1
|
Chu W, Wang P, Ma Z, Peng L, Guo C, Fu Y, Ding L. Lupeol-loaded chitosan-Ag + nanoparticle/sericin hydrogel accelerates wound healing and effectively inhibits bacterial infection. Int J Biol Macromol 2023; 243:125310. [PMID: 37315678 DOI: 10.1016/j.ijbiomac.2023.125310] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Lupeol, a pentacyclic triterpene, has demonstrated significant wound healing properties; however, its low water solubility has limited its clinical applicability. To overcome this limitation, we utilized Ag+-modified chitosan (CS-Ag) nanoparticles to deliver lupeol, resulting in the formation of CS-Ag-L-NPs. These nanoparticles were then encapsulated within a temperature-sensitive, self-assembled sericin hydrogel. Various analytical methods, including SEM, FTIR, XRD, HPLC, TGA assay, hemolysis and antibacterial activity tests, were employed to characterize the nanoparticles. Additionally, an infectious wound model was used to evaluate the therapeutic and antibacterial efficacy of the CS-Ag-L-NPs modified sericin hydrogel. Our results showed that the encapsulation efficiency of lupeol in CS-Ag-L-NPs reached 62.1 %, with good antibacterial activity against both gram-positive and gram-negative bacteria and a low hemolysis ratio (<5 %). The CS-Ag-L-NPs sericin gel exhibited multiple beneficial effects, including inhibiting bacterial proliferation in wound beds, promoting wound healing via accelerated re-epithelialization, reducing inflammation, and enhancing collagen fiber deposition. We conclude that the CS-Ag-L-NPs loaded sericin hydrogel has tremendous potential for development as a multifunctional therapeutic platform capable of accelerating wound healing and effectively suppressing bacterial infections in clinical settings.
Collapse
Affiliation(s)
- Wenhui Chu
- Taizhou Central Hospital, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China; Taizhou Research Institute of Bio-medical and Chemical Industry CO., Ltd, Taizhou, Zhejiang 318000, PR China
| | - Pan Wang
- Traditional Chinese Medicine Industry Development and Promotion Center of Pan'an County, Jinhua, Zhejiang 321000, PR China
| | - Zhe Ma
- Taizhou Central Hospital, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Lin Peng
- Taizhou Central Hospital, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Chenyuan Guo
- Taizhou Central Hospital, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Yongqian Fu
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, Zhejiang 318000, PR China.
| | - Lingzhi Ding
- Taizhou Central Hospital, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China.
| |
Collapse
|
2
|
Preparation and pH/temperature dual drug release behavior of polyamino acid nanomicelles. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03735-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Sun W, Lu K, Wang L, Hao Q, Liu J, Wang Y, Wu Z, Chen H. Introducing SuFEx click chemistry into aliphatic polycarbonates: a novel toolbox/platform for post-modification as biomaterials. J Mater Chem B 2022; 10:5203-5210. [PMID: 35734968 DOI: 10.1039/d2tb01052f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a biodegradable and biocompatible biomaterial, aliphatic polycarbonates (APCs) have attracted substantial attention in terms of post-polymerization modification (PPM) for functionalization. A strategy for the introduction of sulfur(VI)-fluoride exchange (SuFEx) click chemistry into APCs for PPM is proposed for the first time in this work. 4'-(Fluorosulfonyl)benzyl 5-methyl-2-oxo-1,3-dioxane-5-carboxylate (FMC) was designed as a SuFEx clickable cyclic carbonate for APCs via ring-opening polymerization (ROP), and an operational and nontoxic synthetic route was achieved. FMC managed to undergo both ROP and PPM through the SuFEx click chemistry organocatalytically without constraining or antagonizing each other, using 1,5,7-triazabicyclo[4,4,0]dec-5-ene (TBD) as a co-organocatalyst here. Its ROP was systematically investigated, and density functional theory (DFT) calculations were performed to understand the acid-base catalytic mechanism in the anionic ROP. Exploratory investigations into PPM by SuFEx of poly(FMC) were conducted as biomaterials, and the one-pot strategies to achieve both ROP and SuFEx were confirmed.
Collapse
Affiliation(s)
- Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Kunyan Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Ling Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Qing Hao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Jingrui Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Yong Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Zhaoqiang Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
4
|
Basinska T, Gadzinowski M, Mickiewicz D, Slomkowski S. Functionalized Particles Designed for Targeted Delivery. Polymers (Basel) 2021; 13:2022. [PMID: 34205672 PMCID: PMC8234925 DOI: 10.3390/polym13122022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/03/2022] Open
Abstract
Pure bioactive compounds alone can only be exceptionally administered in medical treatment. Usually, drugs are produced as various forms of active compounds and auxiliary substances, combinations assuring the desired healing functions. One of the important drug forms is represented by a combination of active substances and particle-shaped polymer in the nano- or micrometer size range. The review describes recent progress in this field balanced with basic information. After a brief introduction, the paper presents a concise overview of polymers used as components of nano- and microparticle drug carriers. Thereafter, progress in direct synthesis of polymer particles with functional groups is discussed. A section is devoted to formation of particles by self-assembly of homo- and copolymer-bearing functional groups. Special attention is focused on modification of the primary functional groups introduced during particle preparation, including introduction of ligands promoting anchorage of particles onto the chosen living cell types by interactions with specific receptors present in cell membranes. Particular attention is focused on progress in methods suitable for preparation of particles loaded with bioactive substances. The review ends with a brief discussion of the still not answered questions and unsolved problems.
Collapse
Affiliation(s)
- Teresa Basinska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.G.); (D.M.)
| | | | | | - Stanislaw Slomkowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.G.); (D.M.)
| |
Collapse
|
5
|
Liang E, Guo Z, Hu Z, Chen Z, Reheman A, Wang J, Hu J. pH-Responsive expandable polycarbonate–doxorubicin conjugate nanoparticles for fast intracellular drug release. NEW J CHEM 2021. [DOI: 10.1039/d1nj00598g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoparticles with tertiary amines were prepared, which are pH-responsive, expanding to expose the acid-sensitive chemical bond and accelerating drug release.
Collapse
Affiliation(s)
- Enhui Liang
- Center for Molecular Science and Engineering
- College of Science
- Northeastern University
- Shenyang
- P. R. China
| | - Zhihao Guo
- Center for Molecular Science and Engineering
- College of Science
- Northeastern University
- Shenyang
- P. R. China
| | - Zhuang Hu
- Center for Molecular Science and Engineering
- College of Science
- Northeastern University
- Shenyang
- P. R. China
| | - Zhangpei Chen
- Center for Molecular Science and Engineering
- College of Science
- Northeastern University
- Shenyang
- P. R. China
| | - Aikebaier Reheman
- Key Laboratory of Toxicology
- Medical College
- Ningde Normal University
- Ningde
- China
| | - Jiwei Wang
- Fujian Province University Engineering Research Center of Mindong She Medicine
- Medical College
- Ningde Normal University
- Ningde
- China
| | - Jianshe Hu
- Center for Molecular Science and Engineering
- College of Science
- Northeastern University
- Shenyang
- P. R. China
| |
Collapse
|
6
|
Guo Z, Liang E, Sui J, Ma M, Yang L, Wang J, Hu J, Sun Y, Fan Y. Lapatinib-loaded acidity-triggered charge switchable polycarbonate-doxorubicin conjugate micelles for synergistic breast cancer chemotherapy. Acta Biomater 2020; 118:182-195. [PMID: 33045399 DOI: 10.1016/j.actbio.2020.09.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/03/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022]
Abstract
Stimulus-responsive nanosystem is a powerful method to improve the bioavailability and reduce the side effects of anticancer agents. In the present study, a customized dual pH-responsive micellar nanoplatform (DOX+LAP-M) based on polycarbonate-doxorubicin conjugate micelles was prepared to co-deliver the chemotherapeutic agent lapatinib for inhibiting tumor growth and metastasis. DOX+LAP-M micelles with spherical morphology had a size of ~112 nm and had an initial negative surface charge, which are favorable characteristics for long-term circulation in the blood. Once the micelles accumulated in tumor tissues, the intrinsic tumor extracellular acidity triggered the charge switch of DOX+LAP-M micelles from -1 to 9 mV, thereby facilitating cell internalization and tumor penetration. Subsequently, the pH-sensitive micellar core accelerated the release of doxorubicin and lapatinib in the acidic intracellular environment. DOX+LAP-M micelles effectively inhibited the proliferation, migration, and invasion of 4T1 cells in vitro; furthermore, the administration of DOX+LAP-M micelles in 4T1 xenograft-bearing mice suppressed solid tumor growth with an inhibitory rate of 90.2% and significantly decreased pulmonary metastatic nodules, without significant systemic toxicity. This multifunctional micellar system has high potential for clinical cancer therapy.
Collapse
Affiliation(s)
- Zhihao Guo
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, 110819, P. R. China; National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Enhui Liang
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, 110819, P. R. China
| | - Junhui Sui
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Mengcheng Ma
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (Liaoning Research Institute of Family Planning), The Affiliated Reproductive Hospital of China Medical University, Shenyang, 110031, P. R. China
| | - Jiwei Wang
- Fujian Province University Engineering Research Center of Mindong She Nationality Medicine, College of Chemistry and Materials, Ningde Normal University, Ningde, 352100, P. R. China
| | - Jianshe Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, 110819, P. R. China.
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China.
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
7
|
Liu X, Guo Z, Ge T, Hu J, Wang J, Yang L. Self-assembly and in vitro drug release behaviors of amphiphilic copolymers based on functionalized aliphatic liquid crystalline polycarbonate with pH/temperature dual response. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|