1
|
Mariyappan K, Tandon A, Park S, Kokkiligadda S, Lee J, Jo S, Komarala EP, Yoo S, Chopade P, Choi HJ, Lee CW, Jeon S, Jeong JH, Park SH. Nanomaterial-Embedded DNA Films on 2D Frames. ACS APPLIED BIO MATERIALS 2022; 5:2812-2818. [PMID: 35543024 DOI: 10.1021/acsabm.2c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, 3D printing has provided opportunities for designing complex structures with ease. These printed structures can serve as molds for complex materials such as DNA and cetyltrimethylammonium chloride (CTMA)-modified DNA that have easily tunable functionalities via the embedding of various nanomaterials such as ions, nanoparticles, fluorophores, and proteins. Herein, we develop a simple and efficient method for constructing DNA flat and curved films containing water-soluble/thermochromatic dyes and di/trivalent ions and CTMA-modified DNA films embedded with organic light-emitting molecules (OLEM) with the aid of 2D/3D frames made by a 3D printer. We study the Raman spectra, current, and resistance of Cu2+-doped and Tb3+-doped DNA films and the photoluminescence of OLEM-embedded CTMA-modified DNA films to better understand the optoelectric characteristics of the samples. Compared to pristine DNA, ion-doped DNA films show noticeable variation of Raman peak intensities, which might be due to the interaction between the ion and phosphate backbone of DNA and the intercalation of ions in DNA base pairs. As expected, ion-doped DNA films show an increase of current with an increase in bias voltage. Because of the presence of metallic ions, DNA films with embedded ions showed relatively larger current than pristine DNA. The photoluminescent emission peaks of CTMA-modified DNA films with OLEMRed, OLEMGreen, and OLEMBlue were obtained at the wavelengths of 610, 515, and 469 nm, respectively. Finally, CIE color coordinates produced from CTMA-modified DNA films with different OLEM color types were plotted in color space. It may be feasible to produce multilayered DNA films as well. If so, multilayered DNA films embedded with different color dyes, ions, fluorescent materials, nanoparticles, proteins, and drug molecules could be used to realize multifunctional physical devices such as energy harvesting and chemo-bio sensors in the near future.
Collapse
Affiliation(s)
- Karthikeyan Mariyappan
- Department of Physics, Institute of Basic Science, and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Anshula Tandon
- Department of Physics, Institute of Basic Science, and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Suyoun Park
- Department of Physics, Institute of Basic Science, and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Samanth Kokkiligadda
- Department of Physics, Institute of Basic Science, and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Jayeon Lee
- Department of Physics, Institute of Basic Science, and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Soojin Jo
- Department of Physics, Institute of Basic Science, and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Eswaravara Prasadarao Komarala
- Department of Physics, Institute of Basic Science, and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Sanghyun Yoo
- Department of Physics, Institute of Basic Science, and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Prathamesh Chopade
- Department of Physics, Institute of Basic Science, and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Hee Jin Choi
- Institute of Advanced Optics and Photonics, Department of Applied Optics, Hanbat National University, Daejeon 34158, Korea
| | - Chang-Won Lee
- Institute of Advanced Optics and Photonics, Department of Applied Optics, Hanbat National University, Daejeon 34158, Korea
| | - Sohee Jeon
- Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Korea
| | - Jun-Ho Jeong
- Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Korea.,Department of Nanomechatronics, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Sung Ha Park
- Department of Physics, Institute of Basic Science, and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
3
|
Zheng B, Fan J, Chen B, Qin X, Wang J, Wang F, Deng R, Liu X. Rare-Earth Doping in Nanostructured Inorganic Materials. Chem Rev 2022; 122:5519-5603. [PMID: 34989556 DOI: 10.1021/acs.chemrev.1c00644] [Citation(s) in RCA: 210] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Impurity doping is a promising method to impart new properties to various materials. Due to their unique optical, magnetic, and electrical properties, rare-earth ions have been extensively explored as active dopants in inorganic crystal lattices since the 18th century. Rare-earth doping can alter the crystallographic phase, morphology, and size, leading to tunable optical responses of doped nanomaterials. Moreover, rare-earth doping can control the ultimate electronic and catalytic performance of doped nanomaterials in a tunable and scalable manner, enabling significant improvements in energy harvesting and conversion. A better understanding of the critical role of rare-earth doping is a prerequisite for the development of an extensive repertoire of functional nanomaterials for practical applications. In this review, we highlight recent advances in rare-earth doping in inorganic nanomaterials and the associated applications in many fields. This review covers the key criteria for rare-earth doping, including basic electronic structures, lattice environments, and doping strategies, as well as fundamental design principles that enhance the electrical, optical, catalytic, and magnetic properties of the material. We also discuss future research directions and challenges in controlling rare-earth doping for new applications.
Collapse
Affiliation(s)
- Bingzhu Zheng
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jingyue Fan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Xian Qin
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Juan Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Renren Deng
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
5
|
Ahn SY, Liu J, Vellampatti S, Wu Y, Um SH. DNA Transformations for Diagnosis and Therapy. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2008279. [PMID: 33613148 PMCID: PMC7883235 DOI: 10.1002/adfm.202008279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/22/2020] [Indexed: 05/03/2023]
Abstract
Due to its unique physical and chemical characteristics, DNA, which is known only as genetic information, has been identified and utilized as a new material at an astonishing rate. The role of DNA has increased dramatically with the advent of various DNA derivatives such as DNA-RNA, DNA-metal hybrids, and PNA, which can be organized into 2D or 3D structures by exploiting their complementary recognition. Due to its intrinsic biocompatibility, self-assembly, tunable immunogenicity, structural programmability, long stability, and electron-rich nature, DNA has generated major interest in electronic and catalytic applications. Based on its advantages, DNA and its derivatives are utilized in several fields where the traditional methodologies are ineffective. Here, the present challenges and opportunities of DNA transformations are demonstrated, especially in biomedical applications that include diagnosis and therapy. Natural DNAs previously utilized and transformed into patterns are not found in nature due to lack of multiplexing, resulting in low sensitivity and high error frequency in multi-targeted therapeutics. More recently, new platforms have advanced the diagnostic ability and therapeutic efficacy of DNA in biomedicine. There is confidence that DNA will play a strong role in next-generation clinical technology and can be used in multifaceted applications.
Collapse
Affiliation(s)
- So Yeon Ahn
- School of Chemical EngineeringSungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Korea
| | - Jin Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaSchool of Chemistry and Chemical Engineering Huazhong University of Science and Technology1037 Luoyu LoadWuhan430074China
| | - Srivithya Vellampatti
- Institute of Convergent Chemical Engineering and TechnologySungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Korea
- Present address:
Progeneer, Inc.#1002, 12, Digital‐ro 31‐gil, Guro‐guSeoul08380Korea
| | - Yuzhou Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaSchool of Chemistry and Chemical Engineering Huazhong University of Science and Technology1037 Luoyu LoadWuhan430074China
| | - Soong Ho Um
- School of Chemical EngineeringSKKU Advanced Institute of Nanotechnology (SAINT)Biomedical Institute for Convergence at SKKU (BICS) and Institute of Quantum Biophysics (IQB)Sungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Korea
- Progeneer Inc.#1002, 12, Digital‐ro 31‐gil, Guro‐guSeoul08380Korea
| |
Collapse
|