1
|
Unnikrishnan G, Joy A, Megha M, Kolanthai E, Senthilkumar M. Exploration of inorganic nanoparticles for revolutionary drug delivery applications: a critical review. DISCOVER NANO 2023; 18:157. [PMID: 38112849 PMCID: PMC10730791 DOI: 10.1186/s11671-023-03943-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
The nanosystems for delivering drugs which have evolved with time, are being designed for greater drug efficiency and lesser side-effects, and are also complemented by the advancement of numerous innovative materials. In comparison to the organic nanoparticles, the inorganic nanoparticles are stable, have a wide range of physicochemical, mechanical, magnetic, and optical characteristics, and also have the capability to get modified using some ligands to enrich their attraction towards the molecules at the target site, which makes them appealing for bio-imaging and drug delivery applications. One of the strong benefits of using the inorganic nanoparticles-drug conjugate is the possibility of delivering the drugs to the affected cells locally, thus reducing the side-effects like cytotoxicity, and facilitating a higher efficacy of the therapeutic drug. This review features the direct and indirect effects of such inorganic nanoparticles like gold, silver, graphene-based, hydroxyapatite, iron oxide, ZnO, and CeO2 nanoparticles in developing effective drug carrier systems. This article has remarked the peculiarities of these nanoparticle-based systems in pulmonary, ocular, wound healing, and antibacterial drug deliveries as well as in delivering drugs across Blood-Brain-Barrier (BBB) and acting as agents for cancer theranostics. Additionally, the article sheds light on the plausible modifications that can be carried out on the inorganic nanoparticles, from a researcher's perspective, which could open a new pathway.
Collapse
Affiliation(s)
- Gayathri Unnikrishnan
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Anjumol Joy
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - M Megha
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Elayaraja Kolanthai
- Department of Materials Sciences and Engineering, Advanced Materials Processing and Analysis Centre, University of Central Florida, Orlando, FL, USA.
| | - M Senthilkumar
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India.
| |
Collapse
|
2
|
Bian Y, Wang Y, Chen X, Zhang Y, Xiong S, Su D. Image‐guided diagnosis and treatment of glioblastoma. VIEW 2023. [DOI: 10.1002/viw.20220069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Yongning Bian
- Center of Excellence for Environmental Safety and Biological Effects Beijing Key Laboratory for Green Catalysis and Separation Department of Chemistry Beijing University of Technology Beijing P. R. China
| | - Yaling Wang
- Center of Excellence for Environmental Safety and Biological Effects Beijing Key Laboratory for Green Catalysis and Separation Department of Chemistry Beijing University of Technology Beijing P. R. China
| | - Xueqian Chen
- Center of Excellence for Environmental Safety and Biological Effects Beijing Key Laboratory for Green Catalysis and Separation Department of Chemistry Beijing University of Technology Beijing P. R. China
| | - Yong Zhang
- Center of Excellence for Environmental Safety and Biological Effects Beijing Key Laboratory for Green Catalysis and Separation Department of Chemistry Beijing University of Technology Beijing P. R. China
| | - Shaoqing Xiong
- Center of Excellence for Environmental Safety and Biological Effects Beijing Key Laboratory for Green Catalysis and Separation Department of Chemistry Beijing University of Technology Beijing P. R. China
| | - Dongdong Su
- Center of Excellence for Environmental Safety and Biological Effects Beijing Key Laboratory for Green Catalysis and Separation Department of Chemistry Beijing University of Technology Beijing P. R. China
| |
Collapse
|
3
|
Barzegar Behrooz A, Talaie Z, Syahir A. Nanotechnology-Based Combinatorial Anti-Glioblastoma Therapies: Moving from Terminal to Treatable. Pharmaceutics 2022; 14:pharmaceutics14081697. [PMID: 36015322 PMCID: PMC9415007 DOI: 10.3390/pharmaceutics14081697] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
Aggressive glioblastoma (GBM) has no known treatment as a primary brain tumor. Since the cancer is so heterogeneous, an immunosuppressive tumor microenvironment (TME) exists, and the blood–brain barrier (BBB) prevents chemotherapeutic chemicals from reaching the central nervous system (CNS), therapeutic success for GBM has been restricted. Drug delivery based on nanocarriers and nanotechnology has the potential to be a handy tool in the continuing effort to combat the challenges of treating GBM. There are various new therapies being tested to extend survival time. Maximizing therapeutic effectiveness necessitates using many treatment modalities at once. In the fight against GBM, combination treatments outperform individual ones. Combination therapies may be enhanced by using nanotechnology-based delivery techniques. Nano-chemotherapy, nano-chemotherapy–radiation, nano-chemotherapy–phototherapy, and nano-chemotherapy–immunotherapy for GBM are the focus of the current review to shed light on the current status of innovative designs.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Nanobiotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Zahra Talaie
- School of Biology, Nour Danesh Institute of Higher Education, Isfahan 84156-83111, Iran
| | - Amir Syahir
- Nanobiotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence:
| |
Collapse
|
4
|
Gawel AM, Singh R, Debinski W. Metal-Based Nanostructured Therapeutic Strategies for Glioblastoma Treatment-An Update. Biomedicines 2022; 10:1598. [PMID: 35884903 PMCID: PMC9312866 DOI: 10.3390/biomedicines10071598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/29/2022] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the most commonly diagnosed and most lethal primary malignant brain tumor in adults. Standard treatments are ineffective, and despite promising results obtained in early phases of experimental clinical trials, the prognosis of GBM remains unfavorable. Therefore, there is need for exploration and development of innovative methods that aim to establish new therapies or increase the effectiveness of existing therapies. One of the most exciting new strategies enabling combinatory treatment is the usage of nanocarriers loaded with chemotherapeutics and/or other anticancer compounds. Nanocarriers exhibit unique properties in antitumor therapy, as they allow highly efficient drug transport into cells and sustained intracellular accumulation of the delivered cargo. They can be infused into and are retained by GBM tumors, and potentially can bypass the blood-brain barrier. One of the most promising and extensively studied groups of nanostructured therapeutics are metal-based nanoparticles. These theranostic nanocarriers demonstrate relatively low toxicity, thus they might be applied for both diagnosis and therapy. In this article, we provide an update on metal-based nanostructured constructs in the treatment of GBM. We focus on the interaction of metal nanoparticles with various forms of electromagnetic radiation for use in photothermal, photodynamic, magnetic hyperthermia and ionizing radiation sensitization applications.
Collapse
Affiliation(s)
- Agata M. Gawel
- Histology and Embryology Students’ Science Association, Department of Histology and Embryology, Faculty of Medicine, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland;
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Waldemar Debinski
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| |
Collapse
|
5
|
Lei Q, Huang X, Zheng L, Zheng F, Dong J, Chen F, Zeng W. Biosensors for Caspase-3: From chemical methodologies to biomedical applications. Talanta 2022; 240:123198. [PMID: 34998139 DOI: 10.1016/j.talanta.2021.123198] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/11/2022]
Abstract
Caspase-3 plays irreplaceable roles in apoptosis and related diseases. An imbalance in the measured levels of Caspase-3 is implicated in irreversible apoptosis. Therefore, the detection of Caspase-3 is of great significance for apoptosis imaging and the evaluation effect of early tumor treatment and other diseases. Herein, advances in the recent innovations of Caspase-3 response fluorescence biosensors, including molecular probes and nanoprobes, are systematically summarized in sections corresponding. The performances of various luminescence probes in Caspase-3 detection are discussed intensively in the design strategy of chemical structure, response mechanism and biological application. Finally, the current challenges and prospects of the design of new Caspase-3 responsive fluorescence probes for apoptosis imaging, or similar molecular event are proposed.
Collapse
Affiliation(s)
- Qian Lei
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China
| | - Xueyan Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China
| | - Lijuan Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China
| | - Fan Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China.
| |
Collapse
|
6
|
Yu Y, Wang A, Wang S, Sun Y, Chu L, Zhou L, Yang X, Liu X, Sha C, Sun K, Xu L. Efficacy of Temozolomide-Conjugated Gold Nanoparticle Photothermal Therapy of Drug-Resistant Glioblastoma and Its Mechanism Study. Mol Pharm 2022; 19:1219-1229. [PMID: 35262365 DOI: 10.1021/acs.molpharmaceut.2c00083] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Temozolomide (TMZ) is a standard-of-care chemotherapeutic drug for the treatment of glioblastoma (GBM), but TMZ-acquired resistance limits its therapeutic effect. In this study, TMZ-loaded gold nanoparticles (TMZ@GNPs) with anti-EphA3 modification on the surface (anti-EphA3-TMZ@GNPs) were synthesized for chemical and auxiliary plasma photothermal treatment (GNPs-PPTT), aiming to overcome the problem of glioma resistance to TMZ and improve the therapeutic effects of GBM. The prepared anti-EphA3-TMZ@GNPs were spherical with a particle size of 45.88 ± 1.9 nm, and the drug loading was 7.31 ± 0.38%. In vitro, cell-culture-based experiments showed that anti-EphA3 increased the cellular uptake of GNPs in T98G cells. Upon laser irradiation, the cytotoxicity and apoptosis rate in the anti-EphA3-TMZ@GNPs-treated group were significantly higher than those in the GNPs and nonphotothermal groups (p < 0.001). The Western blot analysis showed that the GNPs-PPTT-mediated killing of tumor cells induced apoptosis by regulating the apoptotic signaling molecules and cell cycle inhibitors; the expression of MGMT significantly decreased upon p53 induction, thereby reversing drug resistance. After photothermal treatment, the survival time of the subcutaneous GBM model of nude mice in the anti-EphA3-TMZ@GNPs group was prolonged to 46 days, 1.64-fold longer as compared to that in the TMZ group. Based on H&E and TUNEL staining, GNPs-PPTT could elevate apoptosis in T98G cells. In vivo thermal imaging results showed that GNPs could enter the brain via intranasal administration and be eliminated in 2 days, indicating that GNPs are safe for brain. In conclusion, GNPs-PPTT could effectively induce apoptosis in glioma cells and reverse TMZ resistance, thereby, indicative of a promising treatment strategy for GBM.
Collapse
Affiliation(s)
- Yawen Yu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Aiping Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Siqi Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Yuchen Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Liuxiang Chu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Lin Zhou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Xiaoyue Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Xincui Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Chunjie Sha
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai 264003, P.R. China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Lixiao Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| |
Collapse
|
7
|
Chan MH, Huang WT, Satpathy A, Su TY, Hsiao M, Liu RS. Progress and Viewpoints of Multifunctional Composite Nanomaterials for Glioblastoma Theranostics. Pharmaceutics 2022; 14:pharmaceutics14020456. [PMID: 35214188 PMCID: PMC8875488 DOI: 10.3390/pharmaceutics14020456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
The most common malignant tumor of the brain is glioblastoma multiforme (GBM) in adults. Many patients die shortly after diagnosis, and only 6% of patients survive more than 5 years. Moreover, the current average survival of malignant brain tumors is only about 15 months, and the recurrence rate within 2 years is almost 100%. Brain diseases are complicated to treat. The reason for this is that drugs are challenging to deliver to the brain because there is a blood–brain barrier (BBB) protection mechanism in the brain, which only allows water, oxygen, and blood sugar to enter the brain through blood vessels. Other chemicals cannot enter the brain due to their large size or are considered harmful substances. As a result, the efficacy of drugs for treating brain diseases is only about 30%, which cannot satisfy treatment expectations. Therefore, researchers have designed many types of nanoparticles and nanocomposites to fight against the most common malignant tumors in the brain, and they have been successful in animal experiments. This review will discuss the application of various nanocomposites in diagnosing and treating GBM. The topics include (1) the efficient and long-term tracking of brain images (magnetic resonance imaging, MRI, and near-infrared light (NIR)); (2) breaking through BBB for drug delivery; and (3) natural and chemical drugs equipped with nanomaterials. These multifunctional nanoparticles can overcome current difficulties and achieve progressive GBM treatment and diagnosis results.
Collapse
Affiliation(s)
- Ming-Hsien Chan
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Wen-Tse Huang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
| | - Aishwarya Satpathy
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
| | - Ting-Yi Su
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (M.H.); (R.-S.L.)
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Correspondence: (M.H.); (R.-S.L.)
| |
Collapse
|
8
|
Abstract
Cancer nanotheranostics aims at providing alternative approaches to traditional cancer diagnostics and therapies. In this context, plasmonic nanostructures especially gold nanostructures are intensely explored due to their tunable shape, size and surface plasmon resonance (SPR), better photothermal therapy (PTT) and photodynamic therapy (PDT) ability, effective contrast enhancing ability in Magnetic Resonance imaging (MRI) and Computed Tomography (CT) scan. Despite rapid breakthroughs in gold nanostructures based theranostics of cancer, the translation of gold nanostructures from bench side to human applications is still questionable. The major obstacles that have been facing by nanotheranostics are specific targeting, poor resolution and photoinstability during PTT etc. In this regard, various encouraging studies have been carried out recently to overcome few of these obstacles. Use of gold nanocomposites also overcomes the limitations of gold nanostructure probes and emerged as good nanotheranostic probe. Hence, the present article discusses the advances in gold nanostructures based cancer theranostics and mainly emphasizes on the importance of gold nanocomposites which have been designed to decipher the past questions and limitations of in vivo gold nanotheranostics.
Collapse
Affiliation(s)
- Bankuru Navyatha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, UP, India
| | - Seema Nara
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, UP, India
| |
Collapse
|
9
|
Donoso-González O, Lodeiro L, Aliaga ÁE, Laguna-Bercero MA, Bollo S, Kogan MJ, Yutronic N, Sierpe R. Functionalization of Gold Nanostars with Cationic β-Cyclodextrin-Based Polymer for Drug Co-Loading and SERS Monitoring. Pharmaceutics 2021; 13:pharmaceutics13020261. [PMID: 33671975 PMCID: PMC7919026 DOI: 10.3390/pharmaceutics13020261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Gold nanostars (AuNSs) exhibit modulated plasmon resonance and have a high SERS enhancement factor. However, their low colloidal stability limits their biomedical application as a nanomaterial. Cationic β-cyclodextrin-based polymer (CCD/P) has low cytotoxicity, can load and transport drugs more efficiently than the corresponding monomeric form, and has an appropriate cationic group to stabilize gold nanoparticles. In this work, we functionalized AuNSs with CCD/P to load phenylethylamine (PhEA) and piperine (PIP) and evaluated SERS-based applications of the products. PhEA and PIP were included in the polymer and used to functionalize AuNSs, forming a new AuNS-CCD/P-PhEA-PIP nanosystem. The system was characterized by UV–VIS, IR, and NMR spectroscopy, TGA, SPR, DLS, zeta potential analysis, FE-SEM, and TEM. Additionally, Raman optical activity, SERS analysis and complementary theoretical studies were used for characterization. Minor adjustments increased the colloidal stability of AuNSs. The loading capacity of the CCD/P with PhEA-PIP was 95 ± 7%. The physicochemical parameters of the AuNS-CCD/P-PhEA-PIP system, such as size and Z potential, are suitable for potential biomedical applications Raman and SERS studies were used to monitor PhEA and PIP loading and their preferential orientation upon interaction with the surface of AuNSs. This unique nanomaterial could be used for simultaneous drug loading and SERS-based detection.
Collapse
Affiliation(s)
- Orlando Donoso-González
- Laboratorio de Nanoquímica y Química Supramolecular, Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile;
- Laboratorio de Nanobiotecnología y Nanotoxicología, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380000, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago 8380000, Chile;
| | - Lucas Lodeiro
- Laboratorio de Química teórica, Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile;
| | - Álvaro E. Aliaga
- Laboratorio de Espectroscopía Vibracional, Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile;
| | - Miguel A. Laguna-Bercero
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
| | - Soledad Bollo
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago 8380000, Chile;
- Laboratorio de Biosensores, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380000, Chile
| | - Marcelo J. Kogan
- Laboratorio de Nanobiotecnología y Nanotoxicología, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380000, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago 8380000, Chile;
| | - Nicolás Yutronic
- Laboratorio de Nanoquímica y Química Supramolecular, Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile;
- Correspondence: (N.Y.); (R.S.)
| | - Rodrigo Sierpe
- Laboratorio de Nanoquímica y Química Supramolecular, Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile;
- Laboratorio de Nanobiotecnología y Nanotoxicología, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380000, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago 8380000, Chile;
- Laboratorio de Biosensores, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380000, Chile
- Correspondence: (N.Y.); (R.S.)
| |
Collapse
|
10
|
Bastiancich C, Da Silva A, Estève MA. Photothermal Therapy for the Treatment of Glioblastoma: Potential and Preclinical Challenges. Front Oncol 2021; 10:610356. [PMID: 33520720 PMCID: PMC7845694 DOI: 10.3389/fonc.2020.610356] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/01/2020] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is a very aggressive primary malignant brain tumor and finding effective therapies is a pharmaceutical challenge and an unmet medical need. Photothermal therapy may be a promising strategy for the treatment of GBM, as it allows the destruction of the tumor using heat as a non-chemical treatment for disease bypassing the GBM heterogeneity limitations, conventional drug resistance mechanisms and side effects on peripheral healthy tissues. However, its development is hampered by the distinctive features of this tumor. Photoabsorbing agents such as nanoparticles need to reach the tumor site at therapeutic concentrations, crossing the blood-brain barrier upon systemic administration. Subsequently, a near infrared light irradiating the head must cross multiple barriers to reach the tumor site without causing any local damage. Its power intensity needs to be within the safety limit and its penetration depth should be sufficient to induce deep and localized hyperthermia and achieve tumor destruction. To properly monitor the therapy, imaging techniques that can accurately measure the increase in temperature within the brain must be used. In this review, we report and discuss recent advances in nanoparticle-mediated plasmonic photothermal therapy for GBM treatment and discuss the preclinical challenges commonly faced by researchers to develop and test such systems.
Collapse
Affiliation(s)
- Chiara Bastiancich
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Anabela Da Silva
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Marie-Anne Estève
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France.,APHM, Hôpital de la Timone, Service Pharmacie, Marseille, France
| |
Collapse
|
11
|
Gadhave D, Rasal N, Sonawane R, Sekar M, Kokare C. Nose-to-brain delivery of teriflunomide-loaded lipid-based carbopol-gellan gum nanogel for glioma: Pharmacological and in vitro cytotoxicity studies. Int J Biol Macromol 2020; 167:906-920. [PMID: 33186648 DOI: 10.1016/j.ijbiomac.2020.11.047] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/26/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022]
Abstract
The research work was intended to formulate teriflunomide (TFM) loaded nano lipid-based (TNLC) carbopol-gellan gum in situ gel (TNLCGHG) and to investigate its therapeutic efficacy against glioma, a brain and spine tumor. Nanoformulation was developed using gellan gum and carbopol 974P as gelling and mucoadhesive agents, respectively, Glyceryl di-behenate and Glyceryl mono-linoleate blend as lipids, and Gelucire 44/14: water blend as surfactant system. Globule size, PDI, zeta potential, encapsulation efficiency, mucoadhesive strength, and nasal permeation were found to be 117.80 nm, 0.56, -21.86 mV, 81.16%, 4.80 g, and 904 μg/cm2, respectively. Anticancer efficacy of TFM-loaded nano lipid-based carbopol-gellan gum in situ gel (TNLCGHG) was determined in human U-87MG glioma cell line. IC50 was found 7.0 μg/mL for TNLCGHG, 4.8 μg/mL for pure TFM, and 78.5 μg/mL for TNLC, which approve the superiority of surfactant along with gellan gum as permeation enhancer. Brain Cmax for technetium (99mTC) labeled intranasal (i.n.) 99mTC-TNLCGHG was found 2-folds higher than 99mTC-TNLC (i.n.) and 99mTC-TNLC intravenous (i.v.) because the TNLCGHG formulation contains surfactant with natural gelling polymers, which promisingly improved drug permeability. Finally, this research revealed encouraging outcomes and successfully developed intranasal TNLCGHG nanoformulation as a novel tool for safe delivery of TFM in glioma patients.
Collapse
Affiliation(s)
- Dnyandev Gadhave
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (affiliated to Savitribai Phule Pune University), Narhe, Pune 411 041, India.
| | - Nishant Rasal
- Department of Chemistry, Baburaoji Gholap College (affiliated to Savitribai Phule Pune University), Sangvi, Pune 411027, Maharashtra, India
| | - Rahul Sonawane
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (affiliated to Savitribai Phule Pune University), Narhe, Pune 411 041, India
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh-30450, Perak, Malaysia
| | - Chandrakant Kokare
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (affiliated to Savitribai Phule Pune University), Narhe, Pune 411 041, India
| |
Collapse
|
12
|
Wan Z, Gu J, Wang Y, Qian J, Zhu J, Chen F, Wang H, Chen H, Luo C. Facile Interfacial Synthesis of Densely Spiky Gold Nano-Chestnuts With Full Spectral Absorption for Photothermal Therapy. Front Bioeng Biotechnol 2020; 8:599040. [PMID: 33195172 PMCID: PMC7649415 DOI: 10.3389/fbioe.2020.599040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/05/2020] [Indexed: 11/18/2022] Open
Abstract
The gold nanostructure is regarded as the most promising photothermal agent due to its strong localized surface plasma resonance (LSPR) effect. In particular, the gold nanostructures with sharp spikes on the surface have higher optical signal enhancement, owing to the sharp tips drastically enhancing the intense nanoantenna effect. However, current approaches for the synthesis of spiky gold nanostructures are either costly, complicated, or uncontrollable. Herein, we report a novel strategy to synthesize gold nano-chestnuts (SGNCs) with sharp spikes as an excellent photothermal agent. The SGNCs were prepared by a facile one-pot interfacial synthetic method, and their controllable preparation mechanism was acquired. The SGNCs exhibited ideal full-spectrum absorption and showed excellent photothermal effect. They have a photothermal conversion efficiency (η) as high as 52.9%, which is much higher than traditional photothermal agents. The in vitro and in vivo results show that the SGNCs could efficiently ablate the tumor cells. Thus, the SGNCs have great potential in photothermal therapy applied in malignant tumors.
Collapse
Affiliation(s)
- Zhiping Wan
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinmao Gu
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yining Wang
- Center of Reproductive Medicine, Shanghai Changzheng Hospital, Shanghai, China
| | - Jun Qian
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junle Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Chen
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haoheng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huairui Chen
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chun Luo
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Perevedentseva E, Ali N, Lin YC, Karmenyan A, Chang CC, Bibikova O, Skovorodkin I, Prunskaite-Hyyryläinen R, Vainio SJ, Kinnunen M, Cheng CL. Au nanostar nanoparticle as a bio-imaging agent and its detection and visualization in biosystems. BIOMEDICAL OPTICS EXPRESS 2020; 11:5872-5885. [PMID: 33149993 PMCID: PMC7587281 DOI: 10.1364/boe.401462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/12/2020] [Accepted: 09/08/2020] [Indexed: 05/09/2023]
Abstract
In the present work, we report the imaging of Au nanostars nanoparticles (AuNSt) and their multifunctional applications in biomedical research and theranostics applications. Their optical and spectroscopic properties are considered for the multimodal imaging purpose. The AuNSt are prepared by the seed-meditated method and characterized for use as an agent for bio-imaging. To demonstrate imaging with AuNSt, penetration and localization in different biological models such as cancer cell culture (A549 lung carcinoma cell), 3D tissue model (multicellular tumor spheroid on the base of human oral squamous carcinoma cell, SAS) and murine skin tissue are studied. AuNSt were visualized using fluorescence lifetime imaging (FLIM) at two-photon excitation with a pulse duration 140 fs, repetition rate 80 MHz and 780 nm wavelength femtosecond laser. Strong emission of AuNSt at two-photon excitation in the near infrared range and fluorescence lifetime less than 0.5 ns were observed. It allows using AuNSt as a fluorescent marker at two-photon fluorescence microscopy and lifetime imaging (FLIM). It was shown that AuNSt can be observed inside a thick sample (tissue and its model). This is the first demonstration using AuNSt as an imaging agent for FLIM at two-photon excitation in biosystems. Increased scattering of near-infrared light upon excitation of AuNSt surface plasmon oscillation was also observed and rendered using a possible contrast agent for optical coherence tomography (OCT). AuNSt detection in a biological system using FLIM is compared with OCT on the model of AuNSt penetrating into animal skin. The AuNSt application for multimodal imaging is discussed.
Collapse
Affiliation(s)
- E Perevedentseva
- Department of Physics, National Dong Hwa University, Hualien, 97401, Taiwan
- P. N. Lebedev Physics Institute of Russian Academy of Sciences, Moscow, 119991, Russia
| | - N Ali
- Biocenter Oulu, Infotech Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Borealis Biobank of Northern Finland, Oulu University Hospital, P.O. Box 8000 FI-90014 Oulu, Finland
| | - Y-C Lin
- Department of Physics, National Dong Hwa University, Hualien, 97401, Taiwan
| | - A Karmenyan
- Department of Physics, National Dong Hwa University, Hualien, 97401, Taiwan
| | - C-C Chang
- Department of Physics, National Dong Hwa University, Hualien, 97401, Taiwan
| | - O Bibikova
- Biocenter Oulu, Infotech Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Borealis Biobank of Northern Finland, Oulu University Hospital, P.O. Box 8000 FI-90014 Oulu, Finland
- Faculty of Information Technology and Electrical Engineering, University of Oulu, P.O. Box 8000 FI-90014 Oulu, Finland
| | - I Skovorodkin
- Biocenter Oulu, Infotech Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Borealis Biobank of Northern Finland, Oulu University Hospital, P.O. Box 8000 FI-90014 Oulu, Finland
| | - R Prunskaite-Hyyryläinen
- Biocenter Oulu, Infotech Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Borealis Biobank of Northern Finland, Oulu University Hospital, P.O. Box 8000 FI-90014 Oulu, Finland
| | - S J Vainio
- Biocenter Oulu, Infotech Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Borealis Biobank of Northern Finland, Oulu University Hospital, P.O. Box 8000 FI-90014 Oulu, Finland
| | - M Kinnunen
- Faculty of Information Technology and Electrical Engineering, University of Oulu, P.O. Box 8000 FI-90014 Oulu, Finland
| | - C-L Cheng
- Department of Physics, National Dong Hwa University, Hualien, 97401, Taiwan
| |
Collapse
|
14
|
Wang H, Ouyang W, Zhang X, Xue J, Lou X, Fan R, Zhao X, Shan L, Jiang T. Bacteria-induced aggregation of bioorthogonal gold nanoparticles for SERS imaging and enhanced photothermal ablation of Gram-positive bacteria. J Mater Chem B 2020; 7:4630-4637. [PMID: 31364668 DOI: 10.1039/c9tb00845d] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The challenge in antimicrobial photothermal therapy (PTT) is to develop strategies for decreasing the damage to cells and increasing the antibacterial efficiency. Herein, we report a novel theranostic strategy based on bacteria-induced gold nanoparticle (GNP) aggregation, in which GNPs in situ aggregated on the bacterial surface via specific targeting of vancomycin and bioorthogonal cycloaddition. Plasmonic coupling between adjacent GNPs exhibited a strong "hot spot" effect, enabling effective surface enhanced Raman scattering (SERS) imaging of bacterial pathogens. More importantly, in situ aggregation of GNPs showed strong NIR adsorption and high photothermal conversion, allowing enhanced photokilling activity against Gram-positive bacteria. In the absence of bacterial strains, GNPs were dispersed and showed a very low photothermal effect, minimizing the side effects towards surrounding healthy tissues. Given the above advantages, the bioorthogonal theranostic strategy developed in this study may find potential applications in treating bacterial infection and even multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Huijie Wang
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Wenwen Ouyang
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Xuerui Zhang
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Jing Xue
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Xiaoran Lou
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Ranran Fan
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Xiaonai Zhao
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Lianqi Shan
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Tingting Jiang
- School of Life Sciences, Ludong University, Yantai 264025, China.
| |
Collapse
|
15
|
Wang Y, Du W, Zhang T, Zhu Y, Ni Y, Wang C, Sierra Raya FM, Zou L, Wang L, Liang G. A Self-Evaluating Photothermal Therapeutic Nanoparticle. ACS NANO 2020; 14:9585-9593. [PMID: 32806081 DOI: 10.1021/acsnano.9b10144] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Today, tumor therapy and its therapeutic efficiency evaluation are conducted separately, and current imaging techniques cannot evaluate tumor-therapeutic effects in real time. Therefore, it is of great importance to develop highly efficient theranostic strategies which are able to evaluate their tumor-therapeutic effects in real time. In this work, by rational design of a small molecular near-infrared probe Cys(StBu)-Asp-Glu-Val-Asp-Lys(Cypate)-CBT (Cy-CBT) and using a CBT-Cys click condensation reaction, we facilely prepare an intelligent nanoparticle Cy-CBT-NP which is able to evaluate its photothermal therapy (PTT) efficiency on tumors by fluorescence "Turn-On". Fluorescence of Cy-CBT-NP is quenched and photothermal responsive. Upon caspase 3 (Casp3) cleavage of its DEVD substrates, Cy-CBT-NP disassembles to turn the fluorescence "On", which in turn evaluates the PTT efficiency of the nanoparticle on cells and tumors in real time. We envision that our smart strategy could be applied for PTT and real-time evaluation of the therapeutic efficiency of solid tumors in the near future.
Collapse
Affiliation(s)
- Yanfang Wang
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Wei Du
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Tong Zhang
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yu Zhu
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yanhan Ni
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Chenchen Wang
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Fatima Maria Sierra Raya
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Liwei Zou
- Department of Radiology, the Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui 230601, China
| | - Longsheng Wang
- Department of Radiology, the Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui 230601, China
| | - Gaolin Liang
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu 210096, China
| |
Collapse
|
16
|
Zou Z, Sun J, Li Q, Pu Y, Liu J, Sun R, Wang L, Jiang T. Vancomycin modified copper sulfide nanoparticles for photokilling of vancomycin-resistant enterococci bacteria. Colloids Surf B Biointerfaces 2020; 189:110875. [PMID: 32087532 DOI: 10.1016/j.colsurfb.2020.110875] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/13/2020] [Accepted: 02/12/2020] [Indexed: 10/25/2022]
Abstract
Due to the overuse of antibiotics, vancomycin resistant enterococci (VRE) has caused serious infections and become more and more difficult to deal with. Herein, we reported a facile one-pot strategy to synthesize copper sulfide nanoparticles using vancomycin (Van) as reductant and capping agent (CuS@Van). The as-prepared CuS@Van nanocomposites presented excellent uniformity in particle size and strong near infrared (NIR) absorbance. Fourier Transform infrared spectroscopy (FTIR) and Energy dispersive spectrometry (EDS) analysis confirmed the successful modification of Van molecules on the surface of CuS@Van nanoparticles. Bacterial TEM images verified the specific binding affinity between CuS@Van and VRE pathogen. CuS@Van also exhibited effective photokilling capability based on a combination of photothermal therapy (PTT) and photodynamic therapy (PDT). Fluorescent bacterial viability staining and bacterial growth curves monitoring were performed to explore the photokilling ablation of CuS@Van against VRE pathogens. The in vitro results indicated that CuS@Van nanocomposites had no antibacterial activity in the dark but displayed satisfying bactericidal effect against VRE pathogens upon the NIR irradiation. Mouse infection assays were also implemented to evaluate in vivo antibacterial photokilling effectiveness. CuS@Van with NIR irradiation showed the highest antibacterial capability and fastest infection regression compared with the control groups. Considering the low cost, easy preparation, good biocompatibility and excellent photokilling capability, CuS@Van nanocomposites will shed bright light on the photokilling ablation of vancomycin-resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Zhonghao Zou
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Jie Sun
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Qing Li
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Yang Pu
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Jiaqi Liu
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Ruiqi Sun
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Luyao Wang
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Tingting Jiang
- School of Life Sciences, Ludong University, Yantai 264025, China.
| |
Collapse
|
17
|
Šamec N, Zottel A, Videtič Paska A, Jovčevska I. Nanomedicine and Immunotherapy: A Step Further towards Precision Medicine for Glioblastoma. Molecules 2020; 25:E490. [PMID: 31979318 PMCID: PMC7038132 DOI: 10.3390/molecules25030490] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Owing to the advancement of technology combined with our deeper knowledge of human nature and diseases, we are able to move towards precision medicine, where patients are treated at the individual level in concordance with their genetic profiles. Lately, the integration of nanoparticles in biotechnology and their applications in medicine has allowed us to diagnose and treat disease better and more precisely. As a model disease, we used a grade IV malignant brain tumor (glioblastoma). Significant improvements in diagnosis were achieved with the application of fluorescent nanoparticles for intraoperative magnetic resonance imaging (MRI), allowing for improved tumor cell visibility and increasing the extent of the surgical resection, leading to better patient response. Fluorescent probes can be engineered to be activated through different molecular pathways, which will open the path to individualized glioblastoma diagnosis, monitoring, and treatment. Nanoparticles are also extensively studied as nanovehicles for targeted delivery and more controlled medication release, and some nanomedicines are already in early phases of clinical trials. Moreover, sampling biological fluids will give new insights into glioblastoma pathogenesis due to the presence of extracellular vesicles, circulating tumor cells, and circulating tumor DNA. As current glioblastoma therapy does not provide good quality of life for patients, other approaches such as immunotherapy are explored. To conclude, we reason that development of personalized therapies based on a patient's genetic signature combined with pharmacogenomics and immunogenomic information will significantly change the outcome of glioblastoma patients.
Collapse
Affiliation(s)
| | | | - Alja Videtič Paska
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.Š.); (A.Z.)
| | - Ivana Jovčevska
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.Š.); (A.Z.)
| |
Collapse
|
18
|
Alphandéry E. Nano-Therapies for Glioblastoma Treatment. Cancers (Basel) 2020; 12:E242. [PMID: 31963825 PMCID: PMC7017259 DOI: 10.3390/cancers12010242] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/14/2019] [Accepted: 12/29/2019] [Indexed: 12/21/2022] Open
Abstract
Traditional anti-cancer treatments are inefficient against glioblastoma, which remains one of the deadliest and most aggressive cancers. Nano-drugs could help to improve this situation by enabling: (i) an increase of anti-glioblastoma multiforme (GBM) activity of chemo/gene therapeutic drugs, notably by an improved diffusion of these drugs through the blood brain barrier (BBB), (ii) the sensibilization of radio-resistant GBM tumor cells to radiotherapy, (iii) the removal by surgery of infiltrating GBM tumor cells, (iv) the restoration of an apoptotic mechanism of GBM cellular death, (v) the destruction of angiogenic blood vessels, (vi) the stimulation of anti-tumor immune cells, e.g., T cells, NK cells, and the neutralization of pro-tumoral immune cells, e.g., Treg cells, (vii) the local production of heat or radical oxygen species (ROS), and (viii) the controlled release/activation of anti-GBM drugs following the application of a stimulus. This review covers these different aspects.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, IRD Place Jussieu, 75005 Paris, France; ; Tel.: +33-632-697-020
- Nanobacterie SARL, 36 boulevard Flandrin, 75116 Paris, France
- Institute of Anatomy, UZH University of Zurich, Institute of Anatomy, Winterthurerstr. 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
19
|
Qin Y, Qin ZD, Chen J, Cai CG, Li L, Feng LY, Wang Z, Duns GJ, He NY, Chen ZS, Luo XF. From Antimicrobial to Anticancer Peptides: The Transformation of Peptides. Recent Pat Anticancer Drug Discov 2019; 14:70-84. [PMID: 30663573 DOI: 10.2174/1574892814666190119165157] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/05/2018] [Accepted: 01/10/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Antimicrobial peptides play an important role in the innate immune system. Possessing broad-spectrum antibacterial activity, antimicrobial peptides can quickly treat and kill various targets, including gram-negative bacteria, gram-positive bacteria, fungi, and tumor cells. OBJECTIVE An overview of the state of play with regard to the research trend of antimicrobial peptides in recent years and the situation of targeting tumor cells, and to make statistical analysis of the patents related to anticancer peptides published in recent years, is important both from toxicological and medical tumor therapy point of view. METHODS Based on the Science Citation Index Expanded version, the Derwent Innovation Index and Innography as data sources, the relevant literature and patents concerning antimicrobial peptides and anticancer peptides were analyzed through the Thomson Data Analyzer. Results of toxicologic and pharmacologic studies that brought to the development of patents for methods to novel tumor drugs were analyzed and sub-divided according to the specific synthesis of anticancer peptides. RESULTS The literature and patent search data show that the research and development of global antimicrobial peptides and anticancer peptides has been in an incremental mode. Growing patent evidence indicate that bioinformatics technology is a valuable strategy to modify, synthesize or recombine existing antimicrobial peptides to obtain tumor drugs with high activity, low toxicity and multiple targets. CONCLUSION These findings may have important clinical implications for cancer treatment, especially in patients with conditions that are not currently treatable by other drugs, or that are resistant to existing cancer drugs.
Collapse
Affiliation(s)
- Yuan Qin
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan Province 425000, China.,Hunan Key Laboratory of Green Chemistry and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, 412007, China
| | - Zuo D Qin
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan Province 425000, China
| | - Jing Chen
- College of Business Administration, Hunan University, Changsha, 410082, China
| | - Che G Cai
- Medical Research Institute, Wuhan University, Wuhan, Hubei 430071, China
| | - Ling Li
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan Province 425000, China
| | - Lu Y Feng
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan Province 425000, China
| | - Zheng Wang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan Province 425000, China
| | - Gregory J Duns
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan Province 425000, China
| | - Nong Y He
- Hunan Key Laboratory of Green Chemistry and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, 412007, China
| | - Zhe S Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States
| | - Xiao F Luo
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan Province 425000, China
| |
Collapse
|
20
|
Roma-Rodrigues C, Pombo I, Raposo L, Pedrosa P, Fernandes AR, Baptista PV. Nanotheranostics Targeting the Tumor Microenvironment. Front Bioeng Biotechnol 2019; 7:197. [PMID: 31475143 PMCID: PMC6703081 DOI: 10.3389/fbioe.2019.00197] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer is considered the most aggressive malignancy to humans, and definitely the major cause of death worldwide. Despite the different and heterogenous presentation of the disease, there are pivotal cell elements involved in proliferation, differentiation, and immortalization, and ultimately the capability to evade treatment strategies. This is of utmost relevance when we are just beginning to grasp the complexity of the tumor environment and the molecular "evolution" within. The tumor micro-environment (TME) is thought to provide for differentiation niches for clonal development that results in tremendous cancer heterogeneity. To date, conventional cancer therapeutic strategies against cancer are failing to tackle the intricate interplay of actors within the TME. Nanomedicine has been proposing innovative strategies to tackle this TME and the cancer cells that simultaneously provide for biodistribution and/or assessment of action. These nanotheranostics systems are usually multi-functional nanosystems capable to carry and deliver active cargo to the site of interest and provide diagnostics capability, enabling early detection, and destruction of cancer cells in a more selective way. Some of the most promising multifunctional nanosystems are based on gold nanoparticles, whose physic-chemical properties have prompt for the development of multifunctional, responsive nanomedicines suitable for combinatory therapy and theranostics. Herein, we shall focus on the recent developments relying on the properties of gold nanoparticles as the basis for nanotheranostics systems against the heterogeneity within the TME.
Collapse
Affiliation(s)
| | | | | | | | | | - Pedro V. Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Costa da Caparica, Portugal
| |
Collapse
|
21
|
Zanganeh S, Georgala P, Corbo C, Arabi L, Ho JQ, Javdani N, Sepand MR, Cruickshank K, Campesato LF, Weng C, Hemayat S, Andreou C, Alvim R, Hutter G, Rafat M, Mahmoudi M. Immunoengineering in glioblastoma imaging and therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1575. [DOI: 10.1002/wnan.1575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Steven Zanganeh
- Sloan Kettering Institute for Cancer Research New York New York
| | | | - Claudia Corbo
- School of Medicine and Surgery, Nanomedicine Center NANOMIB University of Milano‐Bicocca Milan Italy
| | - Leila Arabi
- Department of Pharmaceutical Nanotechnology School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| | - Jim Q. Ho
- Albert Einstein College of Medicine Bronx New York
| | - Najme Javdani
- Institute De Recherche Clinique De Montreal Montreal Quebec Canada
| | | | | | | | - Chien‐Huan Weng
- Sloan Kettering Institute for Cancer Research New York New York
| | | | - Chrysafis Andreou
- Department of Electrical and Computer Engineering University of Cyprus Nicosia Cyprus
| | - Ricardo Alvim
- Sloan Kettering Institute for Cancer Research New York New York
| | - Gregor Hutter
- School of Medicine and Surgery, Nanomedicine Center NANOMIB University of Milano‐Bicocca Milan Italy
| | - Marjan Rafat
- Department of Chemical and Biomolecular Engineering Vanderbilt University Nashville Tennessee
- Department of Biomedical Engineering Vanderbilt University Nashville Tennessee
- Department of Radiation Oncology Vanderbilt University Medical Center Nashville Tennessee
| | - Morteza Mahmoudi
- Precision Health Program Michigan State University East Lansing Michigan
| |
Collapse
|
22
|
Joseph D, Baskaran R, Yang SG, Huh YS, Han YK. Multifunctional spiky branched gold-silver nanostars with near-infrared and short-wavelength infrared localized surface plasmon resonances. J Colloid Interface Sci 2019; 542:308-316. [DOI: 10.1016/j.jcis.2019.01.132] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/26/2022]
|
23
|
Kohout C, Santi C, Polito L. Anisotropic Gold Nanoparticles in Biomedical Applications. Int J Mol Sci 2018; 19:E3385. [PMID: 30380664 PMCID: PMC6274885 DOI: 10.3390/ijms19113385] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023] Open
Abstract
Gold nanoparticles (AuNPs) play a crucial role in the development of nanomedicine, principally due to their unique photophysical properties and high biocompatibility. The possibility to tune and customize the localized surface plasmon resonance (LSPR) toward near-infrared region by modulating the AuNP shape is one of the reasons for the huge widespread use of AuNPs. The controlled synthesis of no-symmetrical nanoparticles, named anisotropic, is an exciting goal achieved by the scientific community which explains the exponential increase of the number of publications related to the synthesis and use of such type of AuNPs. Even with such steps forward and the AuNP translation in clinic being done, some key issues are still remain and they are related to a reliable and scalable production, a full characterization, and to the development of nanotoxicology studies on the long run. In this review we highlight the very recent advances on the synthesis of the main classes of anisotropic AuNPs (nanorods, nanourchins and nanocages) and their use in the biomedical fields, in terms of diagnosis and therapeutics.
Collapse
Affiliation(s)
- Claudia Kohout
- Department of Chemistry, University of Milan, via C. Golgi 19, 20131 Milan, Italy.
| | - Cristina Santi
- Department of Chemistry, University of Milan, via C. Golgi 19, 20131 Milan, Italy.
| | - Laura Polito
- ISTM-CNR, Nanotechnology Lab., via G. Fantoli 16/15, 20138 Milan, Italy.
| |
Collapse
|