the trend of local drug use in dentistry in the future.
Collapse
Affiliation(s)
- Li Zhou
- Department of Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR999077, People’s Republic of China
| | - Hai Ming Wong
- Department of Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR999077, People’s Republic of China
| | - Quan Li Li
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei230000, People’s Republic of China
| |
Collapse
|
10
|
Wang Y, Lee SM, Gentle IR, Dykes GA. A statistical approach for modelling the physical process of bacterial attachment to abiotic surfaces. BIOFOULING 2020; 36:1227-1242. [PMID: 33412938 DOI: 10.1080/08927014.2020.1865934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/02/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
A statistical approach using a polynomial linear model in combination with a probability distribution model was developed to mathematically represent the process of bacterial attachment and study its mechanism. The linear deterministic model was built based on data from experiments investigating bacterial and substratum surface physico-chemical factors as predictors of attachment. The prediction results were applied to a normal-approximated binomial distribution model to probabilistically predict attachment. The experimental protocol used mixtures of Streptococcus salivarius and Escherichia coli, and mixtures of porous poly(butyl methacrylate-co-ethyl dimethacrylate) and aluminum sec-butoxide coatings, at varying ratios, to allow bacterial attachment to substratum surfaces across a range of physico-chemical properties (including the surface hydrophobicity of bacterial cells and the substratum, the surface charge of the cells and the substratum, the substratum surface roughness and cell size). The model was tested using data from independent experiments. The model indicated that hydrophobic interaction was the most important predictor while reciprocal interactions existed between some of the factors. More importantly, the model established a range for each factor within which the resultant attachment is unpredictable. This model, however, considers bacterial cells as colloidal particles and accounts only for the essential physico-chemical attributes of the bacterial cells and substratum surfaces. It is therefore limited by a lack of consideration of biological and environmental factors. This makes the model applicable only to specific environments and potentially provides a direction to future modelling for different environments.
Collapse
Affiliation(s)
- Yi Wang
- School of Dentistry, the University of Queensland, Brisbane, Queensland, Australia
- School of Science, Monash University, Bandar Sunway, Selangor, Malaysia
| | - Sui M Lee
- School of Science, Monash University, Bandar Sunway, Selangor, Malaysia
| | - Ian R Gentle
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
| | - Gary A Dykes
- School of Science, Monash University, Bandar Sunway, Selangor, Malaysia
- Graduate Research School, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
11
|
Rizwan M, Genasan K, Murali MR, Balaji Raghavendran HR, Alias R, Cheok YY, Wong WF, Mansor A, Hamdi M, Basirun WJ, Kamarul T. In vitro evaluation of novel low-pressure spark plasma sintered HA-BG composite scaffolds for bone tissue engineering. RSC Adv 2020; 10:23813-23828. [PMID: 35517330 PMCID: PMC9054734 DOI: 10.1039/d0ra04227g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/03/2020] [Indexed: 12/18/2022] Open
Abstract
The low-pressure spark plasma sintering (SPS) technique is adopted to fabricate hydroxyapatite-bioglass (HA-BG) scaffolds while maintaining the physical properties of both components, including their bulk and relative density and hardness. However, prior to their orthopaedic and dental applications, these scaffolds must be validated via pre-clinical assessments. In the present study, scaffolds with different ratios of HA : BG, namely, 100 : 0 (HB 0 S), 90 : 10 (HB 10 S), 80 : 20 (HB 20 S) and 70 : 30 (HB 30 S) were fabricated. These scaffolds were characterized by investigating their physicochemical properties (X-ray diffraction (XRD) and surface wettability), bioactivity in a simulated body fluid (SBF) (field emission scanning electron microscopy (FESEM), Fourier-transform infrared spectroscopy (FTIR) and calcium dissolution), antimicrobial properties, biocompatibility and osteoinduction of human bone marrow-derived mesenchymal stromal cells (hBMSCs) and human monocyte immune cell response. The XRD and surface wettability results confirmed no formation of undesirable phases and the enhanced surface hydrophilicity of the scaffolds, respectively. The bioactivity in SBF indicated the formation of bone-like apatite on the surface of the scaffolds, corresponding to an increase in BG%, which was confirmed through FTIR spectra and the increasing trend of calcium release in SBF. The scaffolds showed inhibition properties against Staphylococcus aureus and Staphylococcus epidermidis. The scanning electron microscopy (SEM) micrographs and Alamar Blue proliferation assay indicated the good attachment and significant proliferation, respectively, of hBMSCs on the scaffolds. Alizarin Red S staining confirmed that the scaffolds supported the mineralisation of hBMSCs. The osteogenic protein secretion (bone morphogenetic protein-2 (BMP2), type-I collagen (COL1) and osterix (OSX)) was significant on the HB 30 S-seeded hBMSCs when compared with that of HB 0 S. The monocyte migration was significantly halted in response to HA-BG-conditioned media when compared with the positive control (monocyte chemoattractant protein-1: MCP-1). In conclusion, the HB 30 S composite scaffold has a greater potential to substitute bone grafts in orthopaedic and dental applications.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Metallurgical Engineering, Faculty of Chemical and Process Engineering, NED University of Engineering and Technology 75270 Karachi Pakistan
- Centre of Advanced Manufacturing and Material Processing, University of Malaya 50603 Kuala Lumpur Malaysia
| | - Krishnamurithy Genasan
- National Orthopaedic Centre of Excellence for Research & Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya 50603 Kuala Lumpur Malaysia
| | - Malliga Raman Murali
- National Orthopaedic Centre of Excellence for Research & Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya 50603 Kuala Lumpur Malaysia
| | - Hanumantha Rao Balaji Raghavendran
- National Orthopaedic Centre of Excellence for Research & Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya 50603 Kuala Lumpur Malaysia
| | - Rodianah Alias
- Department of Manufacturing Technology, Faculty of Innovative Design & Technology, University Sultan Zainal Abidin 21030 Kuala Terengganu Malaysia
| | - Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya 50603 Kuala Lumpur Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya 50603 Kuala Lumpur Malaysia
| | - Azura Mansor
- National Orthopaedic Centre of Excellence for Research & Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya 50603 Kuala Lumpur Malaysia
| | - M Hamdi
- Chancellery Office, The National University of Malaysia 43600 Bangi Selangor Malaysia
- Centre of Advanced Manufacturing and Material Processing, University of Malaya 50603 Kuala Lumpur Malaysia
| | - Wan Jeffrey Basirun
- Department of Chemistry, Faculty of Science, University of Malaya 50603 Kuala Lumpur Malaysia
| | - Tunku Kamarul
- National Orthopaedic Centre of Excellence for Research & Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya 50603 Kuala Lumpur Malaysia
| |
Collapse
|
12
|
Wang X, Liu L, Zhou X, Huo Y, Gao J, Gu H. Casein phosphopeptide combined with fluoride enhances the inhibitory effect on initial adhesion of Streptococcus mutans to the saliva-coated hydroxyapatite disc. BMC Oral Health 2020; 20:169. [PMID: 32532263 PMCID: PMC7291725 DOI: 10.1186/s12903-020-01158-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Background Recent preventive strategies for dental caries focus on targeting the mechanisms underlying biofilm formation, including the inhibition of bacterial adhesion. A promising approach to prevent bacterial adhesion is to modify the composition of acquired salivary pellicle. This in vitro study investigated the effect and possible underlying mechanism of pellicle modification by casein phosphopeptide (CPP) on Streptococcus mutans (S. mutans) initial adhesion, and the impact of fluoride on the efficacy of CPP. Methods The salivary pellicle-coated hydroxyapatite (s-HA) discs were treated with phosphate buffered saline (negative control), heat-inactivated 2.5% CPP (heat-inactivated CPP), 2.5% CPP (CPP) or 2.5% CPP supplemented with 900 ppm fluoride (CPP + F). After cultivation of S. mutans for 30 min and 2 h, the adherent bacteria were visualized by scanning electron microscopy (SEM) and quantitatively evaluated using the plate count method. Confocal laser scanning microscopy (CLSM) was used to evaluate the proportions of total and dead S. mutans. The concentrations of total, free, and bound calcium and fluoride in the CPP and fluoride-doped CPP solutions were determined. The water contact angle and zeta potential of s-HA with and without modification were measured. The data were statistically analyzed using one-way ANOVA followed by a Turkey post hoc multiple comparison test. Results Compared to the negative control group, the amount of adherent S. mutans significantly reduced in the CPP and CPP + F groups, and was lowest in the CPP + F group. CLSM analysis showed that there was no statistically significant difference in the proportion of dead S. mutans between the four groups. Water contact angle and zeta potential of s-HA surface significantly decreased in the CPP and CPP + F groups as compared to the negative control group, and both were lowest in the CPP + F group. Conclusions Pellicle modification by CPP inhibited S. mutans initial adhesion to s-HA, possibly by reducing hydrophobicity and negative charge of the s-HA surface, and incorporating fluoride into CPP further enhanced the anti-adhesion effect.
Collapse
Affiliation(s)
- Xiaodie Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou, 510055, Guangdong, China.,Guangdong Provincial Key Laboratory of Oral Diseases, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou, 510055, Guangdong, China
| | - Limin Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou, 510055, Guangdong, China.,Guangdong Provincial Key Laboratory of Oral Diseases, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou, 510055, Guangdong, China
| | - Xiaoyan Zhou
- School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yongbiao Huo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou, 510055, Guangdong, China.,Guangdong Provincial Key Laboratory of Oral Diseases, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou, 510055, Guangdong, China
| | - Jinlong Gao
- School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia. .,Institute of Dental Research, Westmead Centre for Oral Health, Westmead, NSW, Australia.
| | - Haijing Gu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou, 510055, Guangdong, China. .,Guangdong Provincial Key Laboratory of Oral Diseases, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou, 510055, Guangdong, China.
| |
Collapse
|
13
|
Wang X, Zhang D, Chen W, Tao J, Xu M, Guo P. Effects of fulvic acid and fulvic ions on Escherichia coli survival in river under repeated freeze-thaw cycles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:1100-1109. [PMID: 30823339 DOI: 10.1016/j.envpol.2019.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
The effects of fulvic acid (FA) and ions on mesophilic pathogenic bacteria survival under freeze-thaw (FT) stress in natural water and its resistant mechanisms are rarely understood. Therefore, survival patterns of Escherichia coli in river water added with various concentrations of FA or FA-ion under FT stress were studied in this work. Meanwhile, cell surface hydrophobicity (CSH), unit activities of superoxide dismutase (SOD) and catalase (CAT) were determined and Escherichia coli morphologies were observed to explore the bacterial resistant mechanisms against FT stress. The results demonstrated that FT cycles significantly reduced bacterial quantities as sampling time, i.e. freeze-thaw cycle time increased. And the biggest reducing rate was observed after the first FT cycle in every system. Ttd values, time needed to reach detection limit under FT stress decreased under FT stress as FA was added into water, while the changes of ttd values were quite complicated when FA and various ions existed together. Generally, the ttd values of FA-cation systems exceeded that of FA system except FA-Ca2+ systems, but it was opposite for FA-anion systems. CSH was heightened after FT cycles and reached peak value at last sampling time in every system. Mechanical constraint from extracellular ice crystals and high CSH induced bacterial aggregation, which protect inner cells of aggregation from extracellular ice crystals. And the unit activities of SOD were significantly higher than those of CAT. Unit activities of SOD and CAT in large part of tested systems increased with sampling time under FT stress, which reduced reactive oxygen species produced from repeated FT cycles. Thus, these could improve the resistance of Escherichia coli to freeze-thaw stress and promote their survival. This work explored the survival pattern and strategy of Escherichia coli in natural water under FT stress.
Collapse
Affiliation(s)
- Xu Wang
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of Environment and Resources, Jilin University, Changchun, 130012, China
| | - Dongyan Zhang
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Weiwei Chen
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of Environment and Resources, Jilin University, Changchun, 130012, China
| | - Jiahui Tao
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of Environment and Resources, Jilin University, Changchun, 130012, China
| | - Meng Xu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of Environment and Resources, Jilin University, Changchun, 130012, China
| | - Ping Guo
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of Environment and Resources, Jilin University, Changchun, 130012, China.
| |
Collapse
|
14
|
Keskin D, Mergel O, van der Mei HC, Busscher HJ, van Rijn P. Inhibiting Bacterial Adhesion by Mechanically Modulated Microgel Coatings. Biomacromolecules 2019; 20:243-253. [PMID: 30512925 PMCID: PMC6335679 DOI: 10.1021/acs.biomac.8b01378] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/02/2018] [Indexed: 02/06/2023]
Abstract
Bacterial infection is a severe problem especially when associated with biomedical applications. This study effectively demonstrates that poly- N-isopropylmethacrylamide based microgel coatings prevent bacterial adhesion. The coating preparation via a spraying approach proved to be simple and both cost and time efficient creating a homogeneous dense microgel monolayer. In particular, the influence of cross-linking density, microgel size, and coating thickness was investigated on the initial bacterial adhesion. Adhesion of Staphylococcus aureus ATCC 12600 was imaged using a parallel plate flow chamber setup, which gave insights in the number of the total bacteria adhering per unit area onto the surface and the initial bacterial deposition rates. All microgel coatings successfully yielded more than 98% reduction in bacterial adhesion. Bacterial adhesion depends both on the cross-linking density/stiffness of the microgels and on the thickness of the microgel coating. Bacterial adhesion decreased when a lower cross-linking density was used at equal coating thickness and at equal cross-linking density with a thicker microgel coating. The highest reduction in the number of bacterial adhesion was achieved with the microgel that produced the thickest coating ( h = 602 nm) and had the lowest cross-linking density. The results provided in this paper indicate that microgel coatings serve as an interesting and easy applicable approach and that it can be fine-tuned by manipulating the microgel layer thickness and stiffness.
Collapse
Affiliation(s)
- Damla Keskin
- University
of Groningen, University Medical Center Groningen, Department of Biomedical
Engineering (FB40), W.J. Kolff Institute
for Biomedical Engineering and Materials Science (FB41), Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Olga Mergel
- University
of Groningen, University Medical Center Groningen, Department of Biomedical
Engineering (FB40), W.J. Kolff Institute
for Biomedical Engineering and Materials Science (FB41), Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henny C. van der Mei
- University
of Groningen, University Medical Center Groningen, Department of Biomedical
Engineering (FB40), W.J. Kolff Institute
for Biomedical Engineering and Materials Science (FB41), Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henk J. Busscher
- University
of Groningen, University Medical Center Groningen, Department of Biomedical
Engineering (FB40), W.J. Kolff Institute
for Biomedical Engineering and Materials Science (FB41), Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Patrick van Rijn
- University
of Groningen, University Medical Center Groningen, Department of Biomedical
Engineering (FB40), W.J. Kolff Institute
for Biomedical Engineering and Materials Science (FB41), Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- University of
Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|