1
|
Bergillos-Ruiz M, Kumar A, Hodnett BK, Davern P, Rasmuson Å, Hudson SP. Impact of carrier particle surface properties on drug nanoparticle attachment. Int J Pharm 2024; 651:123743. [PMID: 38151103 DOI: 10.1016/j.ijpharm.2023.123743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/08/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
HYPOTHESIS The stabilization and isolation to dryness of drug nanoparticles has always been a challenge for nano-medicine production. In the past, the use of montmorillonite (MMT) clay carrier particles to adsorb drug nanoparticles and maintain their high surface area to volume ratio after isolation to dryness has proven to be effective. We hypothesise that the distribution of hydrophilic and hydrophobic patches on the clay's surface as well as its porosity/roughness, hinder the agglomeration of the drug nanoparticles to the extent that they retain their high surface area to volume ratio and display fast dissolution profiles. EXPERIMENTS In this work, the distribution of hydrophobicity and hydrophilicity, and the porosity/roughness, of the surface of selected silica carrier particles were varied and the impact of these variations on drug nanoparticle attachment to the carrier particle and subsequent dissolution profiles was studied. FINDINGS The fastest dissolution profiles at the highest drug nanoparticle loadings were obtained with a periodic mesoporous organosilane carrier particle which had a homogeneous distribution of hydrophobic and hydrophilic surface properties. Carrier particles with rough/porous surfaces and a combination of hydrophobic and hydrophilic patches resulted in nanocomposite powders with faster dissolution behaviour than carrier particles with predominantly either a hydrophobic or hydrophilic surface, or with non-porous/smoother surfaces.
Collapse
Affiliation(s)
- Marta Bergillos-Ruiz
- SSPC the Science Foundation Ireland Research Centre for Pharmaceuticals, Department of Chemical Sciences, and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
| | - Ajay Kumar
- SSPC the Science Foundation Ireland Research Centre for Pharmaceuticals, Department of Chemical Sciences, and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
| | - Benjamin K Hodnett
- SSPC the Science Foundation Ireland Research Centre for Pharmaceuticals, Department of Chemical Sciences, and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Peter Davern
- SSPC the Science Foundation Ireland Research Centre for Pharmaceuticals, Department of Chemical Sciences, and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
| | - Åke Rasmuson
- SSPC the Science Foundation Ireland Research Centre for Pharmaceuticals, Department of Chemical Sciences, and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland; Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Sarah P Hudson
- SSPC the Science Foundation Ireland Research Centre for Pharmaceuticals, Department of Chemical Sciences, and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
| |
Collapse
|
2
|
Haji Ali B, Shirvaliloo M, Fathi-Karkan S, Mirinejad S, Ulucan-Karnak F, Sargazi S, Sargazi S, Sheervalilou R, Rahman MM. Nanotechnology-Based Strategies for Extended-Release Delivery of Angiotensin Receptor Blockers (ARBs): A Comprehensive Review. Chem Biodivers 2023; 20:e202301157. [PMID: 37796134 DOI: 10.1002/cbdv.202301157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/06/2023]
Abstract
There has been a significant shift in the perception of hypertension as an important contributor to the global disease burden. Approximately 6 % and 8 % of pregnancies are affected by hypertension, which can adversely affect the mother and the fetus. Furthermore, a hypertensive individual is at increased risk of developing kidney disease, arterial hardening, eye damage, and strokes. Using angiotensin receptor blockers (ARBs) is widespread in treating hypertension, heart failure, coronary artery disease, and diabetic nephropathy. Despite this, some ARBs have limited use due to their poor oral bioavailability and water solubility. To tackle this, a variety of nanoparticle (NP)-based systems, such as polymeric NPs (i. e., dendrimers), polymeric micelles, polymer-drug conjugates, lipid NPs, nanoemulsions, self-emulsifying drug delivery systems (SEDDS), solid lipid NPs (SLNs), nanostructured lipid carriers (NLCs), carbon-based nanocarriers, inorganic NPs, and nanocrystals, have been recently developed for efficient delivery of losartan, Valsartan (Val), Olmesartan (OLM), Telmisartan (TEL), Candesartan, Eprosartan, Irbesartan, and Azilsartan to target cells. This review article provides a literature-based comparison of the various classes of ARBs, their mechanisms of action, and an overview of the nanoformulations developed for ARB delivery and successfully applied to managing hypertension, diabetic complications, and other conditions.
Collapse
Affiliation(s)
- Bahareh Haji Ali
- Department of Medical Physics, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 9453155166, Iran
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 9414974877, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fulden Ulucan-Karnak
- Department of Medical Biochemistry, Institute of Health Sciences, Ege University, İzmir, 35100, Turkey
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran, Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sara Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
3
|
Tang Y, Yang K, Zhao S, Chen Q, Qin L, Qin B. Evaluation of Solubility, Physicochemical Properties, and Cytotoxicity of Naproxen-Based Ionic Liquids. ACS OMEGA 2023; 8:8332-8340. [PMID: 36910967 PMCID: PMC9996794 DOI: 10.1021/acsomega.2c07044] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
To solve the problems associated with poorly water-soluble nonsteroidal anti-inflammatory drugs (NSAIDs), naproxen-based ionic liquids (ILs) containing naproxen as an active pharmaceutical ingredient (API) anion were prepared with benzalkonium (tetradecyldimethylbenzyl ammonium), choline, and 1-octyl-3-methylimidazole as the cation. The structures and thermal properties were analyzed. Through the conductivity method, the solubility at 25 and 37 °C and the critical micelle concentration (CMC) at 25 °C were determined in water and ethanol. The octanol-water partition coefficients (K ow) at 25 °C were measured with the shake-flask method. The cytotoxicity was evaluated with the MTT method. The results showed that the conversion of naproxen into the API-ILs increased the API's solubility in water by more than 850 times compared with the original API, and the thermostability was satisfactory with a lower glass transition temperature (t g). Moreover, the variation trends of solubility, hydrophilicity, and K ow were consistent with the different structures of naproxen-based ILs, except for benzalkonium naproxen. The CMC (10-5-10-6 M) in water and ethanol demonstrated that the naproxen-based ILs were surface activite ILs. The IC50 values exhibited the low cytotoxicity of the naproxen-based ILs, which was better than 100 μM. The results provide essential information and a research basis for future topical and transdermal administration and oral administration of naproxen-based ILs.
Collapse
|
4
|
Himawan A, Djide NJN, Mardikasari SA, Utami RN, Arjuna A, Donnelly RF, Permana AD. A novel in vitro approach to investigate the effect of food intake on release profile of valsartan in solid dispersion-floating gel in-situ delivery system. Eur J Pharm Sci 2021; 168:106057. [PMID: 34743031 DOI: 10.1016/j.ejps.2021.106057] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/24/2021] [Accepted: 10/31/2021] [Indexed: 12/18/2022]
Abstract
Valsartan (VAL) is a BCS class II drug with low solubility and high permeability and, thus, its formulations often encounter low bioavailability problems. Its low bioavailability can be improved through enhanced formulation, such as incorporating it into a solid dispersion system (SD). The absorption can be further enhanced through gastroretentive systems. Herein, we developed a novel combination delivery approach consisting of floating in-situ gel and SD. VAL was incorporated with polymer carrier PVP and PEG 6000 and its solubility was then evaluated. The study found that VAL-SD containing PVP K-30 as the carrier with drug:PVP K-30 ratio of 1:3 shown highest solubility in different media. Moreover, DSC and XRD evaluations exhibited the change of VAL from crystal to amorphous following SD formulation. The SD was then formulated into floating in-situ gel preparations using sodium alginate as gel forming compound and HPMC as the controlled release matrix. The prepared VAL-SD floating in-situ gels were evaluated for their physical properties and drug release profile. The results showed that all physical evaluation of the floating in-situ gel formula possessed desirable physical properties and the use of HPMC in floating in-situ gel was able to sustain the in vitro release of VAL for 24 h in biorelevant media. Importantly, the effect of food intake on VAL release was also investigated, for the first time, showing that the VAL release could be controlled in FaSSGF (Fasted-State Simulated Gastric Fluid) in 2 h and FeSSGF (Fed-State Simulated Gastric Fluid) onwards. Thus, in can be hypothesized that the food intake did not affect the VAL release after 2 h in an empty gastric environment. Leading on from these results, in vivo studies in an animal model should be carried out to further assess the potency of this system.
Collapse
Affiliation(s)
- Achmad Himawan
- Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia; School of Pharmacy, Queen's University Belfast, Northern Ireland, United Kingdom
| | | | | | | | - Andi Arjuna
- Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Northern Ireland, United Kingdom
| | | |
Collapse
|
5
|
Wu X, Zhu Q, Chen Z, Wu W, Lu Y, Qi J. Ionic liquids as a useful tool for tailoring active pharmaceutical ingredients. J Control Release 2021; 338:268-283. [PMID: 34425167 DOI: 10.1016/j.jconrel.2021.08.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023]
Abstract
Ionic liquids (ILs) have been widely used in biomedical and pharmaceutical fields as solvents or permeation enhancers. Recently, more and more researchers focused on optimizing the physicochemical properties of active pharmaceutical ingredient (API) by ILs technology. Converting APIs into ILs (API-ILs) has shown great potential for drug delivery by eliminating polymorphism, tailoring solubility, improving thermal stability, increasing dissolution, controlling drug release, modulating the surfactant properties, enhancing permeability of APIs and modulating cytotoxicity on tumor cells. In addition, API-ILs are also used in various formulations as active ingredients, such as solutions, emulsions, even tablets or nanoparticles. This paper aims to review current status of API-ILs, including the rational and design, preparation and characterization, the improvement on the physicochemical characteristics of APIs, the compatibility of API-ILs with various formulations, and the future prospects of API-ILs in biomedical and pharmaceutical fields.
Collapse
Affiliation(s)
- Xiying Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Lu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianping Qi
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
6
|
Verma V, Ryan KM, Padrela L. Production and isolation of pharmaceutical drug nanoparticles. Int J Pharm 2021; 603:120708. [PMID: 33992712 DOI: 10.1016/j.ijpharm.2021.120708] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/23/2022]
Abstract
Nanosizing of pharmaceutical drug particles is one of the most important drug delivery platforms approaches for the commercial development of poorly water-soluble drug molecules. Though nanosizing of drug particles has been proven to greatly enhance drugs dissolution rate and apparent solubility, nanosized materials have presented significant challenges for their formulation as solid dosage forms (e.g. tablets, capsules). This is due to the strong Van der Waals attraction forces between dry nanoparticles leading to aggregation, cohesion, and consequently poor flowability. In this review, the broad area of nanomedicines is overviewed with the primary focus on drug nanocrystals and the top-down and bottom-up methods used in their fabrication. The review also looks at how nanosuspensions of pharmaceutical drugs are generated and stabilised, followed by subsequent strategies for isolation of the nanoparticles. A perspective on the future outlook for drug nanocrystals is also presented.
Collapse
Affiliation(s)
- Vivek Verma
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Kevin M Ryan
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Luis Padrela
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
7
|
Kumar A, Ramisetty KA, Bordignon S, Hodnett BK, Davern P, Hudson S. Preparation, stabilisation, isolation and tableting of valsartan nanoparticles using a semi-continuous carrier particle mediated process. Int J Pharm 2021; 597:120199. [PMID: 33486046 DOI: 10.1016/j.ijpharm.2021.120199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/28/2020] [Accepted: 12/20/2020] [Indexed: 01/23/2023]
Abstract
This work investigated the technical feasibility of preparing, stabilizing and isolating poorly water-soluble drug nanoparticles via a small-scale antisolvent precipitation process operating in semi-continuous mode. Specifically, a novel semi-continuous process was demonstrated for the carrier particle mediated production, stabilization and isolation of valsartan nanoparticles into a solid form using montmorillonite clay particles as the carrier. The semi-continuous process operated robustly for the full duration of the experiment (~16 min) and steady-state conditions were reached after ~5 min. Nanoparticles of valsartan (51 ± 1 nm) were successfully prepared, stabilized and isolated with the help of montmorillonite (MMT) or protamine functionalized montmorillonite (PA-MMT) into the dried form by this semi-continuous route. The dissolution profile of the isolated valsartan nanocomposite solids was similar to that of valsartan nanocomposite solids produced via the corresponding laboratory scale batch mode process, indicating that the product quality (principally the nanoscale particle size and solid-state form) is retained during the semi-continuous processing of the nanoparticles. Furthermore, tablets produced via direct compression of the isolated valsartan nanocomposite solids displayed a dissolution profile comparable with that of the powdered nanocomposite material. PXRD, DSC, SSNMR and dissolution studies indicate that the valsartan nanoparticles produced via this semi-continuous process were amorphous and exhibited shelf-life stability equivalent to > 10 months.
Collapse
Affiliation(s)
- Ajay Kumar
- Synthesis and Solid State Pharmaceutical Centre, Department of Chemical Sciences, and The Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland; SSPC the Science Foundation Ireland Research Centre for Pharmaceutics, University of Limerick, Limerick V94 T9PX, Ireland.
| | - Kiran A Ramisetty
- Synthesis and Solid State Pharmaceutical Centre, Department of Chemical Sciences, and The Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland; SSPC the Science Foundation Ireland Research Centre for Pharmaceutics, University of Limerick, Limerick V94 T9PX, Ireland.
| | - Simone Bordignon
- Synthesis and Solid State Pharmaceutical Centre, Department of Chemical Sciences, and The Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.
| | - Benjamin K Hodnett
- Synthesis and Solid State Pharmaceutical Centre, Department of Chemical Sciences, and The Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland; SSPC the Science Foundation Ireland Research Centre for Pharmaceutics, University of Limerick, Limerick V94 T9PX, Ireland.
| | - Peter Davern
- Synthesis and Solid State Pharmaceutical Centre, Department of Chemical Sciences, and The Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland; SSPC the Science Foundation Ireland Research Centre for Pharmaceutics, University of Limerick, Limerick V94 T9PX, Ireland.
| | - Sarah Hudson
- Synthesis and Solid State Pharmaceutical Centre, Department of Chemical Sciences, and The Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland; SSPC the Science Foundation Ireland Research Centre for Pharmaceutics, University of Limerick, Limerick V94 T9PX, Ireland.
| |
Collapse
|
8
|
Kumar A, Hodnett BK, Hudson S, Davern P. Modification of the zeta potential of montmorillonite to achieve high active pharmaceutical ingredient nanoparticle loading and stabilization with optimum dissolution properties. Colloids Surf B Biointerfaces 2020; 193:111120. [PMID: 32505995 DOI: 10.1016/j.colsurfb.2020.111120] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 10/24/2022]
Abstract
Nanoparticles (NPs) of three poorly water-soluble BCS class II active pharmaceutical ingredients (APIs) (clozapine (CLO), curcumin (CUR) and carbamazepine (CBMZ) with zeta potentials -28.5 ± 2.5, -33 ± 1.5 and -13 ± 1.5 mV respectively) were produced, stabilized and isolated into the solid state with the help of Montmorillonite (MMT) clay carrier particles. The nanoparticles of clozapine (27 nm), curcumin (170 nm) and carbamazepine (30 nm) were produced and stabilized in suspension using a reverse antisolvent precipitation technique in the presence of 'as received' MMT carrier particles (∼30 μm) and/or MMT carrier particles whose surface had been slightly modified with a cationic protein, protamine sulphate salt (PA). The resulting nanoparticle carrier composites were isolated directly from suspension into a solid state form by simple filtration followed by air-drying. The API dissolution rates from these dried NP-carrier composites were comparable with those of the respective stabilized API nanoparticles in suspension up to maximum CLO, CUR and CBMZ loadings of 23%, 21.8% and 33.3% (w/w) respectively, although surface modification of the MMT carrier particles with PA was needed for the CLO and CUR NP-carrier composites in order to preserve the fast API nanosuspension-like dissolution rates at higher API loadings. For both of these APIs, the optimal loading of PA on MMT was around 4 mg/g, which likely helped to limit aggregation of the API nanoparticles at the higher API loadings. Interestingly, no MMT surface modification was needed to preserve fast API dissolution rates at higher API loadings in the case of the CBMZ NP-carrier composites. This discrimination among the three APIs for carrier particle surface modification was previously observed in reported studies by our group for three other APIs, namely valsartan, fenofibrate and dalcetrapib. When examined together, the data for all six APIs suggest a general trend whereby API nanoparticles with zeta potentials more positive than around -25 mV do not require carrier particle surface modification with PA in order to preserve their fast dissolution rates from NP-carrier composites at higher API loadings. Thus, this study offers a potentially effective means of transforming poorly water soluble BCS Class II APIs into fast dissolving solid dosage NP-carrier composites, whereby the surface properties of the carrier particle can be tuned with prior knowledge of the zeta potential of the API nanoparticles.
Collapse
Affiliation(s)
- Ajay Kumar
- Synthesis and Solid State Pharmaceutical Centre, Department of Chemical Sciences, The Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
| | - Benjamin K Hodnett
- Synthesis and Solid State Pharmaceutical Centre, Department of Chemical Sciences, The Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
| | - Sarah Hudson
- Synthesis and Solid State Pharmaceutical Centre, Department of Chemical Sciences, The Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
| | - Peter Davern
- Synthesis and Solid State Pharmaceutical Centre, Department of Chemical Sciences, The Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
| |
Collapse
|
9
|
Schenck L, Erdemir D, Saunders Gorka L, Merritt JM, Marziano I, Ho R, Lee M, Bullard J, Boukerche M, Ferguson S, Florence AJ, Khan SA, Sun CC. Recent Advances in Co-processed APIs and Proposals for Enabling Commercialization of These Transformative Technologies. Mol Pharm 2020; 17:2232-2244. [DOI: 10.1021/acs.molpharmaceut.0c00198] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luke Schenck
- Process Research and Development, Merck & Co. Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Deniz Erdemir
- Drug Product Development, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick New Jersey 08903, United States
| | | | - Jeremy M. Merritt
- Small Molecule Design and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46221, United States
| | - Ivan Marziano
- Pfizer R&D UK Limited, Discovery Park, Ramsgate Road, Sandwich CT13 9NJ, United Kingdom
| | - Raimundo Ho
- Solid State Chemistry, AbbVie Inc., 1 North Waukegan Road, Chicago, Illinois 60064, United States
| | - Mei Lee
- Chemical Development, Product Development and Supply, GlaxoSmithKline, Gunnelswood Road, Stevenage SG1 2NY, United Kingdom
| | - Joseph Bullard
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Moussa Boukerche
- Center of Excellence for Isolation and Separation Technologies, AbbVie Inc., 1 North Waukegan Road, Chicago, Illinois 60064, United States
| | - Steven Ferguson
- SSPC, The SFI Centre for Pharmaceuticals, School of Chemical and Bioprocess Engineering, University College Dublin, Belifield, Dublin 4, Ireland
| | - Alastair J. Florence
- EPSRC Future Continuous Manufacturing and Advanced Crystallization Hub, CMAC, University of Strathclyde Glasgow, Glasgow, United Kingdom
| | - Saif A. Khan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Bodnár K, Hudson SP, Rasmuson ÅC. Drug Loading and Dissolution Properties of Dalcetrapib–Montmorillonite Nanocomposite Microparticles. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.9b00460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Katalin Bodnár
- Synthesis and Solid State Pharmaceutical Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Sarah P. Hudson
- Synthesis and Solid State Pharmaceutical Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Åke C. Rasmuson
- Synthesis and Solid State Pharmaceutical Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
11
|
Ita K, Ashong S. Percutaneous Delivery of Antihypertensive Agents: Advances and Challenges. AAPS PharmSciTech 2020; 21:56. [PMID: 31909450 DOI: 10.1208/s12249-019-1583-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/16/2019] [Indexed: 12/15/2022] Open
Abstract
Hypertension remains a significant risk factor for several cardiovascular disorders including coronary artery disease and heart failure. Despite the large armamentarium of drugs available for the management of high blood pressure, low oral availability is an ongoing challenge. Researchers are constantly developing alternative drug delivery systems. This review focuses on the transcutaneous delivery of antihypertensive agents. The use of diverse technologies for the delivery of specific antihypertensive agents is emphasized. The advances made and the challenges encountered are highlighted. Several transdermal drug delivery strategies are employed for the transport of this group of therapeutic agents across the skin and the most widely used techniques include microneedles, iontophoresis, sonophoresis, and chemical penetration enhancers. Each of these methods has benefits and limitations, and there are ongoing attempts by scientists to address the shortcomings. For instance, skin irritation continues to be a major challenge with iontophoretic transport while the quantity of a medication that can be incorporated into dissolving microneedles is limited. With skin permeation enhancers, concerns relating to cytotoxicity and irritation are common. Even though the use of ultrasound is exciting, this mode of delivery is also accompanied by challenges such as the design of a battery system that is potent enough to drive a low-frequency sonophoretic cymbal array, while still being portable enough to function as a wearable device. Although most researchers report enhanced drug delivery with the aforementioned methods, it is important to deliver therapeutically useful doses of these medications.
Collapse
|
12
|
Hajba-Horváth E, Biró E, Mirankó M, Fodor-Kardos A, Trif L, Feczkó T. Preparation and in vitro characterization of valsartan-loaded ethyl cellulose and poly(methyl methacrylate) nanoparticles. RSC Adv 2020; 10:43915-43926. [PMID: 35517152 PMCID: PMC9058329 DOI: 10.1039/d0ra07218d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/25/2020] [Indexed: 01/28/2023] Open
Abstract
Valsartan is an antihypertensive drug used primarily orally, however, due to its hydrophobic nature it has got low bio-availability thus requiring higher dosage/frequency and causing more side effects. The aim of our work was to prepare valsartan-loaded nanoparticles by using ethyl cellulose and poly(methyl methacrylate) polymers which can be administered orally and to investigate the preparation conditions and their significance as potential drug carriers for valsartan delivery by in vitro release studies. Ethyl cellulose and poly(methyl methacrylate) polymers were used for the preparation of nanoparticles by single emulsion-solvent evaporation technique. The formation of drug-loaded nanoparticles was designed by experimental design for size and encapsulation efficiency, in addition the prepared nanosuspensions were nano spray dried in order to gain a powder form that is easy to handle and store. Both of the nano spray dried formulations had an amorphous structure in contrast to the pure drug according to differential scanning calorimetry and X-ray diffraction analysis, which can be advantageous in drug absorption. The originally processed ethyl cellulose-valsartan nanoparticles increased the solubility of the drug in the model intestinal medium, while poly(methyl methacrylate)-valsartan nanoparticles enabled substantially prolonged drug release. The release kinetics of both types of nanoparticles could be described by the Weibull model. Valsartan-loaded ethyl cellulose and poly(methyl methacrylate) nanoparticles were prepared and nano spray-dried. The active agent was structurally changed in the nanoparticles, which could be advantageous in the intestinal absorption.![]()
Collapse
Affiliation(s)
- Eszter Hajba-Horváth
- Research Institute of Biomolecular and Chemical Engineering
- Faculty of Engineering
- University of Pannonia
- Veszprém
- Hungary
| | - Emese Biró
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Budapest
- Hungary
| | - Mirella Mirankó
- Research Institute of Biomolecular and Chemical Engineering
- Faculty of Engineering
- University of Pannonia
- Veszprém
- Hungary
| | - Andrea Fodor-Kardos
- Research Institute of Biomolecular and Chemical Engineering
- Faculty of Engineering
- University of Pannonia
- Veszprém
- Hungary
| | - László Trif
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Budapest
- Hungary
| | - Tivadar Feczkó
- Research Institute of Biomolecular and Chemical Engineering
- Faculty of Engineering
- University of Pannonia
- Veszprém
- Hungary
| |
Collapse
|
13
|
Kumari N, Singh M, Om H, Sachin KM. Philic-phobic chemical dynamics of a 1 st tier dendrimer dispersed o/w nanoemulsion. RSC Adv 2019; 9:12507-12519. [PMID: 35515866 PMCID: PMC9063675 DOI: 10.1039/c9ra00728h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/18/2019] [Indexed: 11/21/2022] Open
Abstract
Olive, castor and linseed oil (oil-in-water) nanoemulsions were prepared using Tween-20, sodium dodecyl sulfate, and cetyltrimethylammonium bromide (0.12 w/w%) with 0.02 w/w% cellulose acetate propionate (CAP), 0.02 w/w% cellulose acetate butyrate (CAB), 6.2 w/w% ethyl acetate, 5.5 w/w% ethanol and 7.8 w/w% glycerol as dispersion agents. To study the dispersion effect of trimesoyl 1,3,5-tridimethyl malonate (TTDMM, 1st tier), nanoemulsions were prepared with olive, castor and linseed oil. Their density, viscosity, surface tension and friccohesity measurements at T = (293.15, 303.15, and 315.15) K, hydrodynamic radii, surface excess concentration, surface area per molecule, and antioxidant activities were studied. Dispersion variations of TTDMM on varying surfactant and specific interactions of the hydration spheres and ester moiety of TTDMM with ethyl acetate, ethanol and glycerol linked oil-water-surfactant networks have been established. The variations in physicochemical properties suggest that the oil-TTDMM interaction abilities of the surfactant and co-surfactant moieties in the nanoemulsions cause a hydrophobic segregation. The physicochemical study of both blank and TTDMM loaded nanoemulsions have illustrated the thermodynamic stabilities in terms of hydrophobic-hydrophilic, hydrophilic-hydrophilic, van der Waals and hydrogen bonding interactions.
Collapse
Affiliation(s)
- Naveen Kumari
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology Murthal Haryana India
- School of Chemical Sciences, Central University of Gujarat Gandhinagar Gujarat India
| | - Man Singh
- School of Chemical Sciences, Central University of Gujarat Gandhinagar Gujarat India
| | - Hari Om
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology Murthal Haryana India
| | - K M Sachin
- School of Chemical Sciences, Central University of Gujarat Gandhinagar Gujarat India
| |
Collapse
|