1
|
Quoc TT, Bíró K, Pető Á, Kósa D, Haimhoffer Á, Lekli I, Pallér Á, Bak I, Gyöngyösi A, Fehér P, Bácskay I, Ujhelyi Z. The Role of Amphiphilic Compounds in Nasal Nanoparticles. AAPS PharmSciTech 2024; 25:269. [PMID: 39562402 DOI: 10.1208/s12249-024-03000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
Nasal medications hold significant importance and are widely utilized due to their numerous advantageous properties, offering a compelling route for both local and systemic therapeutic effects. Nowadays, the development of nasal particles under 1 micrometer is in the focus of much scientific research. In our experiments, the use of innovative nanotechnology to increase the effectiveness of the active substance was of paramount importance. Our aim was to create solid nanoparticles that enable targeted and effective delivery of the active ingredient into the body. The innovation of this experimental series lies not only in highlighting the importance of amphiphilic compounds in enhancing penetration, but also in the fact that while most nasally administered formulations are in liquid form, our formulation is solid. Liquid formulations frequently suffer from the disadvantage of possible leakage during administration, which can reduce the bioavailability of the active ingredient. In our experiments we created novel drug delivery systems of finely divided powders, which, thanks to the penetration enhancers, can be successfully administered. These enhancers facilitate the swift disintegration and penetration of the particles through the membrane. This represents a new direction in nasal drug delivery methods. The results of our trials are promising in the development of innovative pharmaceutical products and outline the role of amphiphilic compounds in more efficient utilization and targeted application of active substances. According to our results it can be concluded that this innovative approach not only addresses the common issues associated with liquid nasal formulations but also paves the way for more stable and effective delivery methods. The use of finely divided powders for nasal delivery, enabled by penetration enhancers, represents a major breakthrough in the field, providing a dependable alternative to conventional liquid formulations and ensuring improved therapeutic results.
Collapse
Affiliation(s)
- Thinh To Quoc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Krisztina Bíró
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
- University Pharmacy, University of Debrecen Clinical Center, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Ágota Pető
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Dóra Kósa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Ádám Haimhoffer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - István Lekli
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Ádám Pallér
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - István Bak
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Alexandra Gyöngyösi
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary.
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, Debrecen, 4032, Hungary.
| |
Collapse
|
2
|
Xie Y, Ding K, Xu S, Xu H, Ge S, Chang X, Li H, Wang Z, Luo Z, Shan Y, Ding S. Citrus oil gland and cuticular wax inspired multifunctional gelatin film of OSA-starch nanoparticles-based nanoemulsions for preserving perishable fruit. Carbohydr Polym 2024; 342:122352. [PMID: 39048217 DOI: 10.1016/j.carbpol.2024.122352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 07/27/2024]
Abstract
Inspired by the citrus oil gland and cuticular wax, a multifunctional material that stably and continuously released the carvacrol and provided physical defenses was developed to address issues of fresh-cut fruits to microbial infestation and moisture loss. The results confirmed that low molecular weight and loose structure of starch nanoparticles prepared by the ultrasound-assisted Fenton system were preferable for octenyl succinic anhydride modification compared to native starch, achieving a higher degree of substitution (increased by 18.59 %), utilizing in preparing nanoemulsions (NEs) for encapsulating carvacrol (at 5 % level: 81.58 %). Furthermore, the NEs-based gelatin (G) film improved with surface hydrophobic modification by myristic acid (MA) successfully replicated the citrus oil gland and cuticular wax, providing superior antioxidant (enhanced by 3-4 times) and antimicrobial properties (95.99 % and 84.97 % against Staphylococcus aureus and Escherichia coli respectively), as well as the exceptional UV shielding (nearly 0 transmittance in the UV region), mechanical (72 % increase in tensile strength), and hydrophobic (WCA 133.63°). Moreover, the 5%NE-G@MA film inhibited foodborne microbial growth (reduced by 50 %) and water loss (controlled below 15 %), extending the shelf life of fresh-cut navel orange and kiwi. Thus, the multifunctional film was a potential shield for preserving perishable fresh-cut products.
Collapse
Affiliation(s)
- Ying Xie
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ke Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Saiqing Xu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Haishan Xu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Shuai Ge
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xia Chang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Huan Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zijun Wang
- DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310000, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Shenghua Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
3
|
Rosalina R, Kamwilaisak K, Sutthanut K, Srisongkram T, Weerapreeyakul N. Probing the stability and quality of the cellulose-based Pickering emulsion containing sesamolin-enriched sesame oil by chemometrics-assisted ATR-FTIR spectroscopy. Food Chem 2024; 452:139555. [PMID: 38728896 DOI: 10.1016/j.foodchem.2024.139555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
This study presents the employment of Fourier transform infrared (FTIR) spectroscopy with attenuated total reflection and principal component analysis (PCA) to analyze the stability of a Pickering emulsion stabilized by carboxylated-cellulose nanocrystal (cCNC) comprising sesame oil phases with or without sesamolin. FTIR measurements identified an intermolecular hydrogen bond between the ester group of the triglyceride and the carboxyl group of the cCNC to create the emulsion droplet. The spectral bands from the hydroxyl group vibration (3700-3050 cm-1), carbonyl (1744 cm-1), CO groups of the ester triglyceride and cCNC (1160-998 cm-1) markedly discriminated between stabilized and destabilized emulsions. The PCA of FTIR spectra detected the change of molecular interaction during storage according to creaming, aggregation, and coalescence and changes in physicochemical parameters such as droplet size, refractive index, and zeta potential. Hence, PCA enabled the observation of the destabilization of emulsion in real-time.
Collapse
Affiliation(s)
- Reny Rosalina
- Graduate School (Biomedical Sciences Program), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Khanita Kamwilaisak
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Khaetthareeya Sutthanut
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tarapong Srisongkram
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natthida Weerapreeyakul
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
4
|
Sadeghi M, Habibi Y, Bohlool T, Mohamadnia Z, Nikfarjam N, Norouzi M. Fabrication of a self-healing hydrogel with antibacterial activity using host-guest interactions between dopamine-modified alginate and β-cyclodextrin dimer. Int J Biol Macromol 2024; 273:132827. [PMID: 38834128 DOI: 10.1016/j.ijbiomac.2024.132827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Self-healing hydrogels possess an ability to recover their functionality after experiencing damage by regenerating cross-links. The main challenge in making self-healing hydrogels based on host-guest (HG) interactions is their limited mechanical strength, which can be solved using beta-cyclodextrin dimers (β-CDsD). Here, β-CDsD as a host cross-linker was used to increase the mechanical property of the HG interactions. Alginate with acceptable biocompatibility was modified by dopamine (ALG-DOP) and employed as a guest polymer. Self-healing hydrogel was developed between them, and Ag nanoparticles were added to create an antibacterial activity. Dopamine with appropriate size and suitable adhesiveness established HG interactions with β-CDsD, and cells were able to grow well on hydrogel. This hydrogel showed an impressive self-healing capability <5 min. These hydrogels revealed a respectable porosity from 15 to 55 μm essential for exchanging the substances required for cell growth and cell waste elimination. Biocompatibility was investigated against NIH 3 T3 fibroblasts cells, and the results showed that the cells grew well. The in vitro release of curcumin from the hydrogel was examined in PBS at pH of 7.4. The hydrogel can be a perfect candidate for controlled drug release, and wound-dressing due to self-healing property, antibacterial activity, adhesion, and biocompatibility.
Collapse
Affiliation(s)
- Moslem Sadeghi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan, 45137-66731, Iran
| | - Younes Habibi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan, 45137-66731, Iran
| | - Tohid Bohlool
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan, 45137-66731, Iran
| | - Zahra Mohamadnia
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan, 45137-66731, Iran.
| | - Nasser Nikfarjam
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan, 45137-66731, Iran; Department of Chemical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, United States.
| | - Mastaneh Norouzi
- Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| |
Collapse
|
5
|
Wang N, Zhang C, Li H, Zhang D, Wu J, Li Y, Yang L, Zhang N, Wang X. Addition of Canna edulis starch and starch nanoparticles to stabilized Pickering emulsions: In vitro digestion and fecal fermentation. Int J Biol Macromol 2024; 258:128993. [PMID: 38163505 DOI: 10.1016/j.ijbiomac.2023.128993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Starch nanoparticles (SNPs) were prepared through acid hydrolysis of Canna edulis native starch and modified with octenyl succinic anhydride (OSA) to yield OS-starch and OS-SNPs. These modified particles were used to stabilize curcumin-loaded Pickering emulsions. Effects on gut microbiota during in vitro fecal fermentation were examined. The surface of OS-starch exhibits a porous structure, while OS-SNPs display layered grooves. OSA modification was confirmed by Fourier transform infrared spectroscopy (with peaks at 1728 cm-1 and 1573 cm-1) and proton nuclear magnetic resonance spectra (0.5-2 ppm). The degree of substitution for OS-starch and OS-SNPs is 0.0106 ± 0.0004 and 0.0079 ± 0.0003, respectively. Following modification, the crystallinity decreased from 35.69 ± 0.46 % (native starch) to 30.17 ± 0.70 % (OS-starch), SNPs decreased from 45.87 ± 0.89 % to 43.63 ± 0.64 % (OS-SNPs). Contact angles for OS-starch and OS-SNPs are 77.47 ± 1.78 and 55.57 ± 0.21, respectively. OS-SNPs exhibited superior emulsification properties compared to OS-starch, forming stable Pickering emulsions with pseudoplastic fluid behavior and enhanced curcumin storage protection over 14 days (60.88 ± 4.26 %) with controlled release. Stabilizing Pickering emulsions with OS-starch and OS-SNPs positively affected on gut microbiota and improved the intestinal environment, showing promise for their application in transportation systems and innovative prebiotic food formulations.
Collapse
Affiliation(s)
- Nan Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Chi Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Houxier Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Dachuan Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Jiahui Wu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Yan Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Li Yang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Nan Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Xueyong Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China.
| |
Collapse
|
6
|
Chen Y, Han X, Chen DL, Ren YP, Yang SY, Huang YX, Yang J, Zhang L. Dry Ball-Milled Quinoa Starch as a Pickering Emulsifier: Preparation, Microstructures, Hydrophobic Properties and Emulsifying Properties. Foods 2024; 13:431. [PMID: 38338566 PMCID: PMC10855821 DOI: 10.3390/foods13030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
This research supplied a "cleaner-production" way to produce "clean-label" quinoa starch-based Pickering emulsifier with excellent emulsifying properties. The effects of dry ball-milling time and speed on the multi-scale structures and emulsifying properties of quinoa starch were studied. With increasing ball-milling time and speed, particle size first decreased and then increased, the crystallinity, lamellar structure and short-range ordered structure gradually decreased, and contact angle gradually increased. The increased contact angle might be related to the increased oil absorption properties and the decreased water content. The emulsification properties of ball-milled quinoa starch (BMQS)-based Pickering emulsions increased with the increase in ball-milling time and speed, and the emulsions of BMQS-4 h, 6 h, 8 h, and 600 r reached the full emulsification state. After 120 days' storage, the oil droplets of BMQS-2 h (BMQS-400 r) deformed, the oil droplets increased, and the emulsification index decreased. The emulsification index and the oil droplets of BMQS-4 h, 6 h, 8 h and 600 r-based emulsions did not show obvious changes after storage, indicating the good emulsifying stability of these BMQS-based emulsions, which might be because that the relatively larger amount of starch particles that dispersed in the voids among the oil droplets could act as stronger network skeletons for the emulsion gel. This Pickering emulsifier was easily and highly efficiently produced and low-cost, having great potential to be used in the food, cosmetic and pharmaceutical industries.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Liang Zhang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou 225127, China; (Y.C.); (X.H.); (D.-L.C.); (Y.-P.R.); (S.-Y.Y.); (Y.-X.H.); (J.Y.)
| |
Collapse
|
7
|
Johannesson J, Pathare MM, Johansson M, Bergström CAS, Teleki A. Synergistic stabilization of emulsion gel by nanoparticles and surfactant enables 3D printing of lipid-rich solid oral dosage forms. J Colloid Interface Sci 2023; 650:1253-1264. [PMID: 37478742 DOI: 10.1016/j.jcis.2023.07.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/24/2023] [Accepted: 07/09/2023] [Indexed: 07/23/2023]
Abstract
Pharmaceutical formulation of oral dosage forms is continuously challenged by the low solubility of new drug candidates. Pickering emulsions, emulsions stabilized with solid particles, are a promising alternative to surfactants for developing long-term stable emulsions that can be tailored for controlled release of lipophilic drugs. In this work, a non-emulsifying lipid-based formulation (LBF) loaded with fenofibrate was formulated into an oil-in-water (O/W) emulsion synergistically stabilized by stearic acid and silica (SiO2) nanoparticles. The emulsion had a droplet size of 341 nm with SiO2 particles partially covering the oil-water interface. In vitro lipid digestion was faster for the emulsion compared to the corresponding LBF due to the larger total surface area available for digestion. Cellulose biopolymers were added to the emulsion to produce a gel for semi-solid extrusion (SSE) 3D printing into tablets. The emulsion gel showed suitable rheological attributes for SSE, with a trend of higher viscosity, yield stress, and storage modulus (G'), compared to a conventional self-emulsifying lipid-based emulsion gel. The developed emulsion gel allows for a non-emulsifying LBF to be transformed into solid dosage forms for rapid lipid digestion and drug release of a poorly water-soluble drug in the small intestine.
Collapse
Affiliation(s)
- Jenny Johannesson
- Department of Pharmacy, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Malhar Manik Pathare
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Mathias Johansson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences (SLU), SE-750 07 Uppsala, Sweden
| | | | - Alexandra Teleki
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
8
|
Luo K, Zhu X, Kim YR. Short-chain glucan self-assembly for green synthesis of functional biomaterials: Mechanism, synthesis, and microstructural control. Carbohydr Polym 2023; 318:121140. [PMID: 37479447 DOI: 10.1016/j.carbpol.2023.121140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/23/2023]
Abstract
Short-chain glucan (SCG) is a linear homopolymer containing 10 to 50 glucose units linked with α(1,4) glycosidic bonds. With its abundant, low-cost, nontoxic, biodegradable/biocompatible nature, self-assembled SCG particles (SSC) have emerged as functional biomaterials, which have recently attracted tremendous attentions in various fields. SCG self-assembly occurs through the spontaneous association of molecules under equilibrium conditions into stable and structurally well-defined nanoscale or micrometer-scale aggregates, which is governed by various intermolecular non-covalent interactions, including hydrogen-bonding, electrostatic, hydrophobic, and van der Waals. With precise and effective control of the self-assembly process of SSC, its structural modulation and function integration can be expected. Thus, we convinced that SCG self-assembly could provide an effective means of developing starch-based functional biomaterials with beneficial health properties and wide application in food industries. In this review, we provide an overview of recent advances in the green approach for the self-assembly of SSC, as well as the influence of thermodynamic and kinetic factors on its morphology and physicochemical properties. We highlight recent contributions to developing strategies for the construction of SSC with increasing complexity and functionality that are suitable for a variety of food applications. Finally, we briefly outline our perspectives and discuss the challenges in the field.
Collapse
Affiliation(s)
- Ke Luo
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China.
| | - Xiaoning Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Young-Rok Kim
- Institute of Life Science and Resources & Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, South Korea.
| |
Collapse
|
9
|
Zhang Q, Zhao Q, Zhu B, Chen R, Zhou Y, Pei X, Zhou H, An H, Tan Y, Chen C. Acetalized starch-based nanoparticles stabilized acid-sensitive Pickering emulsion as a potential antitumor drug carrier. Int J Biol Macromol 2023:125393. [PMID: 37331543 DOI: 10.1016/j.ijbiomac.2023.125393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Pickering emulsions are attracting increased attention owing to their therapeutic applications. However, the slow-release property of Pickering emulsions and the in vivo solid particle accumulation caused by the solid particle stabilizer film limit their applications in therapeutic delivery. In this study, drug-loaded, acid-sensitive Pickering emulsions were prepared using acetal-modified starch-based nanoparticles as stabilizers. The acetalized starch-based nanoparticles (Ace-SNPs) not only act as a solid-particle emulsifier to stabilize Pickering emulsions but also exhibit acid sensitivity and degradability, conducive to the destabilization of Pickering emulsions to release the drug and reduce the effect of particle accumulation in an acidic therapeutic environment. In vitro drug release profiles show that 50 % of curcumin was released in 12 h in an acidic medium (pH 5.4), whereas only 14 % of curcumin was released in 12 h at higher pH (7.4), indicating that the Ace-SNP stabilized Pickering emulsion possess good acid-responsive release characteristics in acidic environments. Moreover, acetalized starch-based nanoparticles and their degradation products showed good biocompatibility, and the resulting curcumin-loaded Pickering emulsions exhibited significant anticancer activity. These features suggest that the acetalized starch-based nanoparticle-stabilized Pickering emulsion has the potential for application as an antitumor drug carrier to enhance therapeutic effects.
Collapse
Affiliation(s)
- Qimeng Zhang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China; Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Qifan Zhao
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Bingbing Zhu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Rong Chen
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Yating Zhou
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Xiaopeng Pei
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| | - Hua Zhou
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Huiyong An
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.
| | - Ying Tan
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Chengshui Chen
- Department of Puelmonary and Critical Care Medicine, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China; Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
10
|
Benyaya M, Bolzinger MA, Chevalier Y, Ensenat S, Bordes C. Pickering emulsions stabilized with differently charged particles. SOFT MATTER 2023. [PMID: 37318280 DOI: 10.1039/d3sm00305a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
For addressing health issues and ecological concerns, the cosmetic and pharmaceutical industries are facing the challenge of designing emulsions without the use of surfactants. Emulsions stabilized by colloidal particles, known as Pickering emulsions, are promising in this matter. In this article, three different types of particles (neutral, anionic and cationic) are used alone or in binary mixtures as stabilizers of Pickering emulsions. The influence of the particles' charge on the emulsions' properties and the synergies between the different types of particles are studied. It is demonstrated that the kinetics of adsorption of the particles at the water/oil interface control the coverage and their organization at the droplet surface, rather than their interactions after adsorption. Binary mixtures of differently charged particles are a powerful way to control the droplet coverage and the particle loading in the emulsions. In particular, the combination of anionic and cationic particles led to smaller droplets and higher particle coverage of emulsion droplets.
Collapse
Affiliation(s)
- Mathis Benyaya
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5007, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), 43 bd du 11 Novembre 1918, 69622, Villeurbanne, France.
| | - Marie-Alexandrine Bolzinger
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5007, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), 43 bd du 11 Novembre 1918, 69622, Villeurbanne, France.
| | - Yves Chevalier
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5007, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), 43 bd du 11 Novembre 1918, 69622, Villeurbanne, France.
| | - Salomé Ensenat
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5007, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), 43 bd du 11 Novembre 1918, 69622, Villeurbanne, France.
| | - Claire Bordes
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5007, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), 43 bd du 11 Novembre 1918, 69622, Villeurbanne, France.
| |
Collapse
|
11
|
Synthesis of functionalized janus hybrid nanosheets for one-step construction of pickering emulsion and selective photodegradation of water-soluble dyes. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
12
|
Sheng Y, Yu Q, Huang Y, Zhu Q, Chen Z, Wu W, Yi T, Lu Y. Pickering Emulsions Enhance Oral Bioavailability of Curcumin Nanocrystals: The Effect of Oil Types. Pharmaceutics 2023; 15:pharmaceutics15051341. [PMID: 37242583 DOI: 10.3390/pharmaceutics15051341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Nanocrystals (NCs) have the potential to enhance the oral bioavailability of Class IV drugs in the Biopharmaceutical Classification System (BCS) due to the absorption of the intact crystals. The performance is compromised by the dissolution of NCs. Drug NCs have recently been adopted as solid emulsifiers to prepare nanocrystal self-stabilized Pickering emulsions (NCSSPEs). They are advantageous in high drug loading and low side effects due to the specific drug loading mode and the absence of chemical surfactants. More importantly, NCSSPEs may further enhance the oral bioavailability of drug NCs by impeding their dissolution. This is especially true for BCS IV drugs. In this study, curcumin (CUR), a typical BCS IV drug, was adopted to prepare CUR-NCs stabilized Pickering emulsions using either indigestible (isopropyl palmitate, IPP) or digestible (soybean oil, SO) oils, i.e., IPP-PEs and SO-PEs. The optimized formulations were spheric with CUR-NCs adsorbed on the water/oil interface. The CUR concentration in the formulation reached 20 mg/mL, which was far beyond the solubility of CUR in IPP (158.06 ± 3.44 μg/g) or SO (124.19 ± 2.40 μg/g). Moreover, the Pickering emulsions enhanced the oral bioavailability of CUR-NCs, being 172.85% for IPP-PEs and 152.07% for SO-PEs. The digestibility of the oil phase affected the amounts of CUR-NCs that remained intact in lipolysis and, thus, the oral bioavailability. In conclusion, converting NCs into Pickering emulsions provides a novel strategy to enhance the oral bioavailability of CUR and BCS IV drugs.
Collapse
Affiliation(s)
- Yuze Sheng
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qin Yu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Yanping Huang
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Tao Yi
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macau, China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
| |
Collapse
|
13
|
Mirzaaghaei M, Nasirpour A, Keramat J, Goli SAH, Dinari M, Desobry S. Influence of fatty acid-esterified waxy maize starch type and concentration on stability and properties of oil-in-water emulsions. Int J Biol Macromol 2023; 233:123526. [PMID: 36736973 DOI: 10.1016/j.ijbiomac.2023.123526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
In the current study, native and different fatty acid-esterified waxy maize starches (octanoate, myristoate, and stearoate), followed by an OSA-potato starch (as an industrial emulsifier) were used to prepare sunflower oil-in-water (O/W) emulsion. The effect of emulsifier type and concentration were evaluated on properties of emulsions in terms of mean droplet size, droplet size distribution, and creaming index. To prepare the emulsion, the emulsifier to oil ratios of 1.25 and 0.5 for octanoate and industrial emulsifier (control) were considered as the selected formulations based on the lowest creaming index (2.63 and 0 %, respectively). The influence of various pHs and ionic strengths on droplet size, span and zeta potential value was similar for both produced emulsions. Therefore, the fatty acid-esterified starch could be suggested as a promising environmentally friendly alternative to industrial emulsifiers for fabrication of emulsions with similar stability.
Collapse
Affiliation(s)
- Marzieh Mirzaaghaei
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran.
| | - Ali Nasirpour
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran
| | - Javad Keramat
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran
| | - Sayed Amir Hossein Goli
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156 83111, Iran
| | - Stephane Desobry
- Laboratoire d'Ingénierie des Biomolécules (LIBio), Université de Lorraine, 2 avenue de la Forêt de Haye, BP 20163, 54505 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
14
|
Zhang F, Shen R, Xue J, Yang X, Lin D. Characterization of bacterial cellulose nanofibers/soy protein isolate complex particles for Pickering emulsion gels: The effect of protein structure changes induced by pH. Int J Biol Macromol 2023; 226:254-266. [PMID: 36460250 DOI: 10.1016/j.ijbiomac.2022.11.245] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]
Abstract
In this work, the influence of soy protein isolated at different pH values (1-9) on the self-assembly behaviors of bacterial cellulose nanofibers/soy protein isolate (BCNs/SPI) colloidal particles via anti-solvent precipitation were investigated. The results showed that the formation of BCNs/SPI at pH values of 1-5 was mainly driven by electrostatic interaction, while the formation of those at pH values of 5-9 was driven by weak molecular interactions including hydrogen bonding and steric-hindrance effect. The FTIR demonstrated that the conformation of protein involved a transition from order to disorder at the level of secondary structure as pH values were away from the isoelectric point. The fluorescence spectroscopy and UV-vis adsorption spectroscopy indicated that hydrophobic region of SPI at pH value of 5 displayed more exposed as compared with that at pH values away from the isoelectric point. The changes in structure conformation of SPI induced by pH values led to the changes in properties of the BCNs/SPI colloidal particles including particle size, microstructure, crystallinity, hydrophily, thermal stability, and rheological properties. Furthermore, the structures of BCNs/SPI colloidal particles at different pH values significantly affected the stability of Pickering emulsion gels stabilized by the corresponding complex colloidal particles. This study provided a theoretical basis for the design of food-grade Pickering emulsion gels stabilized by BCNs/SPI complex colloidal particles.
Collapse
Affiliation(s)
- Fengrui Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China; Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Rui Shen
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China; Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jia Xue
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China; Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China; Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Dehui Lin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China; Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
15
|
Pickering emulsion stabilized by temperature-sensitive PS@PNIPA nanoparticles as microcontainers. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Ghanooni S, Karimi B, Nikfarjam N. Preparation of a Dual-Functionalized Acid-Base Macroporous Polymer via High Internal Phase Emulsion Templating as a Reusable Catalyst for One-Pot Deacetalization-Henry Reaction. ACS OMEGA 2022; 7:30989-31002. [PMID: 36092616 PMCID: PMC9453793 DOI: 10.1021/acsomega.2c02973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
A macroporous dual-functional acid-base covalent organic polymer catalyst poly(St-VBC)-NH2-SO3H was prepared using high internal phase emulsion polymerization using vinylbenzyl chloride (VBC), styrene (St), and divinylbenzene (DVB) as substrates toluene as a porogenic solvent, and subsequent modification with ethylenediamine and 1,3-propane sultone. The role of various amounts of toluene as the porogenic solvent as well as the amount of 1,3-propane sultone (different ratio of acid/base sites) on the structure of the prepared materials have been carefully investigated. The prepared materials were characterized by Fourier transform infrared (FT-IR), CHNS elemental analysis, energy-dispersive X-ray (EDX), elemental mapping, field emission scanning electron microscopy (FE-SEM), and thermalgravimetric analysis (TGA). The catalytic activity of the poly(St-VBC)-NH2-SO3H series with different acid/base densities was assessed for one-pot cascade C-C bond-forming reactions involving deacetylation-Henry reactions. The poly(St-VBC)-NH2-SO3H(20) sample bearing 1.82 mmol/g of N (base site) and 1.16 mmol/g (acid site) showed the best catalytic activity. The catalyst demonstrated superior activity compared to the homogeneous catalysts, poly(St-DVB)-SO3H+EDA, poly(St-VBC)-NH2+chlorosulfonic acid, and poly(St-DVB)-SO3H+poly(St-VBC)-NH2 as the catalyst system. The optimized catalyst showed excellent catalytic performance with 100% substrate conversion and 100% yield of the final product in the one-pot production of β-nitrostyrene from benzaldehyde dimethyl acetal under cascade reactions comprising acid-catalyzed deacetalization and base-catalyzed Henry reactions. It was shown that these catalysts were reusable for up to four consecutive runs with a very slight loss of activity. The excellent performance of the catalyst was attributed to the excellent chemical and physical properties of the developed support since it provides an elegant route for preparing site-isolated acid-base dual heterogenized functional groups and preventing their deactivation via chemical neutralization.
Collapse
Affiliation(s)
- Saeed Ghanooni
- Department
of Chemistry, Institute for Advanced Studies
in Basic Sciences (IASBS), Prof. Sobouti Boulevard, Zanjan 45137-66731, Iran
| | - Babak Karimi
- Department
of Chemistry, Institute for Advanced Studies
in Basic Sciences (IASBS), Prof. Sobouti Boulevard, Zanjan 45137-66731, Iran
- Research
Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, Zanjan 45137-66731, Iran
| | - Nasser Nikfarjam
- Department
of Chemistry, Institute for Advanced Studies
in Basic Sciences (IASBS), Prof. Sobouti Boulevard, Zanjan 45137-66731, Iran
| |
Collapse
|
17
|
Enzymatically modified quinoa starch-based Pickering emulsion: Effect of enzymolysis and emulsifying conditions. Int J Biol Macromol 2022; 219:824-834. [PMID: 35963347 DOI: 10.1016/j.ijbiomac.2022.08.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/16/2022] [Accepted: 08/07/2022] [Indexed: 11/20/2022]
Abstract
Both the effects of enzymolysis condition on the microstructures and emulsifying property of enzymatic modified quinoa starch (EMQS) and the effects of emulsion formulation on the EMQS based emulsions were investigated. The emulsifying capacity (EC) and stability (ES) of EMQS were positive correlated with enzyme amount (0-2.4 % w/wstarch). The particle sizes of EMQS decreased and its hydrophobicity increased with increasing enzyme amount (0-2.4 % w/wstarch), which were the main reasons for the increasing emulsifying performance of EMQS. With the increasing starch concentration, the EC of the EMQS increased, the oil droplet size of the emulsion decreased. With the oil/water ratios ranging from 1:9 to 6:4, the emulsification index (EI) and oil droplet size of the emulsion increased. EMQS based emulsion had a relatively good stability in the pH range of 2-10. This study lays the foundation for the application of EMQS as a stable clean-label Pickering emulsifier.
Collapse
|
18
|
Kamwilaisak K, Rittiwut K, Jutakridsada P, Iamamorphanth W, Pimsawat N, Knijnenburg JTN, Theerakulpisut S. Rheology, stability, antioxidant properties, and curcumin release of oil-in-water Pickering emulsions stabilized by rice starch nanoparticles. Int J Biol Macromol 2022; 214:370-380. [PMID: 35691427 DOI: 10.1016/j.ijbiomac.2022.06.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 01/25/2023]
Abstract
Modification of rice starch nanoparticles (SNP) as an emulsifier in Pickering emulsions is reported in this work. The SNP was prepared by HCl hydrolysis with different resident times and subsequently modified via crosslinking by citric acid using various crosslinking times to improve the hydrophobicity of SNP. The modified SNP was used to prepare sunflower oil-in-water Pickering emulsions loaded with curcumin. The optimal hydrolysis conditions (2.2 M HCl, 6 days) produced SNP with a 21.87 ± 0.69 % yield and 45.56 ± 0.00 % crystallinity. The citric acid-modified SNP with a 6-h crosslinking period (SNP-M-6 h) had a water contact angle of 87.2°. The suitable Pickering emulsion containing 30 wt% curcumin-loaded sunflower oil was stabilized by 3.0 wt% SNP-M-6 h. This Pickering emulsion had shear thinning properties with a pseudoplastic fluid behavior and was characterized by a droplet size of 47.16 ± 4.22 μm with a high degree of stability over five weeks of storage. Furthermore, the curcumin release from the emulsion depended on the pH, and curcumin could maintain its free radical scavenging quality. A very beneficial property of the Pickering emulsion is that it can slowly release curcumin at low pH, but more rapid release at higher pH, making it a potentially excellent candidate for drug delivery through oral intake.
Collapse
Affiliation(s)
- Khanita Kamwilaisak
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand; Sustainable infrastructure Research and Development Center, Khon Kaen University, Khon Kaen 40002, Thailand..
| | - Kanokwan Rittiwut
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pasakorn Jutakridsada
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wimonporn Iamamorphanth
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nutsupa Pimsawat
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jesper T N Knijnenburg
- Biodiversity and Environmental Management Division, International College, Khon Kaen University. Khon Kaen 40002, Thailand
| | - Somnuk Theerakulpisut
- EMCO (Energy management and conservation office), Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
19
|
Aslam S, Akhtar A, Nirmal N, Khalid N, Maqsood S. Recent Developments in Starch-Based Delivery Systems of Bioactive Compounds: Formulations and Applications. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09311-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Li Z, Jiang X, Liu H, Yao Z, Liu A, Ming L. Evaluation of Hydrophilic and Hydrophobic Silica Particles on the Release Kinetics of Essential Oil Pickering Emulsions. ACS OMEGA 2022; 7:8651-8664. [PMID: 35309467 PMCID: PMC8928567 DOI: 10.1021/acsomega.1c06666] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/18/2022] [Indexed: 05/04/2023]
Abstract
Colloidal particle-stabilized emulsions have recently gained increasing interest as delivery systems for essential oils. Despite the use of silica particles in food and pharmaceutical applications, the formation and release of hydrophilic and hydrophobic silica particle-stabilized emulsions are still not well studied. Thus, in this study, the structures of hydrophilic (A200, A380, 244FP, and 3150) and hydrophobic (R202 and R106) silica were deeply characterized using the solid state, contact angle, and other properties that could affect the formation of emulsions. Following that, Mosla chinensis essential oil emulsions were stabilized with different types of silica, and their characteristics, particularly their release behavior, were studied. Fick's second law was used to investigate the mechanism of release. Additionally, six mathematical models were employed to assess the experimental data of release: zero-order, first-order, Higuchi, Hixson-Crowell, Peppas, and Page models. The release mechanism of essential oils demonstrated that diffusion was the dominant mechanism, and the fitting results for the release kinetics confirmed that the release profiles were governed by the Higuchi model. The contact angle and specific surface area were the key properties that affect the release of essential oils from emulsions. Hydrophilic A200 was found to be capable of delivering essential oils more efficiently, and silica particles could be extended to achieve the controlled release of bioactives. This study showed that understanding the impact of silica particles on the release behavior provided the basis for modulating and mapping material properties to optimize the performance of emulsion products.
Collapse
|
21
|
Li Z, Jiang X, Yao Z, Chen F, Zhu L, Liu H, Ming L. Chitosan functionalized cellulose nanocrystals for stabilizing Pickering emulsion: Fabrication, characterization and stability evaluation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127769] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Zhu Y, Wang A. Pickering emulsions and foams stabilization based on clay minerals. DEVELOPMENTS IN CLAY SCIENCE 2022:169-227. [DOI: 10.1016/b978-0-323-91858-9.00001-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Saffarionpour S, Diosady LL. Curcumin, a potent therapeutic nutraceutical and its enhanced delivery and bioaccessibility by pickering emulsions. Drug Deliv Transl Res 2022; 12:124-157. [PMID: 33677795 DOI: 10.1007/s13346-021-00936-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 01/10/2023]
Abstract
Curcumin is a biomolecule with functional moieties, which contribute to its anti-inflammatory, anticancer, and antioxidant properties. It has shown several therapeutic effects on treating inflammatory and neurodegenerative diseases and contributes to the reduction of oxidative stress and damage to body tissues. However, its low solubility and fast metabolism limit its absorption in the gastrointestinal (GI) tract and lead to its low bioavailability. Preparation of Pickering emulsions stabilized with mineral or biopolymer-based nanoparticles can be an effective strategy for enhancing the stability of curcumin against degradation, increasing its bioaccessibility in the GI tract, and achieving its controlled release at various locations based on changes in environmental conditions. Various nanoparticles prepared from minerals, proteins, and polysaccharides show potential for stabilizing the curcumin-loaded emulsions, and their wettability can be altered through complexation and formation of hybrid nanoparticles. Stabilization of Pickering emulsions with polysaccharide-based nanoparticles and their complexes can enhance the stability of the curcumin against degradation. Moreover, various protein-based nanoparticles and their conjugated forms with other proteins or polysaccharides can enable the preparation of high internal phase Pickering emulsions (HIPEs) with concomitant higher loading and bioaccessibility of the curcumin molecule. In light of the several therapeutic properties of curcumin, this review article aims to highlight recent studies and the strategies used for the preparation of curcumin Pickering emulsions stabilized by various nanoparticles for enhancing its bioaccessibility during metabolism. These may be useful in pharmaceutical and food industries for drug development and delivery and fortification of food products with this nutraceutical component.
Collapse
Affiliation(s)
- Shima Saffarionpour
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.
| | - Levente L Diosady
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Sun C, Hu Y, Yu X, Zhu Z, Hao S, Du X. Morphological, structural and physicochemical properties of rice starch nanoparticles prepared via ultra-high pressure homogenization. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2021. [DOI: 10.1515/ijfe-2021-0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Native rice starches were treated with five periods of ultra-high pressure homogenization (UHPH) under each of 60, 80, 100, 120, 140 and 160 MPa, respectively. The morphological, structural and physicochemical properties of starches treated with UHPH were examined. The mean particle diameter of starch nanoparticles ranged between 154.20 and 260.40 nm. SEM revealed that the granular amorphous region of starch granules was damaged under pressures between 60 and 80 MPa, and the crystalline region was further destroyed under pressures as high as 100–160 MPa. DSC demonstrated that the gelatinization temperatures and enthalpies of nanoparticles reduced. The relative crystallinity reduced from 22.90 to 13.61% as the pressure increased. FTIR showed that the absorbance ratio at 1047/1022 cm−1 decreased, and increased at 1022/995 cm−1. RVA results indicated that the viscosity of starch samples increased between 60 and 120 MPa, and the reverse effect was observed under 140 and 160 MPa.
Collapse
Affiliation(s)
- Chengyi Sun
- Anhui Engineering Laboratory for Agro-Products Processing , Anhui Agricultural University , No. 130 Western Changjiang Road , Hefei , 230036 , China
| | - Yuqing Hu
- Anhui Engineering Laboratory for Agro-Products Processing , Anhui Agricultural University , No. 130 Western Changjiang Road , Hefei , 230036 , China
| | - Xietian Yu
- Anhui Engineering Laboratory for Agro-Products Processing , Anhui Agricultural University , No. 130 Western Changjiang Road , Hefei , 230036 , China
| | - Zhijie Zhu
- Anhui Engineering Laboratory for Agro-Products Processing , Anhui Agricultural University , No. 130 Western Changjiang Road , Hefei , 230036 , China
| | - Shuai Hao
- Anhui Engineering Laboratory for Agro-Products Processing , Anhui Agricultural University , No. 130 Western Changjiang Road , Hefei , 230036 , China
| | - Xianfeng Du
- Anhui Engineering Laboratory for Agro-Products Processing , Anhui Agricultural University , No. 130 Western Changjiang Road , Hefei , 230036 , China
| |
Collapse
|
25
|
Rigg A, Champagne P, Cunningham MF. Polysaccharide-Based Nanoparticles as Pickering Emulsifiers in Emulsion Formulations and Heterogenous Polymerization Systems. Macromol Rapid Commun 2021; 43:e2100493. [PMID: 34841604 DOI: 10.1002/marc.202100493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/27/2021] [Indexed: 12/20/2022]
Abstract
Bio-based Pickering emulsifiers are a nontoxic alternative to surfactants in emulsion formulations and heterogenous polymerizations. Recent demand for biocompatible and sustainable formulations has accelerated academic interest in polysaccharide-based nanoparticles as Pickering emulsifiers. Despite the environmental advantages, the inherent hydrophilicity of polysaccharides and their nanoparticles limits efficiency and application range. Modification of the polysaccharide surface is often required in the development of ultrastable, functional, and water-in-oil (W/O) systems. Complex surface modification calls into question the sustainability of polysaccharide-based nanoparticles and is identified as a significant barrier to commercialization. This review summarizes the use of nanocelluloses, -starches, and -chitins as Pickering emulsifiers, highlights trends and best practices in surface modification, and provides recommendations to expedite commercialization.
Collapse
Affiliation(s)
- Amanda Rigg
- Department of Chemical Engineering, 19 Division Street, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Pascale Champagne
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, ON, K7L 3N6, Canada.,Institut National de la Recherche Scientifique (INRS), 490 rue de la Couronne, Quebec City, Quebec, G1K 9A9, Canada
| | - Michael F Cunningham
- Department of Chemical Engineering, 19 Division Street, Queen's University, Kingston, ON, K7L 3N6, Canada.,Department of Chemistry, 90 Bader Lane, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
26
|
Ghavidel N, Fatehi P. Recent Developments in the Formulation and Use of Polymers and Particles of Plant-based Origin for Emulsion Stabilizations. CHEMSUSCHEM 2021; 14:4850-4877. [PMID: 34424605 DOI: 10.1002/cssc.202101359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The main scope of this Review was the recent progress in the use of plant-based polymers and particles for the stabilization of Pickering and non-Pickering emulsion systems. Due to their availability and promising performance, it was discussed how the source, modification, and formulation of cellulose, starch, protein, and lignin-based polymers and particles would impact their emulsion stabilization. Special attention was given toward the material synthesis in two forms of polymeric surfactants and particles and the corresponding formulated emulsions. Also, the effects of particle size, degree of aggregation, wettability, degree of substitution, and electrical charge in stabilizing oil/water systems and micro- and macro-structures of oil droplets were discussed. The wide range of applications using such plant-based stabilizers in different technologies as well as their challenge and future perspectives were described.
Collapse
Affiliation(s)
- Nasim Ghavidel
- Chemical Engineering Department, Green Processes Research Centre, Lakehead University, 955 Oliver Road, Thunder Bay, P7B5E1 ON, Canada
| | - Pedram Fatehi
- Chemical Engineering Department, Green Processes Research Centre, Lakehead University, 955 Oliver Road, Thunder Bay, P7B5E1 ON, Canada
| |
Collapse
|
27
|
Ko EB, Kim JY. Application of starch nanoparticles as a stabilizer for Pickering emulsions: Effect of environmental factors and approach for enhancing its storage stability. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
28
|
Pooresmaeil M, Javanbakht S, Namazi H, Shaabani A. Application or function of citric acid in drug delivery platforms. Med Res Rev 2021; 42:800-849. [PMID: 34693555 DOI: 10.1002/med.21864] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/02/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
Nontoxic materials with natural origin are promising materials in the designing and preparation of the new drug delivery systems (DDSs). Today's, citric acid (CA) has attracted a great deal of attention because of its special features; green nature, biocompatibility, low price, biodegradability, and commercially available property. So, CA has been employed in the preparation of the various platforms to induce a suitable property on their structure. Recently, several research groups investigated the CA-based platforms in different forms like tablets, dendrimers, hyperbranched polymers, (co)polymer, hydrogels, and nanoparticles as efficient DDSs. By considering an increasing amount of published articles in this field, for the first time, in this review, an overview of the published works regarding CA applications in the design of various DDSs is presented with a detailed and insightful discussion.
Collapse
Affiliation(s)
- Malihe Pooresmaeil
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | | | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
29
|
Kumar A, Singh M, Panda AK, Tyagi YK. Amide-Linked Dendron-based Amphiphiles: A class of pH sensitive and highly biocompatible drug carrier for sustained drug release. Supramol Chem 2021. [DOI: 10.1080/10610278.2021.1975280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ashwani Kumar
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, India
| | - Mamta Singh
- Product Development Cell- II, National Institute of Immunology (NII), Aruna Asaf Ali Marg, India
| | - Amulya Kumar Panda
- Product Development Cell- II, National Institute of Immunology (NII), Aruna Asaf Ali Marg, India
| | - Yogesh Kumar Tyagi
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, India
| |
Collapse
|
30
|
Liu C, Fan L, Yang Y, Jiang Q, Xu Y, Xia W. Characterization of surimi particles stabilized novel pickering emulsions: Effect of particles concentration, pH and NaCl levels. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106731] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Lu H, Tian Y. Nanostarch: Preparation, Modification, and Application in Pickering Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6929-6942. [PMID: 34142546 DOI: 10.1021/acs.jafc.1c01244] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanostarch, as a food-grade Pickering emulsion stabilizer, has attracted wide attention owing to its biodegradability, nontoxicity, small size, and large specific surface area. In this review, the preparation, modification, and application of Pickering emulsions incorporating nanostarch are described. At present, methods for nanostarch preparation mainly include acid hydrolysis, acid hydrolysis combined with other treatments, nanoprecipitation, ultrasonication, ball milling, and cross-linking. Nanostarch is a promising Pickering emulsion stabilizer, and its emulsifying ability of nanostarch is significantly improved by hydrophobic modification. The hydrophobicity, charge, size, and content of nanostarch affect the emulsion stability. Future developments in this area of research include the efficient and environmentally friendly preparation of nanostarch as well as the control of its hydrophobicity via modification. Future studies should focus on the digestibility and storage stability of Pickering emulsions stabilized by nanostarch under different conditions.
Collapse
Affiliation(s)
- Hao Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
32
|
Safaei-Yaraziz A, Akbari-Birgani S, Nikfarjam N. Porous scaffolds with the structure of an interpenetrating polymer network made by gelatin methacrylated nanoparticle-stabilized high internal phase emulsion polymerization targeted for tissue engineering. RSC Adv 2021; 11:22544-22555. [PMID: 35480468 PMCID: PMC9034234 DOI: 10.1039/d1ra03333f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/14/2021] [Indexed: 12/31/2022] Open
Abstract
The interlacing of biopolymers and synthetic polymers is a promising strategy to fabricate hydrogel-based tissue scaffolds to biomimic a natural extracellular matrix for cell growth. Herein, open-cellular macroporous 3D scaffolds with a semi-interpenetrating network were fabricated through high internal phase emulsion templating. The scaffolds are prepared by (I) the curing of PEG diacrylate (PEGDAC) and gelatin methacrylate (GelMA) in the continuous aquatic phase of a coconut oil-in-water emulsion stabilized by GelMA nanoparticles, and (II) the removal of the internal phase. The effect of the main contributing parameters such as pH, GelMA content, and GelMA/PEGDAC weight ratio on the emulsion features was investigated systematically. Due to the isoelectric point of GelMA at around pH 6, the GelMA particle (aggregation) size decreased at both sides of pH from 1000 to 100–140 nm because of the increased number of positive and negative charges on GelMA. These GelMA nanoparticles were able to produce stable emulsions with narrowly distributed small emulsion droplets. Moreover, the stability and emulsion droplet size were enhanced and increased, respectively, with GelMA content increasing and GelMA/PEGDAC weight ratio decreasing. These trends lie in the prevented coalescence phenomenon caused by the improved viscosity and likely partially formed network by GelMA chains in the continuous phase. Hence, the following formulation was selected for scaffold preparation: φoil = 74%, pH = 12, GeMA = 4 wt%, and GelMA/PEGDAC = 10/8. Then, PCL in different contents was infiltrated into the scaffold to balance hydrophilicity and hydrophobicity. The cell culture assay proved that the scaffold with a pore size of 60–180 μm and containing 51.2 wt% GelMA, 10.3 wt% PEG, and PCL 27.2 wt% provided a suitable microenvironment for mouse fibroblast cell (L929) adhesion, growth, and spreading. These results show that this strategy suggests promising culture for tissue engineering applications. The interlacing of biopolymers and synthetic polymers is a promising strategy to fabricate hydrogel-based tissue scaffolds to biomimic a natural extracellular matrix for cell growth.![]()
Collapse
Affiliation(s)
- Atefeh Safaei-Yaraziz
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran +982433153232 +982433153132
| | - Shiva Akbari-Birgani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Nasser Nikfarjam
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran +982433153232 +982433153132
| |
Collapse
|
33
|
Synthesis of Starch Nanoparticles and Their Applications for Bioactive Compound Encapsulation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104547] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, starch nanoparticles (SNPs) have attracted growing attention due to their unique properties as a sustainable alternative to common nanomaterials since they are natural, renewable and biodegradable. SNPs can be obtained by the breakdown of starch granules through different techniques which include both physical and chemical methods. The final properties of the SNPs are strongly influenced by the synthesis method used as well as the operational conditions, where a controlled and monodispersed size is crucial for certain bioapplications. SNPs are considered to be a good vehicle to improve the controlled release of many bioactive compounds in different research fields due to their high biocompatibility, potential functionalization, and high surface/volume ratio. Their applications are frequently found in medicine, cosmetics, biotechnology, or the food industry, among others. Both the encapsulation properties as well as the releasing processes of the bioactive compounds are highly influenced by the size of the SNPs. In this review, a general description of the different types of SNPs (whole and hollow) synthesis methods is provided as well as on different techniques for encapsulating bioactive compounds, including direct and indirect methods, with application in several fields. Starches from different botanical sources and different bioactive compounds are compared with respect to the efficacy in vitro and in vivo. Applications and future research trends on SNPs synthesis have been included and discussed.
Collapse
|
34
|
Cho YS, Lee SH, Seo HM, Shin K, Kang MH, Lee M, Park J, Kim JW. Structuring Pickering Emulsion Interfaces with Bilayered Coacervates of Cellulose Nanofibers and Hectorite Nanoplatelets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3828-3835. [PMID: 33780257 DOI: 10.1021/acs.langmuir.0c03082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this study, we present a water-in-silicone oil (W/S) Pickering emulsion system stabilized via in situ interfacial coacervation of attractive hectorite nanoplatelets (AHNPs) and bacterial cellulose nanofibrils (BCNFs). A bilayered coacervate is generated at the W/S interface by employing the controlled electrostatic interaction between the positively charged AHNPs and the negatively charged BCNFs. The W/S interface with the bilayered coacervate shows a significant increase in the interfacial modulus by 2 orders of magnitude than that with the AHNPs only. In addition, we observe that water droplets are interconnected by the BCNF bridging across the continuous phase of silicon, which is attributed to the diffusive transport phenomenon. This droplet interconnection results in the effective prevention of drop coalescence, which is confirmed via emulsion sedimentation kinetics. These results indicate that our bilayered coacervation technology has the potential of developing a promising Pickering emulsion platform that can be used in the pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Yeong Sik Cho
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sung Ho Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Sunjin Beauty Science Co., Ansan 15612, Republic of Korea
| | - Hye Min Seo
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyounghee Shin
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Min Ho Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Minyoung Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jungwon Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
35
|
Guida C, Aguiar AC, Cunha RL. Green techniques for starch modification to stabilize Pickering emulsions: a current review and future perspectives. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Effect of oil type and β-carotene incorporation on the properties of gelatin nanoparticle-stabilized pickering emulsions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110903] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
37
|
Caldonazo A, Almeida SL, Bonetti AF, Lazo REL, Mengarda M, Murakami FS. Pharmaceutical applications of starch nanoparticles: A scoping review. Int J Biol Macromol 2021; 181:697-704. [PMID: 33766602 DOI: 10.1016/j.ijbiomac.2021.03.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/25/2022]
Abstract
Starch nanoparticles (SNPs) have been applied to different areas of material sciences, especially in pharmaceuticals due to their characteristics such as small particle size, high surface ratio-volume, and biological compatibility. However, in pharmaceutical sciences, there are no records of a scoping review that had extensively mapped all available information about SNPs. A scoping review was performed here by searching electronic databases (Pubmed and Science Direct) to identify studies published previous to June 2020. From 699 total records, 37 matched the criteria for inclusion. The findings showed that SNPs have been used, not only for the development of different active pharmaceutical ingredient delivery systems, but also as an enzyme inhibitor, adsorption, and DNA precipitation agent. In conclusion, by combining different starch sources and methods SNPs show a remarkable diversity in pharmaceutical applications. Future studies should explore SNPs safety and provide information about variables that may affect important properties for this kind of application.
Collapse
Affiliation(s)
- Aline Caldonazo
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba 80210-170, PR, Brazil.
| | - Susana Leao Almeida
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Aline F Bonetti
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Raul Edison Luna Lazo
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Mariana Mengarda
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Fabio Seigi Murakami
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| |
Collapse
|
38
|
Hosseinzadeh B, Nikfarjam N, Kazemi SH. Hollow molecularly imprinted microspheres made by w/o/w double Pickering emulsion polymerization stabilized by graphene oxide quantum dots targeted for determination of l-cysteine concentration. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Wang J, Sun Y, Yu M, Lu X, Komarneni S, Yang C. Emulsions stabilized by highly hydrophilic TiO 2 nanoparticles via van der Waals attraction. J Colloid Interface Sci 2021; 589:378-387. [PMID: 33482535 DOI: 10.1016/j.jcis.2021.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/16/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
HYPOTHESIS Highly hydrophilic nanoparticles are generally considered not suitable for stabilizing Pickering emulsions, since they could not be effectively wetted by the oil phase at the water-oil interface. However, highly hydrophilic nanoparticles with good dispersity are possibly absorbed and packed onto the surface of the oil droplets in water via the van der Waals attraction between the nanoparticles and the oil droplets. Hence, a novel "van der Waals emulsion" should be possible to be stabilized by highly hydrophilic nanoparticles. EXPERIMENTS Oil-in-water emulsions solely stabilized by pristine TiO2 nanoparticles (i.e., TiO2 without any modification or additives) were prepared. The emulsification behavior under varying pH value, oil fraction, particle content and temperature of the emulsion were explored. Composite wax-based beads which encapsulated chemical sunscreen and was coated by TiO2 nanoparticles, was also fabricated using the obtained emulsion as the templates. FINDINGS The emulsions displayed the highest stability near the isoelectric points of the TiO2 nanoparticles, which was attributed to the van der Waals attraction between TiO2 nanoparticles and oil droplets. Such mechanism was supported by a theoretical analysis based on calculation of the Hamaker constants and experimental evidences. Therefore, this work presents a simple, general and green method for preparing particle-stabilized emulsions.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yajuan Sun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Mingying Yu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xihua Lu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Sridhar Komarneni
- Department of Ecosystem Science and Management and Materials Research Institute, 204 Energy and the Environment Laboratory, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Cheng Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
40
|
Yu M, Ji N, Wang Y, Dai L, Xiong L, Sun Q. Starch‐based nanoparticles: Stimuli responsiveness, toxicity, and interactions with food components. Compr Rev Food Sci Food Saf 2020; 20:1075-1100. [DOI: 10.1111/1541-4337.12677] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Mengting Yu
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Na Ji
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Yanfei Wang
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Lei Dai
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Liu Xiong
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Qingjie Sun
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| |
Collapse
|
41
|
Cai X, Wang Y, Du X, Xing X, Zhu G. Stability of pH-responsive Pickering emulsion stabilized by carboxymethyl starch/xanthan gum combinations. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106093] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Bakeshlou Z, Nikfarjam N. Thermoregulating Papers Containing Fabricated Microencapsulated Phase Change Materials through Pickering Emulsion Templating. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zeynab Bakeshlou
- Polymer Division, Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan 4513766731, Iran
| | - Nasser Nikfarjam
- Polymer Division, Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan 4513766731, Iran
| |
Collapse
|
43
|
Characteristics of starch-based Pickering emulsions from the interface perspective. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Tai Z, Huang Y, Zhu Q, Wu W, Yi T, Chen Z, Lu Y. Utility of Pickering emulsions in improved oral drug delivery. Drug Discov Today 2020; 25:S1359-6446(20)30370-6. [PMID: 32949702 DOI: 10.1016/j.drudis.2020.09.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/03/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
Pickering emulsions are surfactant-free emulsions stabilized by solid particles. Their unique structure endows them with good stability, excellent biocompatibility, and environmental friendliness. Pickering emulsions have displayed great potential in oral drug delivery. Several-fold increases in the oral bioavailability or bioaccessibility of poorly soluble drugs, such as curcumin, silybin, puerarin, and rutin, were achieved by using Pickering emulsions, whereas controlled release was found for indomethacin and caffeine. The shell of the interfacial particle stabilizers provides enhanced gastrointestinal stability to the cargos in the oil core. Here, we also discuss general considerations concerning particle stabilizers and design strategies to control lipid digestion.
Collapse
Affiliation(s)
- Zongguang Tai
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yanping Huang
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China
| | - Tao Yi
- School of Health Sciences and Sports, Macao Polytechnic Institute, 00853, Macao
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| | - Yi Lu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China.
| |
Collapse
|
45
|
Lin X, Sun S, Wang B, Zheng B, Guo Z. Structural and physicochemical properties of lotus seed starch nanoparticles. Int J Biol Macromol 2020; 157:240-246. [DOI: 10.1016/j.ijbiomac.2020.04.155] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 10/24/2022]
|
46
|
Effect of salt on the inter-relationship between the morphological, emulsifying and interfacial rheological properties of O/W emulsions at oil/water interface. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109871] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
47
|
Nikbakht Nasrabadi M, Goli SAH, Sedaghat Doost A, Dewettinck K, Van der Meeren P. Bioparticles of flaxseed protein and mucilage enhance the physical and oxidative stability of flaxseed oil emulsions as a potential natural alternative for synthetic surfactants. Colloids Surf B Biointerfaces 2019; 184:110489. [DOI: 10.1016/j.colsurfb.2019.110489] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/27/2019] [Accepted: 09/02/2019] [Indexed: 10/26/2022]
|
48
|
Muralidhara S, Malu K, Gaines P, Budhlall BM. Quantum dot encapsulated nanocolloidal bioconjugates function as bioprobes for in vitro intracellular imaging. Colloids Surf B Biointerfaces 2019; 182:110348. [DOI: 10.1016/j.colsurfb.2019.110348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 11/24/2022]
|