1
|
Guevara-Ramírez P, Cadena-Ullauri S, Paz-Cruz E, Tamayo-Trujillo R, Ruiz-Pozo VA, Zambrano AK. Role of the gut microbiota in hematologic cancer. Front Microbiol 2023; 14:1185787. [PMID: 37692399 PMCID: PMC10485363 DOI: 10.3389/fmicb.2023.1185787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Hematologic neoplasms represent 6.5% of all cancers worldwide. They are characterized by the uncontrolled growth of hematopoietic and lymphoid cells and a decreased immune system efficacy. Pathological conditions in hematologic cancer could disrupt the balance of the gut microbiota, potentially promoting the proliferation of opportunistic pathogens. In this review, we highlight studies that analyzed and described the role of gut microbiota in different types of hematologic diseases. For instance, myeloma is often associated with Pseudomonas aeruginosa and Clostridium leptum, while in leukemias, Streptococcus is the most common genus, and Lachnospiraceae and Ruminococcaceae are less prevalent. Lymphoma exhibits a moderate reduction in microbiota diversity. Moreover, certain factors such as delivery mode, diet, and other environmental factors can alter the diversity of the microbiota, leading to dysbiosis. This dysbiosis may inhibit the immune response and increase susceptibility to cancer. A comprehensive analysis of microbiota-cancer interactions may be useful for disease management and provide valuable information on host-microbiota dynamics, as well as the possible use of microbiota as a distinguishable marker for cancer progression.
Collapse
|
2
|
Beigi N, Shayesteh H, Javanshir S, Hosseinzadeh M. Pyrolyzed magnetic NiO/carbon-derived nanocomposite from a hierarchical nickel-based metal-organic framework with ultrahigh adsorption capacity. ENVIRONMENTAL RESEARCH 2023; 231:116146. [PMID: 37187312 DOI: 10.1016/j.envres.2023.116146] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/15/2023] [Accepted: 05/13/2023] [Indexed: 05/17/2023]
Abstract
Herein, a simple one-pot solvothermal approach is used to create magnetic porous carbon nanocomposites which obtained from a nickel-based metal-organic framework (Ni-MOF) and examined for their ability to uptake methyl orange (MO) dye. Derived carbons with exceptional porosity and magnetic properties were created during the different pyrolysis temperatures of Ni-MOF (700, 800, and 900 °C) under a nitrogen atmosphere. The black powders were given the names CDM-700, CDM-800, and CDM-900 after they were obtained. A variety of analysis methods, including FESEM, EDS, XRD, FTIR, VSM, and N2 adsorption-desorption were used to characterize as-prepared powders. Furthermore, adsorbent dosage, contact time, pH variation, and initial dye concentration effects was investigated. The maximum adsorption capacities were 307.38, 5976.35, 4992.39, and 2636.54 mg/g for Ni-MOF, CDM-700, CDM-800, and CDM-900, respectively, which show the ultrahigh capacity of the resulted nanocomposites compared to newest materials. The results showed that not only the crystallinity turned but also the specific surface area was increased about four times after paralyzing. The results showed that the maximum adsorption capacity of MO dye for CDM-700 was obtained at adsorbent dosage of 0.083 g/L, contact time of 60 min, feed pH of 3, and temperature of 45 °C. The Langmuir model has the best match and suggests the adsorption process as a single layer. According to the results of reaction kinetic studies using well-known models, the pseudo-second-order model (R2 = 0.9989) displayed high agreement with the experimental data. The synthesized nanocomposite is introduced as a promising superadsorbent for eliminating dyes from contaminated water due to strong recycling performance up to the fifth cycle.
Collapse
Affiliation(s)
- Negar Beigi
- School of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran
| | - Hadi Shayesteh
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran
| | - Shahrzad Javanshir
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Chemistry Department, Iran University of Science and Technology, Narmak, Tehran, Iran
| | - Majid Hosseinzadeh
- School of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran.
| |
Collapse
|
3
|
Hathout RM. Green synthesis of gold nanoparticles using plant products and plants extracts aiming for cancer therapy: helping the beauty to beat ‘cure’ the beast. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:275-277. [DOI: 10.1080/21691401.2022.2127747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Rania M. Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Liu W, Ma R, Lu S, Wen Y, Li H, Wang J, Sun B. Acid-Resistant Mesoporous Metal-Organic Frameworks as Carriers for Targeted Hypoglycemic Peptide Delivery: Peptide Encapsulation, Release, and Bioactivity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55447-55457. [PMID: 36478454 DOI: 10.1021/acsami.2c18452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Oral administration of bioactive peptides with α-glucosidase inhibitory activities is a promising strategy for diabetes mellitus. The wheat germ peptide Leu-Asp-Leu-Gln-Arg (LDLQR) has been previously proven to inhibit the activity of α-glucosidase efficiently. However, it is still difficult to transport the peptide to the intestine completely due to the harsh condition of the stomach. Herein, an acid-resistant zirconium-based metal-organic framework, NU-1000, was used to immobilize LDLQR with a high encapsulation capacity (92.72%) and encapsulation efficiency (44.08%) in only 10 min. The in vitro release results showed that the acid-stable NU-1000 not only effectively protected LDLQR from degradation in the presence of stomach acid and pepsin effectively but also ensured the release of encapsulated LDLQR under simulated intestinal conditions. Furthermore, LDLQR@NU-1000 could slow down the elevated blood sugar caused by maltose in mice and the area under blood sugar curve decreased by almost 20% when compared with the control group. The inflammatory factor (IL-1β, IL-6) in vivo and cell growth in vitro were almost the same between NU-1000 treatment and normal control groups. This study indicates NU-1000 is a promising vehicle for targeted peptide-based bioactive delivery to the small intestine.
Collapse
Affiliation(s)
- Weiwei Liu
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing100048, China
| | - Ruolan Ma
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing100048, China
| | - Shiyi Lu
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing100048, China
| | - Yangyang Wen
- College of Chemistry and Materials Engineering, Beijing Technology and Business University (BTBU), Beijing100048, China
| | - Hongyan Li
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing100048, China
| | - Jing Wang
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing100048, China
| | - Baoguo Sun
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing100048, China
| |
Collapse
|
5
|
Polypyrrole/CuBi<sub>2</sub>O<sub>4</sub> Nanosheets for Sensitive Electrochemical Determination of Benzoic Acid. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2022. [DOI: 10.1380/ejssnt.2023-001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Afravi Z, Nobakht V, Pourreza N, Ghomi M, Trzybiński D, Woźniak K. Design of a Sensitive Fluorescent Zn-Based Metal-Organic Framework Sensor for Cimetidine Monitoring in Biological and Pharmaceutical Samples. ACS OMEGA 2022; 7:22221-22231. [PMID: 35811922 PMCID: PMC9260946 DOI: 10.1021/acsomega.2c00874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
A new highly fluorescent zinc-organic framework [Zn2(btca)(DMSO)2]n (Zn-MOF) was prepared via in situ ligand formation by the solvothermal reaction of Zn(NO3)2·6H2O and pyromellitic dianhydride (PMDA) in DMSO solvent. During the solvothermal reaction, PMDA was gradually hydrolyzed to a pyromellitic acid, 1,2,4,5-benzene tetracarboxylic acid (H4btca), to provide a tetracarboxylic acid as a linker in the reaction medium. Single-crystal X-ray diffraction analysis exhibits a 3D porous structure with open tetragonal channels running along the crystallographic c-axis. The Zn-MOF was explored as an on-mode fluorescent sensor for tracing cimetidine in biological fluids and pharmaceutical samples in the presence of interfering species. The results show a quick response in a short time range. The characteristics of this sensor were investigated by field-emission scanning electron microscopy, dynamic light scattering, energy-dispersive X-ray analysis, powder X-ray diffraction, Fourier transform infrared and UV-vis spectroscopy as well as thermogravimetric, and elemental analyses.
Collapse
Affiliation(s)
- Zahra Afravi
- Department
of Chemistry, Faculty of Science, Shahid
Chamran University of Ahvaz, IR 6135743337 Ahvaz, Iran
| | - Valiollah Nobakht
- Department
of Chemistry, Faculty of Science, Shahid
Chamran University of Ahvaz, IR 6135743337 Ahvaz, Iran
| | - Nahid Pourreza
- Department
of Chemistry, Faculty of Science, Shahid
Chamran University of Ahvaz, IR 6135743337 Ahvaz, Iran
| | - Matineh Ghomi
- Department
of Chemistry, Faculty of Science, Shahid
Chamran University of Ahvaz, IR 6135743337 Ahvaz, Iran
| | - Damian Trzybiński
- Biological
and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Krzysztof Woźniak
- Biological
and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
| |
Collapse
|
7
|
Shi Y, Liu W, Wu X, Zhu J, Zhou D, Liu X. A Water-Soluble Polyacid Polymer Based on Hydrophilic Metal-Organic Frameworks Using Amphoteric Carboxylic Acid Ligands as Linkers for Hydroxycamptothecin Loading and Release In Vitro. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2854. [PMID: 34835619 PMCID: PMC8618358 DOI: 10.3390/nano11112854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022]
Abstract
The poor water solubility and severe side effects of hydroxycamptothecin (HCPT) limit its clinical application; therefore, it is necessary to synthesize applicable nanodrug carriers with good solubility to expand the applications of HCPT. In this study, a hydrophilic metal-organic framework (MOF) with amphoteric carboxylic acid ligands as linkers was first synthesized and characterized. Then, water-soluble acrylamide and methacrylic acid were applied as monomers to prepare a water-soluble polyacid polymer MOF@P, which had a solubility of 370 μg/mL. The effects of the MOF@P material on the HCPT loading and solubility were investigated. The results showed that the polymer material could improve the HCPT solubility in water. Moreover, the in vitro release study indicated that the MOF@P polymeric composite exhibited a sustained-release effect on HCPT, with a cumulative release rate of 30.18% in 72 h at pH 7.4. Furthermore, the cytotoxicity test demonstrated that the hydrophilic MOF and the MOF@P had low cell toxicities. The results indicate that the prepared MOF@P polymeric complex can be applied for the sustained release of HCPT in clinics.
Collapse
Affiliation(s)
| | | | | | - Jinhua Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China; (Y.S.); (W.L.); (X.W.); (D.Z.)
| | | | - Xiuhua Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China; (Y.S.); (W.L.); (X.W.); (D.Z.)
| |
Collapse
|
8
|
An excellent antibacterial and high self-adhesive hydrogel can promote wound fully healing driven by its shrinkage under NIR. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112395. [PMID: 34579914 DOI: 10.1016/j.msec.2021.112395] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/04/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022]
Abstract
The lacks of antibacterial properties, low adhesion and delayed wound healing of the hydrogel wound dressings limit their applications in wound treatment. To resolve these, a novel hydrogel composed of polydopamine (PDA), Ag and graphene oxide (GO) is fabricated for wound dressing via the chemical crosslinking of N-isopropylacrylamide (NIPAM) and N,N'-methylene bisacrylamide (BIS). The prepared hydrogel containing PDA@Ag5GO1 (Ag5GO1 denotes the mass ratio between Ag and GO is 5:1) exhibits effective antibacterial properties and high inhibition rate against E. coli and S. aureus. It shows high adhesion ability to various substrate materials, implying a simpler method to the wound obtained by self-fixing rather than suturing. More important, it can produce strong contractility under the irradiation of near-infrared light (NIR), exerting a centripetal force that helps accelerate wound healing. Thus, the hydrogel containing a high concentration PDA@Ag5GO1 irradiated by NIR can completely repair the wound defect (1.0 × 1.0 cm2) within 15 days, the wound healing rate can reach 100%, which was far higher than other groups. Taken together, the new hydrogel with excellent antibacterial, high adhesion and strong contractility will subvert the traditional treatment methods on wound defect, extending its new application range in wound dressing.
Collapse
|
9
|
Recent advances in Cu(II)/Cu(I)-MOFs based nano-platforms for developing new nano-medicines. J Inorg Biochem 2021; 225:111599. [PMID: 34507123 DOI: 10.1016/j.jinorgbio.2021.111599] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/28/2021] [Accepted: 08/28/2021] [Indexed: 12/14/2022]
Abstract
With increasing world population, life-span of humans and spread of viruses, myriad of diseases in human beings are becoming more and more common. Because of the interesting chemical and framework versatility and porosity of metal organic frameworks (MOFs) they find application in varied areas viz. catalysis, sensing, metal ion/gas storage, chemical separation, drug delivery, bio-imaging. This subclass of coordination polymers having interesting three-dimensional framework exhibits inordinate potential and hence may find application in treatment and cure of cancer, diabetes Alzheimer's and other diseases. The presented review focuses on the diverse mechanism of action, unique biological activity and advantages of copper-based metal organic framework (MOF) nanomaterials in medicine. Also, different methods used in the treatment of cancer and other diseases have been presented and the applications as well as efficacy of copper MOFs have been reviewed and discussed. Eventually, the current-status and potential of copper based MOFs in the field of anti-inflammatory, anti-bacterial and anti-cancer therapy as well as further investigations going on for this class of MOF-based multifunctional nanostructures in for developing new nano-medicines have been presented.
Collapse
|
10
|
Su C, Wang B, Li S, Wie Y, Wang Q, Li D. Fabrication of Pd@ZnNi‐MOF/GO Nanocomposite and Its Application for H
2
O
2
Detection and Catalytic Degradation of Methylene Blue Dyes. ChemistrySelect 2021. [DOI: 10.1002/slct.202101660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ce Su
- School of Petrochemical Engineering Lanzhou University of Technology Gansu Lanzhou 730000 P.R. China
| | - Bangxian Wang
- School of Petrochemical Engineering Lanzhou University of Technology Gansu Lanzhou 730000 P.R. China
| | - Siliang Li
- School of Petrochemical Engineering Lanzhou University of Technology Gansu Lanzhou 730000 P.R. China
| | - Yunbiao Wie
- School of Petrochemical Engineering Lanzhou University of Technology Gansu Lanzhou 730000 P.R. China
| | - Qingli Wang
- School of Petrochemical Engineering Lanzhou University of Technology Gansu Lanzhou 730000 P.R. China
| | - Dongjian Li
- School of Petrochemical Engineering Lanzhou University of Technology Gansu Lanzhou 730000 P.R. China
| |
Collapse
|
11
|
|
12
|
Jiao H, Song Y, Huang J, Li D, Hu Y. [ In vivo degradation and histocompatibility of modified chitosan based on conductive composite nerve conduit]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:769-775. [PMID: 34142506 DOI: 10.7507/1002-1892.202101088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To investigate the in vivo degradation and histocompatibility of modified chitosan based on conductive composite nerve conduit, so as to provide a new scaffold material for the construction of tissue engineered nerve. Methods The nano polypyrrole (PPy) was synthesized by microemulsion polymerization, blended with chitosan, and then formed conduit by injecting the mixed solution into a customized conduit formation model. After freeze-drying and deacidification, the nano PPy/chitosan composite conduit (CP conduit) was prepared. Then the CP conduits with different acetyl degree were resulted undergoing varying acetylation for 30, 60, and 90 minutes (CAP1, CAP2, CAP3 conduits). Fourier infrared absorption spectrum and scanning electron microscopy (SEM) were used to identify the conduits. And the conductivity was measured by four-probe conductometer. The above conduits were implanted after the subcutaneous fascial tunnels were made symmetrically on both sides of the back of 30 female Sprague Dawley rats. At 2, 4, 6, 8, 10, and 12 weeks after operation, the morphology, the microstructure, and the degradation rate were observed and measured to assess the in vivo degradation of conduits. HE staining and anti-macrophage immunofluorescence staining were performed to observe the histocompatibility in vivo. Results The characteristic peaks of the amide Ⅱ band around 1 562 cm -1 appeared after being acetylated, indicating that the acetylation modification of chitosan was successful. There was no significant difference in conductivity between conduits ( P>0.05). SEM observation showed that the surfaces of the conduits in all groups were similar with relatively smooth surface and compact structure. After the conduits were implanted into the rats, with the extension of time, all conduits were collapsed, especially on the CAP3 conduit. All conduits had different degrees of mass loss, and the higher the degree of acetylation, the greater the mass change ( P<0.05). SEM observation showed that there were more pores at 12 weeks after implantation, and the pores showed an increasing trend as the degree of acetylation increased. Histological observation showed that there were more macrophages and lymphocytes infiltration in each group at the early stage. With the extension of implantation time, lymphocytes decreased, fibroblasts increased, and collagen fibers proliferated significantly. Conclusion The modified chitosan basedon conductive composite nerve conduit made of nano-PPy/chitosan composite with different acetylation degrees has good biocompatibility, conductivity, and biodegradability correlated with acetylation degree in vivo, which provide a new scaffold material for the construction of tissue engineered nerve.
Collapse
Affiliation(s)
- Haishan Jiao
- Department of Clinical Medicine, Suzhou Vocational Health College, Suzhou Jiangsu, 215009, P.R.China
| | - Yuening Song
- Department of Clinical Medicine, Suzhou Vocational Health College, Suzhou Jiangsu, 215009, P.R.China
| | - Jian Huang
- Department of Clinical Medicine, Suzhou Vocational Health College, Suzhou Jiangsu, 215009, P.R.China
| | - Dongyin Li
- Department of Clinical Medicine, Suzhou Vocational Health College, Suzhou Jiangsu, 215009, P.R.China
| | - Yi Hu
- Department of Pharmacy, Suzhou Vocational Health College, Suzhou Jiangsu, 215009, P.R.China
| |
Collapse
|
13
|
Zhang Y, Khan AR, Yang X, Fu M, Wang R, Chi L, Zhai G. Current advances in versatile metal-organic frameworks for cancer therapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Electrospun pectin/modified copper-based metal-organic framework (MOF) nanofibers as a drug delivery system. Int J Biol Macromol 2021; 173:351-365. [PMID: 33450340 DOI: 10.1016/j.ijbiomac.2021.01.058] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 01/10/2023]
Abstract
Pectin has been regarded as a drug carrier accelerating the healing process due to its bioactivities, abundance and lower cost of resources. However, a big challenge related to its practical application is its poor mechanical strength. In this study the modified Cu-based MOF containing Folic acid was synthesized and incorporated in the suitable pectin electrospun nanofibers which not only improved the copper ions release behavior but also made the fiber mat stronger, antibacterial and induce angiogenesis, fibroblast migration, and proliferation due to loaded copper ions and folic acid. The nanofibers composing of 75% pectin and 4000 kDa -PEO were chosen after morphological and mechanical characterization. Finally, the effect of MOF incorporation on the nanocomposite samples was characterized in terms of morphological, physiochemical and biological properties. The nanofibrous mats were evaluated by tensile testing, antibacterial and cytotoxicity. The release behavior of copper ions and folic acid was controlled and their burst release alleviated reducing cytotoxicity in vitro. It was found that the Young's moduli of the pectin nanofibers were improved to 19.13 MPa by the addition of Cu-based MOFs. Moreover, nanocomposite pectin nanofibers were found to be antibacterial and biocompatible. These results demonstrate that MOF-contained pectin nanofibers are promising for biomedical applications.
Collapse
|
15
|
Lebaudy E, Fournel S, Lavalle P, Vrana NE, Gribova V. Recent Advances in Antiinflammatory Material Design. Adv Healthc Mater 2021; 10:e2001373. [PMID: 33052031 DOI: 10.1002/adhm.202001373] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Implants and prostheses are widely used to replace damaged tissues or to treat various diseases. However, besides the risk of bacterial or fungal infection, an inflammatory response usually occurs. Here, recent progress in the field of anti-inflammatory biomaterials is described. Different materials and approaches are used to decrease the inflammatory response, including hydrogels, nanoparticles, implant surface coating by polymers, and a variety of systems for anti-inflammatory drug delivery. Complex multifunctional systems dealing with inflammation, microbial infection, bone regeneration, or angiogenesis are also described. New promising stimuli-responsive systems, such as pH- and temperature-responsive materials, are also being developed that would enable an "intelligent" antiinflammatory response when the inflammation occurs. Together, different approaches hold promise for creation of novel multifunctional smart materials allowing better implant integration and tissue regeneration.
Collapse
Affiliation(s)
- Eloïse Lebaudy
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 Biomaterials and Bioengineering 11 rue Humann Strasbourg Cedex 67085 France
- Faculté de Chirurgie Dentaire Université de Strasbourg Strasbourg 67000 France
| | - Sylvie Fournel
- Université de Strasbourg CNRS 3Bio team Laboratoire de Conception et Application de Molécules Bioactives UMR 7199 Faculté de Pharmacie 74 route du Rhin Illkirch Cedex 67401 France
| | - Philippe Lavalle
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 Biomaterials and Bioengineering 11 rue Humann Strasbourg Cedex 67085 France
- Faculté de Chirurgie Dentaire Université de Strasbourg Strasbourg 67000 France
- SPARTHA Medical 14B Rue de la Canardiere Strasbourg 67100 France
| | | | - Varvara Gribova
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 Biomaterials and Bioengineering 11 rue Humann Strasbourg Cedex 67085 France
- Faculté de Chirurgie Dentaire Université de Strasbourg Strasbourg 67000 France
| |
Collapse
|
16
|
Grijalva-Bustamante G, Quevedo-Robles R, del Castillo-Castro T, Castillo-Ortega M, Encinas J, Rodríguez-Félix D, Lara-Ceniceros T, Fernández-Quiroz D, Lizardi-Mendoza J, Armenta-Villegas L. A novel bile salt-assisted synthesis of colloidal polypyrrole nanoparticles. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Patterson N, Xiao B, Ignaszak A. Polypyrrole decorated metal-organic frameworks for supercapacitor devices. RSC Adv 2020; 10:20162-20172. [PMID: 35520395 PMCID: PMC9054202 DOI: 10.1039/d0ra02154g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/28/2020] [Indexed: 11/21/2022] Open
Abstract
Due to their large specific surface areas and porosity, metal-organic frameworks (MOFs) have found many applications in catalysis, gas separation, and gas storage. However, their use as electronic components such as supercapacitors is stunted due to their poor electrical conductivity. We report a remedy for this by combining the MOF structure with polypyrrole (PPy), a well-known conductive polymer. Three MOFs are studied for modification to this end: CPO-27-Ni and CPO-27-Co (M2DOBDC, M = Ni2+, Co2+, DOBDC = 2,5-dihydroxy-1,4-benzenedicarboxylate) and HKUST-1 (Cu3(BTC)2, BTC = 1,3,5 benzenetricarboxylate). The gravimetric capacitance of pure MOFs is boosted several orders of magnitude after reinforcement of PPy (e.g., from 0.679 to 185 F g-1 for HKUST-1 and PPy-HKUST-1, respectively), and is much higher than reported for pure PPy. In total, these PPy-d-MOFs exhibit specific capacitances up to 354 F g-1, retaining 70% of this value even after 2500 cycles. Among them, the highest capacitance is found for PPy-CPO-27-Ni (354 F g-1), followed by PPy-CPO-27-Co (263 F g-1) and PPy-HKUST-1 (185 F g-1). The maximum operating potential for these electrodes is 0.5 V, which is restricted by the contact of MOF with aqueous electrolyte and with extremely low PPy content. As a solution, higher PPy loading and rational adjustment of particle size and porosity of both MOF and PPy are recommended so that the MOF/electrolyte interface is limited, leading to more robust electrode. The work completed here describes a highly promising approach to tackling the electrically insulating nature of MOFs, paving the way for their use in electrochemical energy storage devices.
Collapse
Affiliation(s)
- Nigel Patterson
- Department of Chemistry, University of New Brunswick 30 Dineen Drive (Toole Hall) Fredericton NB Canada
| | - Bo Xiao
- School of Chemistry and Chemical Engineering, Queen's University Belfast Stranmillis Road (David Kier Building) Belfast BT9 5AG UK
| | - Anna Ignaszak
- Department of Chemistry, University of New Brunswick 30 Dineen Drive (Toole Hall) Fredericton NB Canada
| |
Collapse
|
18
|
MEHRABANI M, ANSARI-ASL Z, ROSTAMZADEH F, JAFARINEJAD-FARSANGI S, HASHEMI MS, SHEIKHOLESLAMI M, NEISI Z. Fabrication and biocompatibility assessment of polypyrrole/cobalt(II) metal-organic frameworks nanocomposites. Turk J Chem 2020; 44:472-485. [PMID: 33488171 PMCID: PMC7671231 DOI: 10.3906/kim-1910-63] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/19/2020] [Indexed: 01/28/2023] Open
Abstract
Nowadays, metal-organic frameworks (MOFs) have emerged as promising tools for different biological applications and therefore, efforts are ongoing to develop more biocompatible MOFs-based nanocomposites. We aimed to fabricate some new conductive nanocomposites of polypyrrole and cobalt-MOF with different weight percentages (PPy/x%Co-MOF) using the solution mixing method and characterize them through FT-IR (Fourier-transform infrared), PXRD (powder X-ray diffraction), SEM (scanning electron microscope), and TEM (transmission electron microscope) techniques. The biocompatibility of nanocomposites was assessed by haemolytic, cytotoxic, and quantitative reverse transcription PCR (qRT-PCR) assays. FT-IR and PXRD results revealed that nanocomposites consisted of pure MOFs and PPy. Moreover, SEM results indicated their spherical morphology along with an average diameter of 190 nm. (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed a concentration, and percentagedependent cytotoxic effect of the nanocomposites on some cell lines including 3T3 fibroblasts, MCF-7, and J774.A1 macrophages. Haematological toxicity of PPy/x%Co-MOF composites was less than 7% in most concentrations. Furthermore, PPy/x%Co-MOF composites did not show any significant effect on the expression of cyclooxygenase-2( COX-2) and inducible nitric oxide synthase( iNOS) genes. In sum, regarding the haemolytic, proinflammatory, and cytotoxic tests, prepared nanocomposite demonstrated the reasonable in vitro biocompatibility which may be considered as a hopeful platform for further investigations including clinical applications.
Collapse
Affiliation(s)
- Mehrnaz MEHRABANI
- Cardiovascular Research Centre, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, KermanIran
| | - Zeinab ANSARI-ASL
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, AhvazIran
| | - Farzaneh ROSTAMZADEH
- Endocrinology and Metabolism Research Centre, Institute of Basic and Clinical Physiology Sciences, KermanIran
| | - Saeideh JAFARINEJAD-FARSANGI
- Physiology Research Centre, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, KermanIran
| | | | - Mozhgan SHEIKHOLESLAMI
- Herbal and Traditional Medicines Research Centre, Kerman University of Medical Sciences, KermanIran
| | - Zeinab NEISI
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, AhvazIran
| |
Collapse
|
19
|
Zhou K, Shen D, Li X, Chen Y, Hou L, Zhang Y, Sha J. Molybdenum oxide-based metal-organic framework/polypyrrole nanocomposites for enhancing electrochemical detection of dopamine. Talanta 2020; 209:120507. [DOI: 10.1016/j.talanta.2019.120507] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/11/2019] [Accepted: 10/26/2019] [Indexed: 10/25/2022]
|
20
|
Song Y, Yang J, Wang L, Xie Z. Metal‐Organic Sheets for Efficient Drug Delivery and Bioimaging. ChemMedChem 2020; 15:416-419. [DOI: 10.1002/cmdc.201900664] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/25/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Yucong Song
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Jingjie Yang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
21
|
Yang M, Bai Q. Flower-like hierarchical Ni-Zn MOF microspheres: Efficient adsorbents for dye removal. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123795] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|