1
|
Gupta J, Sharma G. Nanogel: A versatile drug delivery system for the treatment of various diseases and their future perspective. Drug Deliv Transl Res 2025; 15:455-482. [PMID: 39103593 DOI: 10.1007/s13346-024-01684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
Nanogel (NG) drug delivery systems have emerged as promising tools for targeted and controlled drug release, revolutionizing treatment approaches across various diseases. Their unique physicochemical properties, such as nano size, high surface area, biocompatibility, stability, and tunable drug release, make them ideal carriers for a wide range of therapeutic agents. Nanogels (NGs), characterized by their 3D network of crosslinked polymers, offer unique edges like high drug loading capacity, controlled release, and targeted delivery. Additionally, the diverse applications of NGs in medical therapeutics highlight their versatility and potential impact on improving patient outcomes. Their application spans cancer treatment, infectious diseases, and chronic conditions, allowing for precise drug delivery to specific tissues or cells, minimizing side effects, and enhancing therapeutic efficacy. Despite their potential, challenges such as scalability, manufacturing reproducibility, and regulatory hurdles must be addressed. Achieving clinical translation requires overcoming these obstacles to ensure therapeutic payloads' safe and efficient delivery. Strategies such as surface modification and incorporating stimuli-responsive elements enhanced NG performance and addressed specific therapeutic challenges. Advances in nanotechnology, biomaterials, and targeted drug design offer opportunities to improve the performance of NGs and address current limitations. Tailoring NGs for exploring combination therapies and integrating diagnostics for real-time monitoring represent promising avenues for future research. In conclusion, NG drug delivery systems have demonstrated tremendous potential in diverse disease applications. Overcoming challenges and leveraging emerging technologies will pave the way for their widespread clinical implementation, ushering in a new era of precision medicine and improved patient care.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India.
| | - Gaurang Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| |
Collapse
|
2
|
Yadav H, Maiti S. Poly(allylamine)-adorned heptylcarboxymethyl galactomannan nanocarriers of canagliflozin for controlling type-2 diabetes: Optimization by Box-Behnken design and in vivo performance. Int J Biol Macromol 2024; 277:134253. [PMID: 39084426 DOI: 10.1016/j.ijbiomac.2024.134253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/10/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
In the past three decades, the prevalence of type-2 diabetes has arisen dramatically in countries of all income levels. A novel, most effective nanotechnology-based strategy may reduce the prevalence of diabetes. Recently, the shell-crosslinked polysaccharide-based micellar nanocarriers (MNCs) have shown great promise in terms of stability, controlled drug release, and improved in vivo performance. In this study, heptyl carboxymethyl guar gum was synthesized and characterized by ATR-FTIR, 1HNMR spectroscopy, surface charge, critical micelle concentration (23.9 μg/mL), and cytotoxicity analysis. Box-Behnken design was used to optimize the diameter, zeta potential, drug entrapment efficiency (DEE), and drug release characteristics of poly (allylamine)-crosslinked MNCs containing canagliflozin. The optimized MNCs revealed spherical morphology under TEM and had 149.3 nm diameter (PDI 21.2 %), +53.8 mV zeta potential, and 84 % DEE. The MNCs released about 63 % of the drug in 12 h under varying pH of the simulated gastrointestinal fluid. DSC and x-ray analyses suggested amorphous dispersion of drugs in the MNCs. CAM assay demonstrated the biocompatibility of the MNCs. The MNCs showed hemolysis of <1 %, 85 % mucin adsorption, and stability over three months. The MNCs demonstrated excellent anti-diabetic efficacy in streptozotocin-nicotinamide-induced diabetic rats, continuously lowering blood glucose levels up to 12 h.
Collapse
Affiliation(s)
- Harsh Yadav
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India.
| |
Collapse
|
3
|
Choudhary A, Bains A, Sridhar K, Dhull SB, Goksen G, Sharma M, Chawla P. Recent advances in modifications of exudate gums: Functional properties and applications. Int J Biol Macromol 2024; 271:132688. [PMID: 38806080 DOI: 10.1016/j.ijbiomac.2024.132688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
Gums are high-molecular-weight compounds with hydrophobic or hydrophilic characteristics, which are mainly comprised of complex carbohydrates called polysaccharides, often associated with proteins and minerals. Various innovative modification techniques are utilized, including ultrasound-assisted and microwave-assisted techniques, enzymatic alterations, electrospinning, irradiation, and amalgamation process. These methods advance the process, reducing processing times and energy consumption while maintaining the quality of the modified gums. Enzymes like xanthan lyases, xanthanase, and cellulase can selectively modify exudate gums, altering their structure to enhance their properties. This precise enzymatic approach allows for the use of exudate gums for specific applications. Exudate gums have been employed in nanotechnology applications through techniques like electrospinning. This enables the production of nanoparticles and nanofibers with improved properties, making them suitable for the drug delivery system, tissue engineering, active and intelligient food packaging. The resulting modified exudate gums exhibit improved rheological, emulsifying, gelling, and other functional properties, which expand their potential applications. This paper discusses novel applications of these modified gums in the pharmaceutical, food, and industrial sectors. The ever-evolving field presents diverse opportunities for sustainable innovation across these sectors.
Collapse
Affiliation(s)
- Anchal Choudhary
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey.
| | - Minaxi Sharma
- Haute Ecole Provinciale de Hainaut-Condorcet, 7800 Ath, Belgium.
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|
4
|
Saleem U, Khalid I, Hussain L, Alshammari A, Albekairi NA. Crosslinked PVA- g-poly(AMPS) Nanogels for Enhanced Solubility and Dissolution of Ticagrelor: Synthesis, Characterization, and Toxicity Evaluation. ACS OMEGA 2024; 9:21401-21415. [PMID: 38764664 PMCID: PMC11097175 DOI: 10.1021/acsomega.4c01721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/29/2024] [Accepted: 04/18/2024] [Indexed: 05/21/2024]
Abstract
In this study, we synthesized PVA-g-poly(AMPS) nanogels with the aim of enhancing the solubility and dissolution of ticagrelor (TGR). Ticagrelor, a noncompetitive, reversible P2Y12 receptor antagonist, is prescribed to treat acute coronary syndrome. Ticagrelor has restricted oral bioavailability (≈36%) because of its poor solubility and permeability. The free radical polymerization methodology was employed to synthesize nanogels with varied concentrations of poly(vinyl alcohol) (polymer), 2-acrylamido-2-methylpropanesulfonic acid (monomer), and N,N-methylene bis(acrylamide) (crosslinker). The prepared nanogels were analyzed by swelling studies, % drug entrapment efficiency (DEE), solubility studies, in vitro drug release studies, zeta sizer, Fourier transform infrared (FTIR) spectroscopy, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The optimized formulation (PA5) revealed a particle size of 45.86 nm, with a polydispersity index (PDI) of 0.41 and a %DEE of 85.1%. FTIR spectroscopy, XRD, and SEM confirmed the formation of crosslinked nanogels with amorphous and porous structures, and TGA/DSC proved their thermal stability. In vitro dissolution studies showed 99.91% drug release, and the ticagrelor solubility from the synthesized formulations was significantly improved up to 8.2-fold. All formulations followed the Korsmeyer-Peppas model with the Fickian diffusion as the release mechanism. The toxicity studies carried out on rats and the MTT assay on the Caco-2 cell line validated the biocompatibility of the nanogel formulations. The outcomes of the current study led to the conclusion that the PVA-g-poly(AMPS) nanogels synthesized by us could be used as dedicated pharmaceutical delivery systems to achieve enhanced solubility and dissolution of ticagrelor.
Collapse
Affiliation(s)
- Usman Saleem
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Ikrima Khalid
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Liaqat Hussain
- Department
of Pharmacology, School of Medicine and Public Health, Zhejiang University, Hanzghou 310027, China
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Abdulrahman Alshammari
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Norah A. Albekairi
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Guillaumin S, Gurdal M, Zeugolis DI. Gums as Macromolecular Crowding Agents in Human Skin Fibroblast Cultures. Life (Basel) 2024; 14:435. [PMID: 38672707 PMCID: PMC11051389 DOI: 10.3390/life14040435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Even though tissue-engineered medicines are under intense academic, clinical, and commercial investigation, only a handful of products have been commercialised, primarily due to the costs associated with their prolonged manufacturing. While macromolecular crowding has been shown to enhance and accelerate extracellular matrix deposition in eukaryotic cell culture, possibly offering a solution in this procrastinating tissue-engineered medicine development, there is still no widely accepted macromolecular crowding agent. With these in mind, we herein assessed the potential of gum Arabic, gum gellan, gum karaya, and gum xanthan as macromolecular crowding agents in WS1 skin fibroblast cultures (no macromolecular crowding and carrageenan were used as a control). Dynamic light scattering analysis revealed that all macromolecules had negative charge and were polydispersed. None of the macromolecules affected basic cellular function. At day 7 (the longest time point assessed), gel electrophoresis analysis revealed that all macromolecules significantly increased collagen type I deposition in comparison to the non-macromolecular crowding group. Also at day 7, immunofluorescence analysis revealed that carrageenan; the 50 µg/mL, 75 µg/mL, and 100 µg/mL gum gellan; and the 500 µg/mL and 1000 µg/mL gum xanthan significantly increased both collagen type I and collagen type III deposition and only carrageenan significantly increased collagen type V deposition, all in comparison to the non-macromolecular crowding group at the respective time point. This preliminary study demonstrates the potential of gums as macromolecular crowding agents, but more detailed biological studies are needed to fully exploit their potential in the development of tissue-engineered medicines.
Collapse
Affiliation(s)
- Salome Guillaumin
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, H91 TK33 Galway, Ireland; (S.G.); (M.G.)
| | - Mehmet Gurdal
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, H91 TK33 Galway, Ireland; (S.G.); (M.G.)
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), D04 V1W8 Dublin, Ireland
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, H91 TK33 Galway, Ireland; (S.G.); (M.G.)
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), D04 V1W8 Dublin, Ireland
| |
Collapse
|
6
|
Garg A, Shah K, Chauhan CS, Agrawal R. Ingenious nanoscale medication delivery system: Nanogel. J Drug Deliv Sci Technol 2024; 92:105289. [DOI: 10.1016/j.jddst.2023.105289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Mandal S, Vishvakarma P, Bhumika K. Developments in Emerging Topical Drug Delivery Systems for Ocular Disorders. Curr Drug Res Rev 2024; 16:251-267. [PMID: 38158868 DOI: 10.2174/0125899775266634231213044704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 01/03/2024]
Abstract
According to the current information, using nano gels in the eyes have therapeutic benefits. Industry growth in the pharmaceutical and healthcare sectors has been filled by nanotechnology. Traditional ocular preparations have a short retention duration and restricted drug bioavailability because of the eye's architectural and physiological barriers, a big issue for physicians, patients, and chemists. In contrast, nano gels can encapsulate drugs within threedimensional cross-linked polymeric networks. Because of their distinctive structural designs and preparation methods, they can deliver loaded medications in a controlled and sustained manner, enhancing patient compliance and therapeutic efficacy. Due to their excellent drugloading capacity and biocompatibility, nano-gels outperform other nano-carriers. This study focuses on using nano gels to treat eye diseases and provides a brief overview of their creation and response to stimuli. Our understanding of topical drug administration will be advanced using nano gel developments to treat common ocular diseases such as glaucoma, cataracts, dry eye syndrome, bacterial keratitis, and linked medication-loaded contact lenses and natural active ingredients.
Collapse
Affiliation(s)
- Suraj Mandal
- Department of Pharmacy, IIMT College of Medical Sciences, IIMT University, O-Pocket, Ganganagar, Meerut, 250001, U.P., India
| | - Prabhakar Vishvakarma
- Department of Pharmacy, IIMT College of Medical Sciences, IIMT University, O-Pocket, Ganganagar, Meerut, 250001, U.P., India
| | - Km Bhumika
- Department of Pharmacy, IIMT College of Medical Sciences, IIMT University, O-Pocket, Ganganagar, Meerut, 250001, U.P., India
| |
Collapse
|
8
|
Wu Y, Tao Q, Xie J, Lu L, Xie X, Zhang Y, Jin Y. Advances in Nanogels for Topical Drug Delivery in Ocular Diseases. Gels 2023; 9:gels9040292. [PMID: 37102904 PMCID: PMC10137933 DOI: 10.3390/gels9040292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Nanotechnology has accelerated the development of the pharmaceutical and medical technology fields, and nanogels for ocular applications have proven to be a promising therapeutic strategy. Traditional ocular preparations are restricted by the anatomical and physiological barriers of the eye, resulting in a short retention time and low drug bioavailability, which is a significant challenge for physicians, patients, and pharmacists. Nanogels, however, have the ability to encapsulate drugs within three-dimensional crosslinked polymeric networks and, through specific structural designs and distinct methods of preparation, achieve the controlled and sustained delivery of loaded drugs, increasing patient compliance and therapeutic efficiency. In addition, nanogels have higher drug-loading capacity and biocompatibility than other nanocarriers. In this review, the main focus is on the applications of nanogels for ocular diseases, whose preparations and stimuli-responsive behaviors are briefly described. The current comprehension of topical drug delivery will be improved by focusing on the advances of nanogels in typical ocular diseases, including glaucoma, cataracts, dry eye syndrome, and bacterial keratitis, as well as related drug-loaded contact lenses and natural active substances.
Collapse
Affiliation(s)
- Yongkang Wu
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei 230032, China
| | - Qing Tao
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei 230032, China
| | - Jing Xie
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei 230032, China
| | - Lili Lu
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei 230032, China
| | - Xiuli Xie
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei 230032, China
| | - Yang Zhang
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei 230032, China
| | - Yong Jin
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei 230032, China
| |
Collapse
|
9
|
Froelich A, Jakubowska E, Jadach B, Gadziński P, Osmałek T. Natural Gums in Drug-Loaded Micro- and Nanogels. Pharmaceutics 2023; 15:pharmaceutics15030759. [PMID: 36986620 PMCID: PMC10059891 DOI: 10.3390/pharmaceutics15030759] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Gums are polysaccharide compounds obtained from natural sources, such as plants, algae and bacteria. Because of their excellent biocompatibility and biodegradability, as well as their ability to swell and their sensitivity to degradation by the colon microbiome, they are regarded as interesting potential drug carriers. In order to obtain properties differing from the original compounds, blends with other polymers and chemical modifications are usually applied. Gums and gum-derived compounds can be applied in the form of macroscopic hydrogels or can be formulated into particulate systems that can deliver the drugs via different administration routes. In this review, we present and summarize the most recent studies regarding micro- and nanoparticles obtained with the use of gums extensively investigated in pharmaceutical technology, their derivatives and blends with other polymers. This review focuses on the most important aspects of micro- and nanoparticulate systems formulation and their application as drug carriers, as well as the challenges related to these formulations.
Collapse
|
10
|
Tudu M, Samanta A. Natural polysaccharides: Chemical properties and application in pharmaceutical formulations. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Nanogels: Update on the methods of synthesis and applications for cardiovascular and neurological complications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Subramanian DA, Langer R, Traverso G. Mucus interaction to improve gastrointestinal retention and pharmacokinetics of orally administered nano-drug delivery systems. J Nanobiotechnology 2022; 20:362. [PMID: 35933341 PMCID: PMC9356434 DOI: 10.1186/s12951-022-01539-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Oral delivery of therapeutics is the preferred route of administration due to ease of administration which is associated with greater patient medication adherence. One major barrier to oral delivery and intestinal absorption is rapid clearance of the drug and the drug delivery system from the gastrointestinal (GI) tract. To address this issue, researchers have investigated using GI mucus to help maximize the pharmacokinetics of the therapeutic; while mucus can act as a barrier to effective oral delivery, it can also be used as an anchoring mechanism to improve intestinal residence. Nano-drug delivery systems that use materials which can interact with the mucus layers in the GI tract can enable longer residence time, improving the efficacy of oral drug delivery. This review examines the properties and function of mucus in the GI tract, as well as diseases that alter mucus. Three broad classes of mucus-interacting systems are discussed: mucoadhesive, mucus-penetrating, and mucolytic drug delivery systems. For each class of system, the basis for mucus interaction is presented, and examples of materials that inform the development of these systems are discussed and reviewed. Finally, a list of FDA-approved mucoadhesive, mucus-penetrating, and mucolytic drug delivery systems is reviewed. In summary, this review highlights the progress made in developing mucus-interacting systems, both at a research-scale and commercial-scale level, and describes the theoretical basis for each type of system.
Collapse
Affiliation(s)
- Deepak A Subramanian
- Department of Chemical Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- Department of Chemical Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni Traverso
- Department of Chemical Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
|
14
|
Ng JCK, Toong DWY, Ow V, Chaw SY, Toh H, Wong PEH, Venkatraman S, Chong TT, Tan LP, Huang YY, Ang HY. Progress in drug-delivery systems in cardiovascular applications: stents, balloons and nanoencapsulation. Nanomedicine (Lond) 2022; 17:325-347. [PMID: 35060758 DOI: 10.2217/nnm-2021-0288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Drug-delivery systems in cardiovascular applications regularly include the use of drug-eluting stents and drug-coated balloons to ensure sufficient drug transfer and efficacy in the treatment of cardiovascular diseases. In addition to the delivery of antiproliferative drugs, the use of growth factors, genetic materials, hormones and signaling molecules has led to the development of different nanoencapsulation techniques for targeted drug delivery. The review will cover drug delivery and coating mechanisms in current drug-eluting stents and drug-coated balloons, novel innovations in drug-eluting stent technologies and drug encapsulation in nanocarriers for delivery in vascular diseases. Newer technologies and advances in nanoencapsulation techniques, such as the use of liposomes, nanogels and layer-by-layer coating to deliver therapeutics in the cardiovascular space, will be highlighted.
Collapse
Affiliation(s)
- Jaryl Chen Koon Ng
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore.,Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Daniel Wee Yee Toong
- Department of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore, 639798, Singapore
| | - Valerie Ow
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Su Yin Chaw
- Duke-National University of Singapore Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Hanwei Toh
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore.,Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Philip En Hou Wong
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore.,Duke-National University of Singapore Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Subbu Venkatraman
- Department of Material Science Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Tze Tec Chong
- Duke-National University of Singapore Medical School, 8 College Road, Singapore, 169857, Singapore.,Department of Vascular Surgery, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore
| | - Lay Poh Tan
- Department of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore, 639798, Singapore
| | - Ying Ying Huang
- Department of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore, 639798, Singapore
| | - Hui Ying Ang
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore.,Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore.,Duke-National University of Singapore Medical School, 8 College Road, Singapore, 169857, Singapore
| |
Collapse
|
15
|
Silva JSFD, Oliveira ACDJ, Soares MFDLR, Soares-Sobrinho JL. Recent advances of Sterculia gums uses in drug delivery systems. Int J Biol Macromol 2021; 193:481-490. [PMID: 34710475 DOI: 10.1016/j.ijbiomac.2021.10.145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/19/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
Trees of the genus Sterculia produce polysaccharide-rich exudates, such as karaya gum (Sterculia urens), chicha gum (Sterculia striata), and Sterculia foetida gum. These anionic biomaterials are biodegradable, with high viscosity, low toxicity, and gelling properties in aqueous media. According to these properties, they show promising applications as a polymer matrix for use in drug delivery systems. For this application, both the chemically modified and the unmodified polysaccharide are used. This review focuses on analyzing the state of the art of recent studies on the use of Sterculia gums in a variety of pharmaceutical forms, such as tablets, hydrogels, micro/nanoparticles, and mucoadhesive films. Sterculia gums-based delivery systems have potential to be explored for new drug delivery systems.
Collapse
Affiliation(s)
- Júlia Samara Ferreira da Silva
- Quality Control Core of Medicines and Correlates, Pharmaceutical Sciences Department, Federal University of Pernambuco, Recife, PE, Brazil
| | - Antônia Carla de Jesus Oliveira
- Quality Control Core of Medicines and Correlates, Pharmaceutical Sciences Department, Federal University of Pernambuco, Recife, PE, Brazil
| | - Mônica Felts de La Roca Soares
- Quality Control Core of Medicines and Correlates, Pharmaceutical Sciences Department, Federal University of Pernambuco, Recife, PE, Brazil
| | - José Lamartine Soares-Sobrinho
- Quality Control Core of Medicines and Correlates, Pharmaceutical Sciences Department, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
16
|
Effect of Cryostructuring Treatment on Some Properties of Xanthan and Karaya Cryogels for Food Applications. Molecules 2021; 26:molecules26092788. [PMID: 34065084 PMCID: PMC8125894 DOI: 10.3390/molecules26092788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
Cryogels are novel materials because the manufacturing process known as cryostructuring allows biopolymers to change their properties as a result of repeated controlled freeze-thaw cycles. Hydrogels of xanthan and karaya gums were evaluated after undergoing up to four controlled freeze-thaw cycles in indirect contact with liquid nitrogen (up to -150 °C) to form cryogels. Changes in structural, molecular, rheological, and thermal properties were evaluated and compared to those of their respective hydrogels. Samples were also analyzed by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy with Attenuated Total Reflection (FTIR-ATR), Rotational Rheology (RR), Modulated Differential Scanning Calorimetry (MDSC) and zeta potential (ζ). In general, significant differences (p < 0.05) between the numbers of freeze-thaw cycles were found. Karaya cryogels were not stable to repeated cycles of cryostructuring such as the three-cycle xanthan cryogel, which has the best structural order (95.55%), molecular interactions, and thermal stability, which allows the generation of a novel material with improved thermal and structural properties that can be used as an alternative in food preservation.
Collapse
|
17
|
Raj V, Lee JH, Shim JJ, Lee J. Recent findings and future directions of grafted gum karaya polysaccharides and their various applications: A review. Carbohydr Polym 2021; 258:117687. [DOI: 10.1016/j.carbpol.2021.117687] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
|
18
|
Silva SCCC, Braz EMA, Brito CARS, Alves MMM, Carvalho FAA, Barreto HM, Oliveira AL, Silva DA, Silva-Filho EC. Phthalic anhydride esterified chicha gum: characterization and antibacterial activity. Carbohydr Polym 2021; 251:117077. [PMID: 33142620 DOI: 10.1016/j.carbpol.2020.117077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 01/10/2023]
Abstract
The objective of this research was to modify chicha gum with phthalic anhydride to obtain a new biologically active material. The chemical modification of the gum structure was proven through FTIR, elemental analysis, XRD, TG, and DSC. The derived materials demonstrated excellent inhibitory effect against P. aeruginosa and K. pneumoniae species (rating 100% inhibition) and could also inhibit Escherichia coli growth. The best antimicrobial activity observed for the derivatives suggests that chicha gum hydrophobization due to the addition of phthalic groups improved the interaction of these derivatives with bacterial cell wall components. On the other hand, the derivatives increased CC50 in macrophages but did not present acute toxicity or hemolytic activity, indicating that they are promising for use in prophylaxis or treatment of infections caused by Gram-negative bacteria.
Collapse
Affiliation(s)
- Solranny Carla Cavalcante Costa Silva
- Laboratório Interdisciplinar de Materiais Avançados - LIMAV, Universidade Federal do Piauí, Campus ministro Petrônio Portela, Teresina, PI CEP 64049-550, Brazil; Universidade Estadual do Piauí, Campus Professor Ariston Dias Lima, São Raimundo Nonato, PI CEP: 64770-000, Brazil
| | - Elton Marks Araujo Braz
- Laboratório Interdisciplinar de Materiais Avançados - LIMAV, Universidade Federal do Piauí, Campus ministro Petrônio Portela, Teresina, PI CEP 64049-550, Brazil
| | - Carla Adriana Rodrigues Sousa Brito
- Laboratório de Pesquisa em Microbiologia, Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Teresina, PI CEP 64049-550, Brazil
| | - Michel Muálem Moraes Alves
- Núcleo de Pesquisa em Plantas Medicinais - NPPM, Universidade Federal do Piauí, Campus Ministro Petrônio Portela, Teresina, PI CEP 64049-550, Brazil; Departamento de Morfofisiologia Veterinária, Centro de Ciências Agrárias, Universidade Federal do Piauí, Campus Ministro Petrônio Portela, Teresina, PI CEP 64049-550, Brazil
| | - Fernando Aécio Amorim Carvalho
- Núcleo de Pesquisa em Plantas Medicinais - NPPM, Universidade Federal do Piauí, Campus Ministro Petrônio Portela, Teresina, PI CEP 64049-550, Brazil
| | - Humberto Medeiros Barreto
- Laboratório de Pesquisa em Microbiologia, Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Teresina, PI CEP 64049-550, Brazil
| | - Ana Leite Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Durcilene Alves Silva
- Laboratório Interdisciplinar de Materiais Avançados - LIMAV, Universidade Federal do Piauí, Campus ministro Petrônio Portela, Teresina, PI CEP 64049-550, Brazil
| | - Edson C Silva-Filho
- Laboratório Interdisciplinar de Materiais Avançados - LIMAV, Universidade Federal do Piauí, Campus ministro Petrônio Portela, Teresina, PI CEP 64049-550, Brazil
| |
Collapse
|
19
|
Dhua M, Maiti S, Sen KK. Modified karaya gum colloidal particles for the management of systemic hypertension. Int J Biol Macromol 2020; 164:1889-1897. [DOI: 10.1016/j.ijbiomac.2020.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/23/2020] [Accepted: 08/02/2020] [Indexed: 10/23/2022]
|
20
|
Pinelli F, Ortolà ÓF, Makvandi P, Perale G, Rossi F. In vivo drug delivery applications of nanogels: a review. Nanomedicine (Lond) 2020; 15:2707-2727. [PMID: 33103960 DOI: 10.2217/nnm-2020-0274] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In recent years, nanogels have emerged as promising drug delivery vehicles; their ability in holding active molecules, macromolecules and drugs, together with the capability to respond to external stimuli, makes them a suitable tool for a wide range of applications. These features allow nanogels to be exploited against many challenges of nanomedicine associated with different kinds of pathologies which require the use of specific drug delivery systems. In this review our aim is to give the reader an overview of the diseases that can be treated with nanogels as drug delivery systems, such as cancer, CNS disorders, cardiovascular diseases, wound healing and other diseases of human body. For all of these pathologies, biological in vivo assays can be found in the literature and in this work. We focus on the peculiarities of these nanogels, highlighting their features and their advantages in respect to conventional treatments.
Collapse
Affiliation(s)
- Filippo Pinelli
- Department of Chemistry, Materials & Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131, Milan, Italy
| | - Óscar Fullana Ortolà
- Department of Chemistry, Materials & Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131, Milan, Italy
| | - Pooyan Makvandi
- Institute for Polymers, Composites & Biomaterials, National Research Council, Via Campi Flegrei, 34 - 80078 Pozzuoli (NA), Italy.,Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy.,Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Giuseppe Perale
- Faculty of Biomedical Sciences, University of Southern Switzerland (USI), Via Buffi 13, 6900 Lugano, Switzerland
| | - Filippo Rossi
- Department of Chemistry, Materials & Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131, Milan, Italy
| |
Collapse
|
21
|
Braz EMA, Silva SCCC, Brito CARS, Carvalho FAA, Alves MMM, Barreto HM, Silva DA, Magalhães R, Oliveira AL, Silva-Filho EC. Modified chicha gum by acetylation for antimicrobial and antiparasitic applications: Characterization and biological properties. Int J Biol Macromol 2020; 160:1177-1188. [PMID: 32479951 DOI: 10.1016/j.ijbiomac.2020.05.219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 01/02/2023]
Abstract
It was developed a material to act as an antimicrobial and antiparasitic agent through a modification reaction in the gum structure extracted from the plant Sterculia striata. This material was characterized, the oxidant activity was evaluated and the antimicrobial activity against Candida albicans, Escherichia coli, Pseudomonas aeruginosa, Salmonella Typhimurium and Klebsiella pneumoniae was investigated, in addition to the effect against Leishmania amazonensis, testing its acute toxicity and its cytotoxicity in human cells. Characterization techniques proved the success of chemical modification. The modification led to an increase in antioxidant activity, with excellent antibacterial activity, reaching almost 100% inhibition for P. aeruginosa and S. Typhimurium, and inhibitory effect above 70% against L. amazonensis, with an affinity far superior to the parasite than macrophages. The derivative showed no acute toxicity, it was non-hemolytic, increased cell viability in macrophages and fibroblasts, and stimulated cell proliferation of keratinocytes, thus being a strong candidate to be used as an antimicrobial and antiparasitic agent in biomedical applications.
Collapse
Affiliation(s)
- Elton Marks Araujo Braz
- Laboratório Interdisciplinar de Materiais Avançados - LIMAV, Universidade Federal do Piauí, Campus ministro Petrônio Portela, Teresina, PI CEP 64049-550, Brazil
| | - Solranny Carla Cavalcante Costa Silva
- Laboratório Interdisciplinar de Materiais Avançados - LIMAV, Universidade Federal do Piauí, Campus ministro Petrônio Portela, Teresina, PI CEP 64049-550, Brazil; Universidade Estadual do Piauí, Campus Professor Ariston Dias Lima, São Raimundo Nonato, PI CEP: 64770-000, Brazil
| | - Carla Adriana Rodrigues Sousa Brito
- Laboratório de Pesquisa em Microbiologia, Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Teresina, PI CEP 64049-550, Brazil
| | - Fernando Aécio Amorim Carvalho
- Núcleo de Pesquisa em Plantas Medicinais - NPPM, Universidade Federal do Piauí, Campus Ministro Petrônio Portela, Teresina, PI CEP 64049-550, Brazil
| | - Michel Muálem Moraes Alves
- Núcleo de Pesquisa em Plantas Medicinais - NPPM, Universidade Federal do Piauí, Campus Ministro Petrônio Portela, Teresina, PI CEP 64049-550, Brazil
| | - Humberto Medeiros Barreto
- Laboratório de Pesquisa em Microbiologia, Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Teresina, PI CEP 64049-550, Brazil
| | - Durcilene Alves Silva
- Laboratório Interdisciplinar de Materiais Avançados - LIMAV, Universidade Federal do Piauí, Campus ministro Petrônio Portela, Teresina, PI CEP 64049-550, Brazil
| | - Rui Magalhães
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ana Leite Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Edson C Silva-Filho
- Laboratório Interdisciplinar de Materiais Avançados - LIMAV, Universidade Federal do Piauí, Campus ministro Petrônio Portela, Teresina, PI CEP 64049-550, Brazil.
| |
Collapse
|